《圆与圆的位置关系》导学案
学习目标
了解圆与圆之间的几种位置关系;经历探索两个圆之间位置关系的过程,训练的探索能力;通过平移实验直观地探索圆和圆的位置关系,发展的识图能力和动手操作能力.
教学重点难点探索圆与圆之间的几种位置关系
教学过程
一创设情境,引发探究
1点与圆的位置关系2直线与圆的位置关系
点与圆的位置关系
点到圆心的距离d与半径r的数量关系
点在圆内
点在圆上
点在圆外
直线与圆的位置关系
相交
相离
相切
公共点个数
公共点名称
集体备课5.1《圆与圆的位置关系》
直线名称
d与r的关系
3我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有集体备课5.1《圆与圆的位置关系》调查就没有发言权
在纸上画一个半径为3cm的⊙O1,把一枚硬币平放在纸上作为另一个圆,将这枚硬币向圆不断移动:观察硬币的运动过程,思考两圆公共点的个数在如何变化?
集体备课5.1《圆与圆的位置关系》
4根据观察给出有关概念类似于前面集体备课5.1《圆与圆的位置关系》点与圆、直线与圆的位置关系,在五种位置关系中,两圆的圆心距d与两圆的半径R、r(R>r)间有什么关系?
位置d与两圆的半径R、r关系公共点的个数集体备课5.1《圆与圆的位置关系》
集体备课5.1《圆与圆的位置关系》(1)外离_________集体备课5.1《圆与圆的位置关系》_____________________________________集体备课5.1《圆与圆的位置关系》_________________
集体备课5.1《圆与圆的位置关系》2)外切________________________________________________________________
集体备课5.1《圆与圆的位置关系》(3)相交______________________________________________集体备课5.1《圆与圆的位置关系》_________________
集体备课5.1《圆与圆的位置关系》(4)内切_______集体备课5.1《圆与圆的位置关系》集体备课5.1《圆与圆的位置关系》________________________________________________________
集体备课5.1《圆与圆的位置关系》(5)内含_____________________________集体备课5.1《圆与圆的位置关系》__________________________________
二、巩固练习:
1、举出一些能表示两个圆不同位置关系的实例。
2、⊙O1和⊙O2的半径分别为3厘米和4厘米,若
(集体备课5.1《圆与圆的位置关系》1)O1O2=8厘米;(2)O1O2=7厘米;(3)O1O2=5厘米;
(4)O1O2=1厘米;(5)O集体备课5.1《圆与圆的位置关系》1O2=0.5厘米;(6)O1和O2重合。
⊙O1和⊙O2的位置关系怎样?
三、例题讲解
例1如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm。若以P为圆心作⊙P与⊙O相切,求⊙P的半径?
例2两圆的半径之比为5:3,集体备课5.1《圆与圆的位置关系》当两圆相切时,圆心距为8cm,求两圆的半径?
四、课后检测:
1.⊙O1的半径为4,⊙O2的半径为2,两圆的圆心距为1,则两圆的位置关系是()A.内含集体备课5.1《圆与圆的位置关系》B.内切C.相交D.外切
2.若两圆没有公共点,则两圆的位置关系为———————————————()
A.只有外离B.只有内含C.相切D.外离或内含
3.已知两圆圆心距是7,两圆半径分别是方程x2-6x+8=0的两根,那么这两圆的位置关系是A.内切B.外切C.相交D.外离--------------------------------()
4.两圆内切圆心距等于2cm,一个圆的半径等于6cm,则另一个圆半径是———()
A.10cmB.4cmC.8cmD.4cm或8cm
5.两圆半径分别是R和r(Rr),其圆心距为d,若R2+d2-r2=2Rd,则两圆位置关集体备课5.1《圆与圆的位置关系》系是A.内切B.外切C.内切或外切D.相交-----------------------------()
6.已知O1与O2的半径分别为R,r(Rr),圆心距为d,且两圆相交,判定关于x的一元二次方程x2—2(d—R)x+r2=0根的情况
7.⊙O1与⊙O2的圆心O1、O2的坐标分别是O1(3,0)、O2(0,4),两圆的半径分别
是R=8,r=2,判断⊙O1与⊙O2的位置关系
3.6圆和圆的位置关系
本节课要学习的内容是圆和圆的位置关系,其中包括利用平移实验直观地探索圆和圆之间的几种位置关系,通过讨论两圆圆心之间的距离d与两圆半径R和r之间的关系来确定两圆的位置关系.重点和难点是通过学生动手操作和互相交流探索出圆和圆之间的几种位置关系.
在教学中教师不要只强调结论,要关注学生的动手操作过程,关注他们互相交流的过程.看学生是否能积极地投入到数学活动中去,在他们困难的时候要适时地给予帮助,要多加鼓励,提高他们学习数学的兴趣,只要学生有了兴趣就成功了一半,他们就能敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验.
通过学习本节课的内容,使学生具备一定的识图能力,体会数学活动充满着探索性和创造性,敢于发表自己的观点,并尊重和理解他人的见解,能从交流中获益.
教学目标
(一)教学知识点
1.了解圆与圆之间的几种位置关系.
2.了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.
(二)能力训练要求
1.经历探索两个圆之间位置关系的过程,训练学生的探索能力.
2.通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.
(三)情感与价值观要求
1.通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维.
教学重点
探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.
教学难点
探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关
系的过程.
教学方法
教师讲解与学生合作交流探索法
教具准备
投影片三张
第一张:(记作§3.6A)
第二张:(记作§3.6B)
第三张:(记作§3.6C)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.
Ⅱ.新课讲解
一、想一想
[师]大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?
[生]如自行车的两个车轮间的位置关系;车轮轮胎的两个边界圆间的位置关系;用一只手拿住大小两个圆环时两个圆环间的位置关系等.
[师]很好,现实生活中我们见过的有关两个圆的位置很多.下面我们就来讨沦这些位置关系分别是什么.
二、探索圆和圆的位置关系
在一张透明纸上作一个⊙O.再在另一张透明纸上作一个与⊙O1半径不等的⊙O2.把两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?
[师]请大家先自己动手操作,总结出不同的位置关系,然后互相交流.
[生]我总结出共有五种位置关系,如下图:
[师]大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点的个数和一个圆上的点在另一个圆的内部还是外部来考虑.
[生]如图:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;
(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;
(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;
(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;
(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.
[师]总结得很出色,如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗?
[生]外离和内含都没有公共点;外切和内切都有一个公共点,相交有两个公共点.
[师]因此只从公共点的个数来考虑,可分为相离、相切、相交三种.
经过大家的讨论我们可知:
投影片(§3.6A)
(1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.
(2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离
外离外切
,相切
内含内切
三、例题讲解
投影片(§3.6B)
两个同样大小的肥皂泡黏
在一起,其剖面如图所示
(点O,O′是圆心),分隔
两个肥皂泡的肥皂膜PQ成一条直线,
TP、NP分别为两圆的切线,求∠TPN的大小.
分析:因为两个圆大小相同,所以半径OP=O′P=OO′,又TP、NP分别为两圆的切线,所以PT⊥OP,PN⊥O′P,即∠OPT=∠O′PN=90°,所以∠TPN等于360°减去∠OPT+∠O′PN+∠OPO°即可.
解:∵OP=OO′=PO′,
∴△PO′O是一个等边三角形.
∴∠OPO′=60°.
又∵TP与NP分别为两圆的切线,
∴∠TPO=∠NPO′=90°.
∴∠TPN=360°-2×90°-60°=120°.
四、想一想
如图(1),⊙O1与⊙O2外切,这个图是轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果⊙O1与⊙O2内切呢?[如图(2)]
[师]我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一个轴对称图形呢?这就要看切点了是否在连接两个圆心的直线上,下面我们用反证法来证明.反证法的步骤有三步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立.
证明:假设切点丁不在O1O2上.
因为圆是轴对称图形.所以T关于O1O2的对称点广也是两圆的公共点,这与已知条件⊙O1和⊙O2相切矛盾,因此假没不成立.
则T在O1O2上.
由此可知图(1)是轴对称图形,对称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上.
在图(2)中应有同样的结论.
通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图(1)和图(2)都是轴对称图形,对称轴是它们的连心线.
五、议一议
投影片(§3.6C)
设两圆的半径分别为R和r.
(1)当两圆外切时,两圆圆心之间的距离(简称圆心距)d与R和r具有怎样的关系?反之当d与R和r满足这一关系时,这两个圆一定外切吗?
(2)当两圆内切时(Rr),圆心距d与R和r具有怎样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?
[师]如图,请大家互相交流.
[生]在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A=R+r,即d=R+r:反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.
在图(2)中,⊙O1与⊙O2相内切,切点是B.因为切点B在连心线O1O2,所以O1O2=O1B-O2B,即d=R-r:反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.
[师]由此可知,当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切d=R+r
当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切d=R-r.
Ⅲ.课堂练习
随堂练习
Ⅳ.课时小结
本节课学习了如下内容:
1.探索圆和圆的五种位置关系;
2.讨论在两圆外切或内切情况下,图形的轴对称性及对称轴,以及切点和对称轴的位置关系;
3.探讨在两圆外切或内切时,圆心距d与R和r之间的关系.
Ⅴ.课后作业
Ⅵ.活动与探究
已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径为R,求⊙O3的半径.
分析:根据两圆相外切连心线的长为两半径之和,如果设⊙O3的半径为r,则O1O3=O2O3=R+r,连接OO3就有OO3⊙O1O2,所以OO2O3构成了直角三角形,利用勾股定理可求得⊙O3的半径r.
解:连接O2O3、OO3,
∴O2OO3=90°,OO3=2R-r
O2O3=R+r,OO2=R
∴(R+r)2=(2R-r)2+R2.
∴r=R
板书设计
3.6圆和圆的位置关系
一、1.想一想
2.探索圆和圆的位置-关系
3.例题讲解
4.想一想
5.议一议
二、课堂练习
三、课时小结
四、课后作业
备课资料
参考练习
1.⊙O1和⊙O2的半径分别为3cm和4cm,若两圆外切,则d=_____;若两圆内切;则d=____.
2.如果两个圆相切,那么切点和两圆的圆心_____.
3.半径为5cm的⊙O外一点P,则以点P为圆心且与⊙O相切的⊙P能画_______个.
4.两圆半径之比为3:5,当两圆内切时,圆心距为4cm,则两圆外切时圆心距的长为_____.
5.两圆内切时圆心距是2,这两圆外切时圆心距是5,两圆的半径分别是______、
6.两圆的半径分别为10cm和R、圆心距为13cm,若这两个圆相切,则R的值是
文章来源:http://m.jab88.com/j/76751.html
更多