学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家开始动笔写自己的教案课件了。用心制定好教案课件的工作计划,才能更好地安排接下来的工作!你们会写教案课件的范文吗?请您阅读小编辑为您编辑整理的《《有理数和加减法》教案》,欢迎大家阅读,希望对大家有所帮助。
《有理数和加减法》教案
教案是教师对一节课的整体设想,创造性的教学设计,严谨、科学、有序的教学策略,能够有效的提高教学效率。因此,编辑老师为各位老师准备了这篇七年级上册数学一单元教案,希望可以帮助到您!
教学目标
1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;
2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.
3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.
教学建议
(一)重点、难点分析
本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.
(二)知识结构
(三)教法建议
1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.
3.因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.
4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。
秋高气爽、瓜果飘香,在这个收获的季节,我们又迎来了一个充满希望的新学期。因此,编辑老师为各位老师准备了这篇2015初一上册数学第一单元教案,希望可以帮助到您!
教学目标
1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;
2.了解倒数概念,会求给定有理数的倒数;
3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法运算,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节教学的重点是熟练进行有理数的除法运算,教学难点是理解有理数的除法法则。
1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。
2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。
在有整除的情况下,应用第二个法则比较方便
在能整除的情况下,应用第二个法则比较方便。
教法建议
1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。
2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。
3.理解倒数的概念
(1)根据定义乘积为1的两个数互为倒数。
(2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。
(3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。
4.关于倒数的求法要注意:
(1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.
(2)正数的倒数是正数,负数的倒数仍是负数.
(3)负倒数的定义:乘积是-1的两个数互为负倒数.
每个老师上课需要准备的东西是教案课件,规划教案课件的时刻悄悄来临了。此时就可以对教案课件的工作做个简单的计划,才能规范的完成工作!有没有出色的范文是关于教案课件的?下面是由小编为大家整理的“课题:有理数的加减法(3)――减法”,欢迎您阅读和收藏,并分享给身边的朋友!
课题:有理数的加减法(3)――减法教学目标:
1.知识与技能:探索有理数减法法则,理解法则的合理性,能准确熟练地进行减法的运算。
2过程和方法:经历有理数减法法则的探索,体验减法到加法到的转化。
3.情感、态度与价值观通过减法到加法的转化,渗透普遍联系观点和发展变化的观点
教学重点:探索有理数减法法则,能准确熟练地进行减法的运算。
教学难点:准确熟练地进行减法的运算。
教学过程
一、课前预习问题:每天的最高气温与最低气温的差叫做日温差。
如果某天最高气温是5℃,最低气温是-3℃,那么这天该地的日温差是[5-(-3)]℃,其结果是多少呢?方法1:用温度计观察,其相差8格,则5-(-3)=8方法2:利用加法是减法的逆运算得:∵8+(-3)=5,∴5-(-3)=8显然,两种方法都比较繁。那么,有没有更简便的做法呢?二、自主探索
减号变加号
由上述分析可见,5-(-3)=8而我们知道:5+3=8。∴5-(-3)=5+3减数变相反数上述过程告诉我们:有理数减法(subtraction)法则:
减去一个数,等于加上这个数的相反数。
即:a-b=a+(-b)
例1、填空(1)(-3)-5=(-3)+____(2)3-(-5)=3+____(3)3-5=3+____(4)(-3)-(-5)=(-3)+____例2、计算:1、0-(-22)2、8.5-(-1.5)
3、(+4)-164、(-)-
例3、根据天气预报图求图中各城市的日温差:呼和浩特:-4~4℃,北京0~8℃,天津-2~9℃,扬州1~10℃,长春-14~-5℃。
例4.|x|=3,|y|=4,求x-y的值
三.学习小结
这节课你学会了什么?
四、随堂练习
A类1、计算:
(1)0-3(2)-5-8
(3)2.5-(-3.5)(4)8-12
(5)-5-9+3(6)10-17+8
(7)-8+12-16-23(8)-16-57+48+12-78
(9)8.26+8.74-111-29.3(10)-+(-)-(-)-
2、下列说法正确的是()A、两数相减,被减数一定比差大
B、有理数的减法法则可用式子表达为a-b=a+(-b)C、有理数的减法和加法一样,可运用交换律
D、如果a-b的结果为正数,那么a一定是正数。
B类3、使等式|x-7|=|x|+|-7|成立的有理数x是()A、任意一个正数B、任意一个非正数C、任意一个小于7的有理数D、任意一个有理数。4、若|a|=3,|b|=2,且ab,则a-b=_____5、算24点,请将下列各数适当添加运算符号,使之得出24。(1)-4,3,8,1(2)-3,-1,1,8
6、下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)(1)如果现在北京的时间是7∶00,那么现在纽约的时间是多少?
城市
时差/时
纽约
-13
巴黎
-7
东京
+1
(2)小明现在想给远在巴黎的姑妈打电话,你认为合适吗?
板书设计
教后感
每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,可以更好完成工作任务!有哪些好的范文适合教案课件的?以下是小编为大家精心整理的“有理数的加减法4份导学案”,希望能为您提供更多的参考。
课题:1.3.1有理数的加法(1)
【学习目标】:
1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;
2、会利用有理数加法运算解决简单的实际问题;
【学习重点】:有理数加法法则
【学习难点】:异号两数相加
【导学指导】
一、知识链接
1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。
于是红队的净胜球数为4+(-2),
蓝队的净胜球数为1+(-1)。
这里用到正数和负数的加法。那么,怎样计算4+(-2)
下面我们一起借助数轴来讨论有理数的加法。
二、自主探究
1、借助数轴来讨论有理数的加法
1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了米,这个问题用算式表示就是:
2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两
次共向西走多少米?很明显,两次共向西走了米。
这个问题用算式表示就是:
如图所示:
3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了米,写成算式就是这个问题用数轴表示如下图所示:
4)利用数轴,求以下情况时这个人两次运动的结果:
①先向东走3米,再向西走5米,这个人从起点向()走了()米;
②先向东走5米,再向西走5米,这个人从起点向()走了()米;
③先向西走5米,再向东走5米,这个人从起点向()走了()米。
写出这三种情况运动结果的算式
5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人
从起点向东(或向西)运动了米。写成算式就是
2、师生归纳两个有理数相加的几种情况。
3.你能从以上几个算式中发现有理数加法的运算法则吗?
有理数加法法则
(1)同号的两数相加,取的符号,并把相加。
(2)绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值较小的绝对值.互为相反数的两个数相加得;
(3)一个数同0相加,仍得。
4.新知应用
例1计算(自己动动手吧!)
(1)(-3)+(-9);(2)(-4.7)+3.9.
例2(自己独立完成)
【课堂练习】:
1.填空:(口答)
(1)(-4)+(-6)=;(2)3+(-8)=;
(4)7+(-7)=;(4)(-9)+1=;
(5)(-6)+0=;(6)0+(-3)=;
2.课本P18第1、2题
【要点归纳】:
有理数加法法则:
【拓展训练】:
1.判断题:
(1)两个负数的和一定是负数;
(2)绝对值相等的两个数的和等于零;
(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;
(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。
2.已知│a│=8,│b│=2;
(1)当a、b同号时,求a+b的值;
(2)当a、b异号时,求a+b的值。
【总结反思】:
文章来源:http://m.jab88.com/j/31037.html
更多