88教案网

二次根式的混合运算

教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。此时就可以对教案课件的工作做个简单的计划,新的工作才会如鱼得水!适合教案课件的范文有多少呢?小编特地为大家精心收集和整理了“二次根式的混合运算”,供您参考,希望能够帮助到大家。

§3.3.2二次根式的混合运算(九年级下数学307)——研究课

班级________姓名____________

一.学习目标:

1.掌握二次根式的运算方法,明确数的运算顺序、运算律及乘法公式在根式的运算中仍然适用;

2.正确运用二次根式的性质及运算法则进行二次根式的混合运算.

二.学习重点:正确运用二次根式的性质及运算法则进行二次根式的混合运算.

学习难点:二次根式计算的结果要是最简二次根式.

三.教学过程

知识准备

1.满足下列条件的二次根式是最简二次根式.

①.

②.

③.

2.回忆有理数,整式混合运算的顺序.

3.回忆并整理整式的乘法公式.

★方法探究1

⑴(512+23)×15⑵(3+10)(2-5)

归纳:.

尝试练习:

⑴(3+22)×6⑵(827-53)6⑶(6-3+1)×23

⑷(3-22)(33-2)⑸(22-3)(3+2)⑹(5-6)(3+2)

★方法探究2

⑴(3+2)(3-2)⑵(3+25)2

归纳:.

尝试练习:

⑴(5+1)(5-1)⑵(7+5)(5-7)⑶(25-32)(25+32)⑷(a+b)(a-b)

⑸(3-2)2⑹(32-45)2⑺(3-22)(22-3)⑻(a-b)2

⑼(1-23)(1+23)-(1+3)2⑽(3+2-5)(3―2―5)

例题解析

1.计算:(22-3)2011(22+3)2012.2.若x=10-3,求代数式x2+6x+11的值.

3.若x=11+72,y=11—72,求代数式x2-xy+y2的值.

课内反馈

1.计算12(2-3)=.

2.计算⑴(2+3)(2-3)=;⑵(5-2)2010(5+2)2011=.

3.计算:

⑴12(75+313-48)⑵(1327-24-323)12⑶(23-5)(2+3)

⑷(5-3+2)(5+3-2)⑸(312-213+48)÷23

4.已知a=3+2,b=3-2,求下列各式的值.

⑴a2-b2⑵1a-1b⑶a2-ab+b2

5.若x=3+1,求代数式x2-2x-3的值.

错题汇总:

相关推荐

二次根式的四则混合运算教案(浙教版)


§1.3二次根式的四则混合运算
(练习课)
教案
教学目标:1,会进行二次根式的四则混合运算
2,会应用整式的运算法则进行二次根式的运算
3,体验和掌握迁移、转化等数学思想与方法
重点、难点:二次根式的四则混合运算是重点;整式的乘法公式和法则迁移到二次根式的运算是难点
教学过程:
教师活动教学内容设计意图学生活动
回顾1、二次根式
有哪些性质
①进一步梳理和巩固已生成的知识
②纵览公式之间的区别与联系自由口答
默写
2、已学过的整式的乘法公式和法则有哪些
同上同上
3、怎样化简二次根式10、化简下列二次根式:
,,,,
体验性质与公式的准确运用自愿上来板演
其他自己做
教师书写新课标题二次根式的四则混合运算
教师活动教学内容设计意图学生活动
新课
讲解例34、引导、帮助学生审题(屏幕显示题目)11:先化简,再求近似值(精确到0.01)
领悟先化简再象合并同类项那样进行运算来计算这一题观察与思考
5、本题共有哪几项组成?它们是二次根式吗?
6、各项能否化简12、解:
规范书写
知道运算程序领悟与练习
课堂练习7、学生完成解题后出示答案13、课本14页课内练习第1题领悟方法,会正迁移一位学生板演,其余自己做
新课讲解例48、屏幕显示题目14、计算:
整式的运算法则在二次根式计算时的应用观察与思考
9、问:
对于(1)先算什么后算什么
第(2)(3)又该怎样呢15、对于第一题先乘除后加减,在后合并
16、第2题先去括号,再计算较方便
17、第3题先把除法转化为乘法,后去括较方便对具体的计算题会先设计计算程序,自由回答问题,练习,自愿上黑板计算
教师活动教学内容设计意图学生活动
课堂练习10、学生完成后出示答案并纠正错误18、课本14页,课内练习2会正迁移,领悟方法与步骤学生先做,后挑选部分屏幕展示
新课讲解例511、屏幕显示题目19、例5:计算
会用乘法公式和法则进行二次根式的计算
12、教师问:
对于(1)相当于哪一个乘法公式的形式;对于(2)相当于整式乘法中哪一种运算形式20、
(1)用平方差公式
(2)多项式与多项式相乘
还有别的解法吗体验运算法则的互通观察思考,形成悱、愤状态
13、分组交流,合作完成21、教师巡视,帮助学生完成培养合作意识讨论,练习,
部分屏幕展示
课堂练习14、学生完成后,出示答案22、课本14页,课内练习3,4理解数学的应用价值练习,自由到黑板上解题
课堂小结15、问:这一节课学习了什么23、二次根式的四则混合运算中
①能化简的先化简
②当化简后被开方数相同时可象合并同类项那样合并
③在二次根式的运算中要注意运用乘法公式和乘法法则,使运算简便学生自由回答
布置作业完成课本作业(做在书上)和作业本(1)
天天伴我学记录
教学反思
针对教案上的不足之处,可以在给出一系列的二次根式混合运算的例题,通过利用完全平方,分母有理化,整式乘法规律等来求解的这一过程中增加一组利用通过分母进行计算的方法,并将其与利用分母有理化的进行比较,让学生了解通过观察计算式的特点,选取最优的方法,降低计算的错误率。

二次根式


第十八章二次根式
一、填空题(每题2分,共28分)
1.4的平方根是_____________.
2.的平方根是_____________.
7.在实数范围内分解因式:a4-4=____________.

二、选择题(每题4分,共20分)
15.下列说法正确的是().
(A)x≥1(B)x>1且x≠-2
(C)x≠-2(D)x≥1且x≠-2
(A)2x-4(B)-2(C)4-2x(D)2
三、计算题(各小题6分,共30分)
四、化简求值(各小题5分,共10分)
五、解答题(各小题8分,共24分)
29.有一块面积为(2a+b)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a-b)2π,问所挖去的圆的半径多少?

30.已知正方形纸片的面积是32cm2,如果将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是多少(保留3个有效数字)?
参考答案
1.±2
2.±2
3.–ab
4.–2
5.0或4
6.m≥1
12.-x-y
13.x≤4
14.
15.B16.A17.D18.A19.A20.D
23.24
30.0.900

二次根式的加减


老师工作中的一部分是写教案课件,大家在仔细设想教案课件了。写好教案课件工作计划,我们的工作会变得更加顺利!你们知道适合教案课件的范文有哪些呢?下面是由小编为大家整理的“二次根式的加减”,欢迎大家与身边的朋友分享吧!

21.3二次根式的加减(1)

第一课时

教学内容

二次根式的加减

教学目标

理解和掌握二次根式加减的方法.

先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.

重难点关键

1.重点:二次根式化简为最简根式.

2.难点关键:会判定是否是最简二次根式.

教学过程

一、复习引入

学生活动:计算下列各式.

(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3

教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减.

二、探索新知

学生活动:计算下列各式.

(1)2+3(2)2-3+5

(3)+2+3(4)3-2+

老师点评:

(1)如果我们把当成x,不就转化为上面的问题吗?

2+3=(2+3)=5

(2)把当成y;

2-3+5=(2-3+5)=4=8

(3)把当成z;

+2+

=2+2+3=(1+2+3)=6

(4)看为x,看为y.

3-2+

=(3-2)+

=+

因此,二次根式的被开方数相同是可以合并的,如2与表面上看是不相同的,但它们可以合并吗?可以的.

(板书)3+=3+2=5

3+=3+3=6

所以,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.

例1.计算

(1)+(2)+

分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.

解:(1)+=2+3=(2+3)=5

(2)+=4+8=(4+8)=12

例2.计算

(1)3-9+3

(2)(+)+(-)

解:(1)3-9+3=12-3+6=(12-3+6)=15

(2)(+)+(-)=++-

=4+2+2-=6+

三、巩固练习

教材P19练习1、2.

四、应用拓展

例3.已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.

分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值.

解:∵4x2+y2-4x-6y+10=0

∵4x2-4x+1+y2-6y+9=0

∴(2x-1)2+(y-3)2=0

∴x=,y=3

原式=+y2-x2+5x

=2x+-x+5

=x+6

当x=,y=3时,

原式=×+6=+3

五、归纳小结

本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.

六、布置作业

1.教材P21习题21.31、2、3、5.

2.选作课时作业设计.

3.课后作业:《同步训练》

第一课时作业设计

一、选择题

1.以下二次根式:①;②;③;④中,与是同类二次根式的是().

A.①和②B.②和③C.①和④D.③和④

2.下列各式:①3+3=6;②=1;③+==2;④=2,其中错误的有().

A.3个B.2个C.1个D.0个

二、填空题

1.在、、、、、3、-2中,与是同类二次根式的有________.

2.计算二次根式5-3-7+9的最后结果是________.

三、综合提高题

1.已知≈2.236,求(-)-(+)的值.(结果精确到0.01)

2.先化简,再求值.

(6x+)-(4x+),其中x=,y=27.

答案:

一、1.C2.A

二、1.2.6-2

三、1.原式=4---=≈×2.236≈0.45

2.原式=6+3-(4+6)=(6+3-4-6)=-,

当x=,y=27时,原式=-=-

21.3二次根式的加减(2)

第二课时

教学内容

利用二次根式化简的数学思想解应用题.

教学目标

通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.

重难点关键

讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.

教学过程

一、复习引入

上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固.

二、探索新知

例1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)

分析:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,根据三角形面积公式就可以求出x的值.

解:设x后△PBQ的面积为35平方厘米.

则有PB=x,BQ=2x

依题意,得:x2x=35

x2=35

x=

所以秒后△PBQ的面积为35平方厘米.

PQ==5

答:秒后△PBQ的面积为35平方厘米,PQ的距离为5厘米.

例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?

分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,只需知道这四段的长度.

解:由勾股定理,得

AB==2

BC==

所需钢材长度为

AB+BC+AC+BD

=2++5+2

=3+7

≈3×2.24+7≈13.7(m)

答:要焊接一个如图所示的钢架,大约需要13.7m的钢材.

三、巩固练习

教材P19练习3

四、应用拓展

例3.若最简根式与根式是同类二次根式,求a、b的值.(同类二次根式就是被开方数相同的最简二次根式)

分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;事实上,根式不是最简二次根式,因此把化简成|b|,才由同类二次根式的定义得3a-b=2,2a-b+6=4a+3b.

解:首先把根式化为最简二次根式:

==|b|

由题意得

∴a=1,b=1

五、归纳小结

本节课应掌握运用最简二次根式的合并原理解决实际问题.

六、布置作业

1.教材P21习题21.37.

2.选用课时作业设计.

3.课后作业:《同步训练》

作业设计

一、选择题

1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(结果用最简二次根式)

A.5B.C.2D.以上都不对

2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)

A.13B.C.10D.5

二、填空题

1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,鱼塘的宽是_______m.(结果用最简二次根式)

2.已知等腰直角三角形的直角边的边长为,那么这个等腰直角三角形的周长是________.(结果用最简二次根式)

三、综合提高题

1.若最简二次根式与是同类二次根式,求m、n的值.

2.同学们,我们以前学过完全平方公式a2±2ab+b2=(a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=()2,5=()2,你知道是谁的二次根式呢?下面我们观察:

(-1)2=()2-21+12=2-2+1=3-2

反之,3-2=2-2+1=(-1)2

∴3-2=(-1)2

∴=-1

求:(1);

(3)你会算吗?

(4)若=,则m、n与a、b的关系是什么?并说明理由.

答案:

一、1.A2.C

二、1.202.2+2

三、1.依题意,得,,

所以或或或

2.(1)==+1

(2)==+1

(3)==-1

(4)理由:两边平方得a±2=m+n±2

所以

21.3二次根式的加减(3)

第三课时

教学内容

含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.

教学目标

含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.

复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.

重难点关键

重点:二次根式的乘除、乘方等运算规律;

难点关键:由整式运算知识迁移到含二次根式的运算.

教学过程

一、复习引入

学生活动:请同学们完成下列各题:

1.计算

(1)(2x+y)zx(2)(2x2y+3xy2)÷xy

2.计算

(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2

老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.

二、探索新知

如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

例1.计算:

(1)(+)×(2)(4-3)÷2

分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.

解:(1)(+)×=×+×

=+=3+2

解:(4-3)÷2=4÷2-3÷2

=2-

例2.计算

(1)(+6)(3-)(2)(+)(-)

分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

解:(1)(+6)(3-)

=3-()2+18-6

=13-3

(2)(+)(-)=()2-()2

=10-7=3

三、巩固练习

课本P20练习1、2.

四、应用拓展

例3.已知=2-,其中a、b是实数,且a+b≠0,

化简+,并求值.

分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.

解:原式=+

=+

=(x+1)+x-2+x+2

=4x+2

∵=2-

∴b(x-b)=2ab-a(x-a)

∴bx-b2=2ab-ax+a2

∴(a+b)x=a2+2ab+b2

∴(a+b)x=(a+b)2

∵a+b≠0

∴x=a+b

∴原式=4x+2=4(a+b)+2

五、归纳小结

本节课应掌握二次根式的乘、除、乘方等运算.

六、布置作业

1.教材P21习题21.31、8、9.

2.选用课时作业设计.

3.课后作业:《同步训练》

作业设计

一、选择题

1.(-3+2)×的值是().

A.-3B.3-

C.2-D.-

2.计算(+)(-)的值是().

A.2B.3C.4D.1[

二、填空题

1.(-+)2的计算结果(用最简根式表示)是________.

2.(1-2)(1+2)-(2-1)2的计算结果(用最简二次根式表示)是_______.

3.若x=-1,则x2+2x+1=________.

4.已知a=3+2,b=3-2,则a2b-ab2=_________.

三、综合提高题

1.化简

2.当x=时,求+的值.(结果用最简二次根式表示)

课外知识

1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.

练习:下列各组二次根式中,是同类二次根式的是().

A.与B.与

C.与D.与

2.互为有理化因式:互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式:如x+1-与x+1+就是互为有理化因式;与也是互为有理化因式.

练习:+的有理化因式是________;

x-的有理化因式是_________.

--的有理化因式是_______.

3.分母有理化是指把分母中的根号化去,通常在分子、分母上同乘以一个二次根式,达到化去分母中的根号的目的.

练习:把下列各式的分母有理化

(1);(2);(3);(4).

4.其它材料:如果n是任意正整数,那么=n

理由:==n

练习:填空=_______;=________;=_______.

答案:

一、1.A2.D

二、1.1-2.4-243.24.4

三、1.原式=

==[

=-(-)=-

2.原式=

===2(2x+1)

∵x==+1原式=2(2+3)=4+6.

文章来源:http://m.jab88.com/j/75853.html

更多
上一篇:圆复习教案 下一篇:9 沙滩上的童话

最新更新

更多