88教案网

高三物理磁场

一名优秀的教师在教学时都会提前最好准备,高中教师要准备好教案,这是老师职责的一部分。教案可以让学生们能够更好的找到学习的乐趣,帮助高中教师缓解教学的压力,提高教学质量。你知道怎么写具体的高中教案内容吗?以下是小编为大家收集的“高三物理磁场”希望能对您有所帮助,请收藏。

磁场

磁场基本性质

一、磁场的描述

1、磁场的物质性:与电场一样,也是一种物质,是一种看不见而又客观存在的特殊物质。

存在于(磁体、通电导线、运动电荷、变化电场、地球)周围。

2、基本特性:对放入磁场中的(磁极、电流、运动的电荷)有力的作用,它们的相互作用通过磁场发生。

3、方向规定:

①磁感线在该点的切线方向;

②磁场中任一点小磁针北极(N极)的受力方向(小磁针静止时N的指向)为该处的磁场方向。

③对磁体:外部(NS),内部(SN)组成闭合曲线;这点与静电场电场线(不成闭合曲线)不同。

④用安培左手定则判断

4、磁感线:磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的强弱,这一系列曲线称为磁感线。电场中引入电场线描述电场,磁场中引入磁感线描述磁场。

定义:磁场中人为引入的一系列曲线来描述磁场,曲线的切线表示该位置的磁场方向,其蔬密表示磁场强弱。

物理意义:描述磁场大小和方向的工具(物理摸型),磁场是客观存在的,磁感线是一种工具.

不能认为有(无)磁感线的地方有(无)磁场。人为想象在磁场中画出的一组有方向的曲线.

1.疏密表示磁场的强弱.

2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向.

3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。

4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.

5.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向

*熟记常用的几种磁场的磁感线:

5、磁场的来源:

(1)永磁体(条形、蹄形)

(2)通电导线(有各种形状:直、曲、环形电流、通电螺线管)

(3)地球磁场(和条形磁铁相似)有三个特征:(磁极位置?赤道处磁场特点?南北半球磁场方向?)

①地磁的N极的地理位置的南极,

②地磁B(水平分量:(南北)坚直分量:南半球:垂直地面而上向;北半球:垂直地面而向下。)

③在赤道平面上:距地球表面相等的各点,磁感强度大小相等、方向水平向北

(4)变化的电场(后面再讲法拉第电磁感应定律和电磁波)

二、电流磁场的方向叛断:安培右手定则(重点)、直、环、通电螺线管)

一定要熟悉五种典型磁场的磁感线空间分布(正确分析解答问题的关健)

脑中要有各种磁源产生的磁感线的立体空间分布观念

能够将磁感线分布的立体、空间图转化成不同方向的平面图(正视、符视、侧视、剖视图)

会从不同的角度看、画、识各种磁感线分布图

⑴直线电流的磁场

特点:无磁极、非匀强、且距导线越远处磁场越弱;直线电流磁场的磁感线的立体图、横截面、纵截面图如图1所示。

⑵通电螺线管的磁场

特点:与条形磁铁的磁场相似,管内为匀强磁场,且磁场最强,管外为非匀强磁场;通电螺线管磁场的磁感线的立体图、横截面图、纵截面图如图2所示。

⑶环形电流的磁场

特点:环形电流的两侧是N极和S极,且离圆环中心越远,磁场越弱;环形电流的磁感线的立体图、横截面图、纵截面图如图A-11-50-3所示。

⑷地磁场

(5)变化的电磁场

三、磁现象的电本质(磁产生的实质)后面讲到光现象的电本质

安培分子环型电流假说:分子、原子等物质的微粒内部存在一种环形电流,叫分子电流。这种环形电流使得每个物质微粒成为一个很小的磁体。这就是安培分子电流假说。

它能解释各种磁现象:软铁棒的磁化、高温,猛烈的搞击而失去磁性等。

本质:(磁体、电流、运动电荷)的磁场都是由运动电荷产生的,并通过磁场相互作用的。

任何磁现象的出现都以“电荷的运动(有形无形)”为基础。

一切磁现象归结为:运动电荷(或电流)之间通过磁场发生相互作用。

“电本质”实质为运动电荷(成形电流):静止的电荷在磁场中不会受到磁场力;有磁必有电(对),有电必有磁(错)。

实验:奥斯特沿南北方向放置的导线下面放置小磁针,导线通电后,小磁针发生偏转。

罗兰实验:把大量的电荷加在橡胶盘上,然后使盘绕中心轴线转动,如图:在盘在附近用小磁针来检验运动电荷产生的磁场.

结果发现:带电盘转动时,小磁针发生了偏转,而且改变转盘方向,小磁针偏转方向也发生转变。

此实验说明;电荷运动时产生磁场,即磁场是由运动电荷产生;(即:一切磁场都来源于运动电荷,揭示了磁现象的电本质。)

两个重要概念:磁感强度B,磁通量

磁感强度(B)从力的角度描述磁场性质,磁通量()从能量角度描述磁场的性质。

一、磁感应强度

1.磁场的最基本的性质:对放入其中的(磁极,电流,运动的电荷)有力的作用,都称为磁场力。I⊥B时,F最大=BIL;I//B时,F=0。

2.定义B:注意情境和条件:

在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度.

定义①当I⊥B时,B=矢量{F⊥(B和I构成的平面)。即既F⊥B;也F⊥I}N/Amkg/AS2

定义②当面积S⊥B时,B=单位面积的磁感线条数,B的蔬密反映磁场的强弱

注意:磁场某位置B的大小,方向是客观存在的,是磁场本身特性的物理量。与(I大小、导线的长短,受力)都无关。即使导线不载流,B照样存在。

①表示磁场强弱的物理量.是矢量.

②大小:B=F/IL(电流方向与磁感线垂直时的公式).

③方向:左手定则:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.

④单位:牛/安米,也叫特斯拉,国际单位制单位符号T.

⑤点定B定:B只与产生磁场的源及位置有关。就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.

⑥匀强磁场的磁感应强度处处相等.

⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.

说明

⑴磁场中某位置的磁感应强度的大小及方向是存在的,与放入的电流I的大小、导线的长短即L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。

⑵磁场应强度B是矢量满足分解合成的平行四边形定则,注意磁场应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。

⑶磁场应强度的定义式是典型的比值定义法,要注意此定义式描述的物理情景及适应条件:一小段通电导体垂直磁场方向放入磁场。

典型的比值定义:(B=k)(E=E=k)(u=)

(R=R=)(C=C=)

磁感强度B:①B=②B=③qBv=mR=B=

④qBv=qeB===⑤E=BLvB=⑥B=k(直导体)⑦B=NI(螺线管)

匀强磁场:是最简单,同时也是最重要的磁场。大小相等方向处处相同,用平行等间距的直线来表示。

分布地方:异名磁极间(边缘除外),通电螺线管内部。

二、磁通量与磁通密度B(分析法拉第电磁感应的基础)

1.磁通量Φ:概念:磁感应强度B与垂直磁场方向的面积S的乘积叫穿过这个面积的磁通量,Φ=B×S

若面积S与B不垂直,应以B乘以S在垂直磁场方向上的投影面积S′,即Φ=BS′=BScosθ,

磁通量的物理意义:穿过某一面积的磁感线条数.也叫做穿过这个面积的磁通量Φ。简称为磁通,表示φ.是标量.

说明:对某一面积的磁通量,一定要指明“是哪一个面积的、方向如何”

2.磁通密度B:垂直磁场方向穿过单位面积磁力线条数,即磁感应强度,是矢量.

3.在匀强磁场中求磁通量类型有:公式的适用条件:

(1)当面积S⊥B时。Φ=BS此式的适用条件是:①匀强磁场;②磁感线与平面垂直单位:韦伯Wb=Tm2

(2)S//B时,Φ=0

(3)B与S不垂直:Φ应该为B乘以S在磁场垂直方向上投影的面积(称之为“有效面积”)。Φ=BS影=BSCos(为B与投影面的夹角)

说明:

计算平面在匀强磁场中的Φ。一定要明确?面积的Φ,(方向如何)没有指明那一面积的,Φ无意义。

①曲面的磁通量Φ等于对应投影平面的Φ,不与线圈平面垂直,应该算投影面积。

②Φ是双向标量:当有磁感线沿相反方向通过同一平面时,且正向磁感线条数为φ1,反向磁感线条数为φ2,则磁通量等于穿过平面的磁感线的净条数(磁通量的代数和),即φ=φ1一φ2。穿过平面的磁通量应该为Φ合,面积越大,低消越多。

例:由于磁感线是闭合曲线,外部(NS)内部(SN)组成闭合曲线,不同与静电场电场线(不闭合)。

所以穿过任一闭合曲面的合Φ为零,穿过地球表面的Φ为零。

③磁通量的变化△φ=φ2一φ1,其数值等于初、末态穿过某个平面磁通量的差值.

散磁场对电流的作用——安培力(左手定则)

基础知识

一、安培力

1.安培力定义:通电导线在磁场中受到的作用力叫做安培力.磁场对电流的作用力叫安培力。

说明:磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力.

实验:注意条件

①I⊥B时A:判断受力大小(由偏角大小判断)改变I大小,偏角改变;I大小不变,改变垂直磁场的那部分导线长度;改变B大小.

B:F安方向与I方向B方向关系:(改变I方向;改变B方向;同时改变I和B方向)

F安方向:安培左手定则,F安作用点在导体棒中心。(通电的闭合导线框受安培力为零)

②I//B时,F安=0,该处并非不存在磁场。

③I与B成夹角时,F=BILSin(为磁场方向与电流方向的夹角)。

有用结论:“同向电流相互吸引,反向电流相排斥”。不平行时有转运动到方向相同且相互靠近的趋势。

2.安培力的计算公式:F=BILsinθ(θ是I与B的夹角);

①I⊥B时,即θ=900,此时安培力有最大值;公式:F=BIL

②I//B时,即θ=00,此时安培力有最小值,F=0;

③I与B成夹角时,00<B<900时,安培力F介于0和最大值之间.

3.安培力公式的适用条件:

①公式F=BIL一般适用于匀强磁场中I⊥B的情况,对于非匀强磁场只是近似适用(如对电流元)但对某些特殊情况仍适用.

如图所示,电流I1//I2,如I1在I2处磁场的磁感应强度为B,则I1对I2的安培力F=BI2L,方向向左,

同理I2对I1,安培力向右,即同向电流相吸,异向电流相斥.

②根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力.

两根通电导线间的磁场力也遵循牛顿第三定律.

二、左手定则

1.安培力方向的判断——左手定则:

伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.

2.安培力F的方向:安培力F总垂直于电流与磁感线所确定的平面。

F⊥(B和I所在的平面);即既与磁场方向垂直,又与通电导线垂直.但B与I的方向不一定垂直.

3.安培力F、磁感应强度B、电流1三者的关系

①已知I,B的方向,可惟一确定F的方向;

②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向;

③已知F,1的方向时,磁感应强度B的方向不能惟一确定.

4.由于B,I,F的方向关系常是在三维的立体空间,所以求解本部分问题时,应具有较好的空间想象力,要善于把立体图画变成易于分析的平面图,即画成俯视图,剖视图,侧视图等.

规律方法1。安培力的性质和规律;

①公式F=BIL中L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端.

如图所示,甲中:,乙中:L/=d(直径)=2R(半圆环且半径为R)

如图所示,弯曲的导线ACD的有效长度为l,等于两端点A、D所连直线的长度,安培力为:F=BIl

②安培力的作用点为磁场中通电导体的几何中心;

③安培力做功:做功的结果将电能转化成其它形式的能.

2、安培力作用下物体的运动方向的判断

(1)电流元法:即把整段电流等效为多段直线电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断整段电流所受合力方向,最后确定运动方向.

(2)特殊位置法:把电流或磁铁转到一个便于分析的特殊位置后再判断安培力方向,从而确定运动方向.

(3)等效法:环形电流和通电螺线管都可以等效成条形磁铁,条形磁铁也可等效成环形电流或通电螺线管,通电螺线管也可以等效成很多匝的环形电流来分析.

(4)利用结论法:①两电流相互平行时无转动趋势,同向电流相互吸引,反向电流相互排斥;

②两电流不平行时,有转动到相互平行且电流方向相同的趋势.

(5)转换研究对象法:因为电流之间,电流与磁体之间相互作用满足牛顿第三定律,这样,定性分析磁体在电流磁场作用下如何运动的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,再确定磁体所受电流作用力,从而确定磁体所受合力及运动方向.

(6)分析在安培力作用下通电导体运动情况的一般步骤:

①画出通电导线所在处的磁感线方向及分布情况

②用左手定则确定各段通电导线所受安培力

③)据初速方向结合牛顿定律确定导体运动情况

(7)磁场对通电线圈的作用:若线圈面积为S,线圈中的电流强度为I,所在磁场的磁感应强度为B,线圈平面跟磁场的夹角为θ,则线圈所受磁场的力矩为:M=BIScosθ.

磁场对运动电荷的作用——洛仑兹力

一、洛仑兹力定义:磁场对运动电荷的作用力——洛伦兹力

电荷的定向移动形成电流,磁场对电流的作用力是对运动电荷作用力的宏观表现。

推导:F安=BILf洛=qBv建立电流的微观图景(物理模型)

垂直于磁场方向上有一段长为L的通电导线,每米有n个自由电荷,每个电荷的电量为q,其定向移动的速率为v。

在时间内有vt体积的电量Q通过载面,vt体积内的电量Q=nvtq

导线中的电流I==nvq导线受安培力F=BIL=BnvqL(nL为此导线中运动电荷数目)

单个运动电荷q受力f洛==qBv

(1)洛伦兹力的大小计算:F=qvBsinα(α为v与B的夹角)注意:

①当v⊥B时,f洛最大,f洛=qBv(式中的v是电荷相对于磁场的速度)公式适用于匀强磁场且v⊥B的情况

(fBv三者方向两两垂直且力f方向时刻与速度v垂直)导致粒子做匀速圆周运动。

①v与B夹角为θ,则有②③

②当v//B时,f洛=0做匀速直线运动。

③当v与B成夹角时,(带电粒子沿一般方向射入磁场),

可把v分解为(垂直B分量v⊥,此方向匀速圆周运动;平行B分量v//,此方向匀速直线运动)合运动为等距螺旋线运动。

④v=0,F=0,即磁场对静止电荷无作用力,只对运动电荷产生作用力。

磁场和电场对电荷作用力的差别:

只有运动的电荷在磁场中才有可能受洛仑兹力,静止电荷中磁场中不受洛仑兹力。

在电场中无论电荷是运动还是静止,都受电场力作用。

f洛=的特点:

①始终与速度方向垂直,对运动电荷永不做功,而安培力可以做功。(所以少用动能定理,多与几何关系相结合)。

②不论电荷做什么性质运动,轨迹如何,洛仑兹力只改变速度的方向,不能改变速度的大小,对粒子永不做功

(2)洛伦兹力的方向用左手定则来判断(难点).实验:判断fBv三者方向的关系

1.洛伦兹力F的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即F总是垂直于B和v所在的平面.

2.洛伦兹力方向(左手定则):伸出左手,让姆指跟四指垂直,且处于同一平面内,让磁感线穿过手心,四指指向正电荷运动方向(当是负电荷时,四指指向与电荷运动方向相反)则姆指所指方向就是该电荷所受洛伦兹力的方向.

说明:

①四指应指向正电荷运动的方向或负电荷运动的反方向。

正电荷运动方向为电流方向(即四指的指向),负电运动方向跟电流方向相反.

②安培力是洛伦兹力的宏观表现。所以洛伦兹力的方向与安培力的方向一样可由左手定则判定。

③判定洛伦兹力方向时,一定要注意F垂直于v和B所决定的平面。当运动电荷的速度v的方向与磁感应强度B的方向平行时,运动电荷不受洛伦兹力作用,仍以初速度做匀速直线运动。

④在磁场中静止的电荷不受洛伦兹力作用。

(3)洛伦兹力的特点

洛伦兹力的方向一定既垂直于电荷运动的方向,也垂直于磁场方向.即洛伦兹力的方向垂直于速度和磁场方向决定的平面,同时,由于洛伦兹力的方向与速度的方向垂直,所以洛伦兹力的瞬时功率P=Fvcos90o=0,即洛伦兹力永远不做功.

二、洛伦兹力与安培力的关系

1.洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向称动的自由电荷受到的洛伦兹力的宏观表现.

2.洛伦兹力一定不做功,它不改变运动电荷的速度大小;但安培力却可以做功.

三、不计重力的带电粒子在匀强磁场中的运动

1.分三种情况:一是匀速直线运动;二是匀速圆周运动;三是螺旋运动.

2.做匀速圆周运动:轨迹半径r=mv/qB;其运动周期T=2πm/qB(与速度大小无关).

3.垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:

垂直进入匀强电场,在电场中做匀变速曲线运动(类平抛运动);

垂直进入匀强磁场,则做变加速曲线运动(匀速圆周运动).

点评:凡是涉及到带电粒子的动能发生了变化,均与洛仑兹力无关,因为洛仑兹力对运动电荷永远不做功。

四、带电粒子在磁场中运动

1.若v//B,带电粒子以速度v做匀速直线运动。(此情况下洛伦兹力F=0)

2.若,带电粒子在垂直磁感线的平面内以入射速度v做匀速圆周运动。

⑴向心力由洛伦兹力提供⑵轨道半径公式

⑶周期⑷频率

洛仑兹力——作用下的匀速圆周运动求解方法

思路方法:明确洛仑兹力提供作匀速圆周运动的向心力

关健:画出运动轨迹图,应规范画图。才有可能找准几何关系。解题的关键。

物理规律方程:向心力由洛伦兹力提供qBv=mR=(不能直接用)T==

1、找圆心:(圆心的确定)因f洛一定指向圆心,f洛⊥v

①任意两个f洛的指向交点为圆心;

②任意一弦的中垂线一定过圆心;

③两速度方向夹角的角平分线一定过圆心。

2、求半径:①由物理规律求:qBv=mR=;②由图得出的几何关系式求

几何关系:速度的偏向角=偏转圆弧所对应的圆心角(回旋角)=2倍的弦切角;相对的弦切角相等,相邻弦切角互补

由轨迹画及几何关系式列出:关于半径的几何关系式去求。

3、求粒子的运动时间:偏向角(圆心角、回旋角)=2倍的弦切角,即=2;

4、圆周运动有关的对称规律:特别注意在文字中隐含着的临界条件

a、从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。

b、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。

5、带电粒子在有界磁场中运动的极值问题

(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.

(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.

6、带电粒子在复合场中无约束情况下的运动性质

(1)当带电粒子所受合外力为零时,将做匀速直线运动或处于静止状态.合外力恒定且与初速同向时做匀变速直线运动,常见的情况有:

①洛伦兹力为零(即v∥B),重力与电场力平衡,做匀速直线运动;或重力与电场力的合力恒定,做匀变速运动.

②洛伦兹力F与重力和电场力的合力平衡,做匀速直线运动.

(2)带电粒子所受合外力做向心力,带电粒子做匀速圆周运动时.由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力是以上力的合力.

(3)当带电粒子受的合力大小、方向均不断变化时,粒子做非匀变速曲线运动

规律方法1、带电粒子在磁场中运动的圆心、半径及时间的确定(上面专题)

(1)用几何知识确定圆心并求半径.(2)确定轨迹所对应的圆心角,求运动时间.(3)注意圆周运动中有关对称的规律.

2、洛仑兹力的多解问题

(1)带电粒子电性不确定形成多解.

带电粒子可能带正(或负)电荷,在相同的初速度下,正负粒子在磁场中运动轨迹不同,导致双解.

(2)磁场方向不确定形成多解.

若只告知B大小,而未说明B方向,则应考虑因B方向不确定而导致的多解.

(3)临界状态不惟一形成多解.

带电粒子在洛伦兹力作用下飞越有界磁场时,它可能穿过去,也可能偏转1800从入射界面这边反向飞出.

在光滑水平桌面上,一绝缘轻绳拉着一带电小球在匀强磁场中做匀速圆周运动,若绳突然断后,小球可能运动状态也因小球带电电性,绳中有无拉力造成多解.

(4)运动的重复性形成多解.如带电粒子在部分是电场,部分是磁场空间运动时,往往具有往复性,因而形成多解.

专题:带电粒子在复合场中的运动

基础知识一、复合场的分类:

1、复合场:即电场与磁场有明显的界线,带电粒子分别在两个区域内做两种不同的运动,即分段运动,该类问题运动过程较为复杂,但对于每一段运动又较为清晰易辨,往往这类问题的关键在于分段运动的连接点时的速度,具有承上启下的作用.

2、叠加场:即在同一区域内同时有电场和磁场,些类问题看似简单,受力不复杂,但仔细分析其运动往往比较难以把握。

二、带电粒子在复合场电运动的基本分析

1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.

2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.

3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.

4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.

三、电场力和洛伦兹力的比较见下表:

电场力洛仑兹力

力存在条件作用于电场中所有电荷仅对运动着的且速度不跟磁场平行的电荷有洛仑兹力作用

力力大小F=qE与电荷运动速度无关F=Bqv与电荷的运动速度有关

力方向力的方向与电场方向相同或相反,但总在同一直线上力的方向始终和磁场方向垂直

力的效果可改变电荷运动速度大小和方向只改变电荷速度的方向,不改变速度的大小

做功可以对电荷做功,改变电荷的动能不对电荷做功、不改变电荷的动能

运动轨迹偏转在匀强电场中偏转,轨迹为抛物线在匀强磁场中偏转、轨迹为圆弧

1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛伦兹力的作用.

2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛伦兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.

3.电场力的方向与电场的方向或相同、或相反;而洛伦兹力的方向始终既和磁场垂直,又和速度方向垂直.

4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛伦兹力只能改变电荷运动的速度方向.不能改变速度大小

5.电场力可以对电荷做功,能改变电荷的动能;洛伦兹力不能对电荷做功,不能改变电荷的动能.

6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛伦兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.

四、对于重力的考虑重力考虑与否分三种情况.

(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.

(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.

(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.

五、复合场中的特殊物理模型

1.粒子速度选择器

如图所示,粒子经加速电场后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,将沿着图中所示的虚线穿过两极板空间而不发生偏转,具有其它速度的带电粒子将发生偏转,这种器件能把具有一定速度v0的带电粒子选择出来,所以叫做速度选择器。

若使粒子沿直线从右边孔中出去,则有qv0B=qE,v0=E/B,若v=v0=E/B,

粒子做直线运动,只与速度v0有关。与粒子电量、电性、质量无关

若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.

若v>E/B,洛伦兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.

2.磁流体发电机

如图所示,由燃烧室O燃烧电离成的正、负离子(等离子体)以高速。喷入偏转磁场B中.在洛伦兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场.两板间形成一定的电势差.当qvB=qU/d时电势差稳定U=dvB,这就相当于一个可以对外供电的电源.

3.电磁流量计.

电磁流量计原理可解释为:如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正负离子)在洛伦兹力作用下纵向偏转,a,b间出现电势差.当自由电荷所受电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定.

由Bqv=Eq=Uq/d,可得v=U/Bd.流量Q=Sv=πUd/4B

4.质谱仪如图所示利用来分离各种元素和测定带电粒子的质量的仪器。

组成:离子源O,加速场U,速度选择器(E,B),偏转场B2,胶片.

原理:加速场中qU=mv2

选择器中:

偏转场中:d=2r,qvB2=mv2/r

比荷:

质量

作用:主要用于测量粒子的质量、比荷、研究同位素.

5.回旋加速器如图所示

组成:两个D形盒,大型电磁铁,高频振荡交变电压,两缝间可形成电压U

作用:电场用来对粒子(质子、氛核,a粒子等)加速,磁场用来使粒子回旋从而能反复加速.高能粒子是研究微观物理的重要手段.

要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期.

关于回旋加速器的几个问题:

(1)D形盒作用:静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动。

(2)所加交变电压的频率f=带电粒子做匀速圆周运动的频率:

为保证粒子每次经过磁场边界时正好赶上合适的电场方向而使其被加速,对高频电源的频率要求。

(3)最后使粒子得到的能量,,(最大能量与哪些因素有关)

在粒子电量、质量m和磁感应强度B一定的情况下,回旋加速器的半径R越大,粒子的能量就越大.

规律方法1、带电粒子在复合场中的运动2、带电粒子在叠加场中的运动3、磁偏转技术的应用

三种场的性质特点:复合场

电场磁场重力场

力的大小①F=qE

②与电荷的运动状态无关,在匀强电场中,电场力为恒力。与电荷的运动状态有关,

①电荷静止或v∥B时,不受f洛,

②v⊥B时洛仑兹力最大

f洛=qBv①G=mg

②与电荷的运动状态无关

力的方向正电荷受力方向与E方向相同,(负电荷受力方向与E相反)。f洛方向⊥(B和v)所决定的平面,(可用左手定则判定)总是竖直向下

力做功特点做功多少与路径无关,只取决于始末两点的电势差,

W=qUAB=ΔEf洛对电荷永不做功,只改变电荷的速度方向,不改变速度的大小做功多少与路径无关,只取决于始末位置的高度差,

W=mgh=ΔEp

带电质点在复合场中运动,受力特点复杂,运动多形式、多阶段、多变化。

解题的关键:受力分析、运动分析、动态分析、临界点的挖掘及找出不同运动形式对应不同的物理规律。

相关知识

高三物理一轮复习学案:磁场


20xx届高三物理一轮复习学案:磁场
教学目标
1.了解磁场的产生和基本特性,加深对场的客观性、物质性的理解。
2.通过磁场与电场的联系,进一步使学生了解和探究看不见、摸不着的场的作用的方法.掌握描述磁场的各种物理量。
3.掌握安培力的计算方法和左手定则的使用方法和应用。
4.使学生掌握带电粒子在匀强磁场中做匀速圆周运动的规律。
5.培养学生应用平面几何知识解决物理问题的能力。
6.进行理论联系实际的思想教育。
教学重点、难点分析
1.对磁感强度、磁通量的物理意义的理解及它们在各种典型磁场中的分布情况。
2.对安培力和电磁力矩的大小、方向的分析。
3.如何确定圆运动的圆心和轨迹。
4.如何运用数学工具解决物理问题。
教学过程设计
一、基本概念
1.磁场的产生
(1)磁极周围有磁场。
(2)电流周围有磁场(奥斯特)。
安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。(不等于说所有磁场都是由运动电荷产生的。)
(3)变化的电场在周围空间产生磁场(麦克斯韦)。
磁场是一种特殊的物质,我们看不到,但可以通过它的作用效果感知它的存在,并对它进行研究和描述。它的基本特征是对处于其中的通电导线、运动电荷或磁体的磁极能施加力的作用。磁现象的电本质是指所有磁现象都可归纳为:运动电荷之间通过磁场而发生的相互作用。
2.磁场的基本性质
磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。这一点应该跟电场的基本性质相比较。
3.磁感应强度
电场和磁场都是无法直接看到的物质。我们在描述电场时引入电场强度E这个物理量,描述磁场则是用磁感应强度B。研究这两个物理量采用试探法,即在场中引入试探电荷或试探电流元,研究电磁场对它们的作用情况,从而判定场的分布情况。试探法是一种很好的研究方法,它能帮助我们研究一些因无法直接观察或接近而感知的物质,如电磁场。
磁感强度的定义式为:B=F/IL(条件是匀强磁场中,或ΔL很小,并且L⊥B)
其中电流元(IL)受的磁场力的大小与电流方向相关。因此采用电流与磁场方向垂直时受的最大力F来定义B。
研究电场、磁场的基本方法是类似的。但磁场对电流的作用更复杂一些,涉及到方向问题。我们分析此类问题时要多加注意。
磁感应强度B的单位是特斯拉,符号为T,1T=1N/(Am)=1kg/(As2)
磁感强度矢量性:磁感强度是描述磁场的物理量。因此它的大小表征了磁场的强弱,而它的方向,也就是磁场中某点小磁针静止时N极的指向,则代表该处磁场的方向。同时,它也满足矢量叠加的原理:若某点的磁场几个场源共同形成,则该点的磁感强度为几个场源在该点单独产生的磁感强度的矢量和。
4.磁感线
(1)用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向。磁感线的疏密表示磁场的强弱。
特点:磁体外方向N极指向S极(内部反之)。
(2)磁感线是封闭曲线(和静电场的电场线不同)。
(3)要熟记常见的几种磁场的磁感线:
(4)安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
【例题1】如图所示,两根垂直纸面平行放置的直导线A、C由通有等大电流,在纸面上距A、C等远处有一点P。若P点磁感强度及方向水平向左,则导线A、C中的电流方向是如下哪种说法?
A.A中向纸里,C中向纸外
B.A中向纸外,C中向纸里
C.A、C中均向纸外
D.A、C中均向纸里
5.磁通量
如果在磁感应强度为B的匀强磁场中有一个与磁场方向垂直的平面,其面积为S,则定义B与S的乘积为穿过这个面的磁通量,用U表示。U是标量,但是有方向(进该面或出该面)。单位为韦伯,符号为Wb。1Wb=1Tm2=1Vs=1kgm2/(As2)。
穿过磁场中某一面积的磁感线条数称为穿过这一面积的磁通量。定义式为:U=BS⊥(S⊥为垂直于B的面积)。磁感强度是描述磁场某点的性质,而磁通量是描述某一面积内磁场的性质。由B=U/S⊥可知磁感强度又可称为磁通量密度。在匀强磁场中,当B与S的夹角为α时,有U=BSsinα。
【例题2】如图所示,在水平虚线上方有磁感强度为2B,方向水平向右的匀强磁场,水平虚线下方有磁感强度为B,方向水平向左的匀强磁场。边长为L的正方形线圈放置在两个磁场中,线圈平面与水平面成α角,线圈处于两磁场中的部分面积相等,则穿过线圈平面的磁通量大小为多少?
分析:注意到B与S不垂直,应把S投影到与B垂直的方向上;水平虚线上下两部分磁场大小与方向的不同。应求两部分磁通量按标量叠加,求代数和。
解:(以向右为正)U=U1+U2=[(2BL2/2)-(BL2/2)]sinα=BL2sinα/2
二、安培力(磁场对电流的作用力)
讨论如下几种情况安培力的大小计算,并用左手定则对其方向进行判断。
安培力大小:F=B⊥IL.B⊥为磁感强度与电流方向垂直分量。
方向:左手定则(内容略)。注意安培力总是与磁场方向和电流方向决定的平面垂直(除了二者平行,安培力为0的情况)。
1.安培力方向的判定
(1)用左手定则。
(2)用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。
(3)用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。
只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。
【例题3】如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?
解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。分析的关键是画出相关的磁感线。
【例题4】条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会(增大、减小还是不变?)。水平面对磁铁的摩擦力大小为。
解:本题有多种分析方法。(1)画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。磁铁对水平面的压力减小,但不受摩擦力。(2)画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。(3)把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
【例题5】如图在条形磁铁N极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?
解:用“同向电流互相吸引,反向电流互相排斥”最简单:条形磁铁的等效螺线管的电流在正面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。(本题如果用“同名磁极相斥,异名磁极相吸”将出现判断错误,因为那只适用于线圈位于磁铁外部的情况。)
【例题6】电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射出的电子流将向哪个方向偏转?
解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。(本题用其它方法判断也行,但不如这个方法简洁)。
2.安培力大小的计算
F=BLIsinα(α为B、L间的夹角)高中只要求会计算α=0(不受安培力)和α=90°两种情况。
【例题7】如图所示,光滑导轨与水平面成α角,导轨宽L。匀强磁场磁感应强度为B。金属杆长也为L,质量为m,水平放在导轨上。当回路总电流为I1时,金属杆正好能静止。求:(1)B至少多大?这时B的方向如何?(2)若保持B的大小不变而将B的方向改为竖直向上,应把回路总电流I2调到多大才能使金属杆保持静止?
解:画出金属杆的截面图。由三角形定则可知,只有当安培力方向沿导轨平面向上时安培力才最小,B也最小。根据左手定则,这时B应垂直于导轨平面向上,大小满足:BI1L=mgsinα,B=mgsinα/I1L。
当B的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI2Lcosα=mgsinα,I2=I1/cosα。(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。
【例题8】如图所示,质量为m的铜棒搭在U形导线框右端,棒长和框宽均为L,磁感应强度为B的匀强磁场方向竖直向下。电键闭合后,在磁场力作用下铜棒被平抛出去,下落h后落在水平面上,水平位移为s。求闭合电键后通过铜棒的电荷量Q。
解:闭合电键后的极短时间内,铜棒受安培力向右的冲量FΔt=mv0而被平抛出去,其中F=BIL,而瞬时电流和时间的乘积等于电荷量Q=IΔt,由平抛规律可算铜棒离开导线框时的初速度,最终可得。
三、洛伦兹力
1.洛伦兹力
运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。
公式的推导:如图所示,整个导线受到的磁场力(安培力)为F安=BIL;其中I=nesv;设导线中共有N个自由电子N=nsL;每个电子受的磁场力为F,则F安=NF。由以上四式可得F=qvB。条件是v与B垂直。当v与B成θ角时,F=qvBsinθ。
2.洛伦兹力方向的判定
在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。
【例题9】磁流体发电机原理图如右。等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。该发电机哪个极板为正极?两板间最大电压为多少?
解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。所以上极板为正。正、负极板间会产生电场。当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv。当外电路断开时,这也就是电动势E。当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。这时电动势仍是E=Bdv,但路端电压将小于Bdv。
在定性分析时特别需要注意的是:
(1)正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。
(2)外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv,但电动势不变(和所有电源一样,电动势是电源本身的性质。)
(3)注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。在外电路断开时最终将达到平衡态。
【例题10】半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p型和n型两种。p型半导体中空穴为多数载流子;n型半导体中自由电子为多数载流子。用以下实验可以判定一块半导体材料是p型还是n型:将材料放在匀强磁场中,通以图示方向的电流I,用电压表比较上下两个表面的电势高低,若上极板电势高,就是p型半导体;若下极板电势高,就是n型半导体。试分析原因。
解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。p型半导体中空穴多,上极板的电势高;n型半导体中自由电子多,上极板电势低。
注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。
3.洛伦兹力大小的计算
带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式:,。
【例题11】如图直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?
解:正负电子的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。所以两个射出点相距2r,由图还看出经历时间相差2T/3。答案为射出点相距,时间差为。关键是找圆心、找半径和用对称。
【例题12】一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。求匀强磁场的磁感应强度B和射出点的坐标。
解:由射入、射出点的半径可找到圆心O/,并得出半径为,;射出点坐标为(0,)。
四、带电粒子在匀强磁场中的运动
1.带电粒子在匀强磁场中运动规律
初速度力的特点运动规律
v=0f洛=0静止
v//Bf洛=0匀速直线运动
v⊥Bf洛=Bqv匀速圆周运动,半径,周期

v与B成θ角f洛=Bqv⊥(0<θ<90°)较复杂的曲线运动,高中阶段不要求
2.带电粒子在匀强磁场中的偏转
(1)穿过矩形磁场区。一定要先画好辅助线(半径、速度及延长线)。偏转角由sinθ=L/R求出。侧移由R2=L2-(R-y)2解出。经历时间由得出。
注意,这里射出速度的反向延长线与初速度延长线的交点不再是宽度线段的中点,这点与带电粒子在匀强电场中的偏转结论不同!
(2)穿过圆形磁场区。画好辅助线(半径、速度、轨迹圆的圆心、连心线)。偏角可由求出。经历时间由得出。
注意:由对称性,射出线的反向延长线必过磁场圆的圆心。
3.解题思路及方法
电荷在洛仑兹力的作用下做匀速圆周运动,圆运动的圆心的确定方法:
(1)利用洛仑兹力的方向永远指向圆心的特点,只要找到圆运动两个点上的洛仑兹力的方向,其延长线的交点必为圆心。
(2)利用圆上弦的中垂线必过圆心的特点找圆心。
【例题13】氘核、氚核、氦核都垂直磁场方向射入同一匀强磁场,求以下几种情况下,它们轨道半径之比及周期之比各是多少?(1)以相同速率射入磁场;(2)以相同动量射入磁场;(3)以相同动能射入磁场。
解:因为带电粒子在同一匀强磁场中做匀速圆周运动,所以圆运动的半径,周期。
(1)因为三粒子速率相同,所以,,有,
(2)因为三粒子动量相同,所以,,有,
(3)因为三粒子初动能相同,所以,,有,
通过例题复习基本规律。由学生完成,注意公式变换。
【例题14】如图所示,abcd为绝缘挡板围成的正方形区域,其边长为L,在这个区域内存在着磁感应强度大小为B,方向垂直纸面向里的匀强磁场.正、负电子分别从ab挡板中点K,沿垂直挡板ab方向射入场中,其质量为m,电量为e。若从d、P两点都有粒子射出,则正、负电子的入射速度分别为多少?(其中bP=L/4)
做题过程中要特别注意分析圆心是怎样确定的,利用哪个三角形解题。
提问:1.怎样确定圆心?2.利用哪个三角形求解?
学生自己求解。
(1)分析:若为正电子,则初态洛仑兹力方向为竖直向上,该正电子将向上偏转且由d点射出.Kd线段为圆轨迹上的一条弦,其中垂线与洛仑兹力方向延长线交点必为圆心,设该点为O1.其轨迹为小于1/4的圆弧。
解:如图所示,设圆运动半径为R1,则O1K=O1d=R1
由Rt△O1da可知:


(2)解:若为负电子,初态洛仑兹力方向竖直向下,该电子将向下偏转由P点射出,KP为圆轨迹上的一条弦,其中垂线与洛仑兹力方向的交点必为圆心,设该点为O2,其轨迹为大于1/4圆弧。(如图所示)
由Rt△KbP可知:


【例题15】一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。重力忽略不计。
提问:
1.带电质点的圆运动半径多大?
2.带电质点在磁场中的运动轨迹有什么特点?
3.在xy平面内什么位置加一个圆形磁场可使带电质点按题意运动?其中有什么样特点的圆形磁场为半径最小的磁场?常见错误:
加以aM和bN连线交点为圆心的圆形磁场,其圆形磁场最小半径为R。
分析:带电质点在磁场中做匀速圆周运动,其半径为
因为带电质点在a、b两点速度方向垂直,所以带电质点在磁场中运动轨迹为1/4圆弧,O1为其圆心,如图所示MN圆弧。
在xy平面内加以MN连线为弦,且包含MN圆弧的所有圆形磁场均可使带电质点完成题意运动。其中以MN连线为半径的磁场为最小圆形磁场。
解:设圆形磁场的圆心为O2点,半径为r,则由图知:
因为,所以
小结:这是一个需要逆向思维的问题,同时考查了空间想象能力,即已知粒子运动轨迹,求所加圆形磁场的位置。考虑问题时,要抓住粒子运动特点,即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1/4圆弧必须包含在磁场区域中,且圆运动起点、终点必须是磁场边界上的点。然后再考虑磁场的最小半径。
【例题16】在真空中,半径为r=3×10-2m的圆形区域内,有一匀强磁场,磁场的磁感应强度为B=0.2T,方向如图所示,一带正电粒子,以初速度v0=106m/s的速度从磁场边界上直径ab一端a点处射入磁场,已知该粒子荷质比为q/m=108C/kg,不计粒子重力,则(1)粒子在磁场中匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应如何(以v0与Oa的夹角θ表示)?最大偏转角多大?
问题:
1.第一问由学生自己完成。
2.在图中画出粒子以图示速度方向入射时在磁场中运动的轨迹图,并找出速度的偏转角。
3.讨论粒子速度方向发生变化后,粒子运动轨迹及速度偏转角的比。
分析:(1)圆运动半径可直接代入公式求解。
(2)先在圆中画出任意一速度方偏转角为初速度与未速度的夹角,且偏转角等于粒子运动轨迹所对应的圆心角。向入射时,其偏转角为哪个角?如图所示。由图分析知:弦ac是粒子轨迹上的弦,也是圆形磁场的弦。
因此,弦长的变化一定对应速度偏转角的变化,也一定对应粒子圆运动轨迹的圆心角的变化。所以当弦长为圆形磁场直径时,偏转角最大。
解:(1)设粒子圆运动半径为R,则
(2)由图知:弦长最大值为ab=2r=6×10-2m
设速度偏转角最大值为αm,此时初速度方向与ab连线夹角为θ,则
,故
当粒子以与ab夹角为37°斜向右上方入射时,粒子飞离磁场时有最大偏转角,其最大值为74°。
小结:本题所涉及的问题是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使得粒子运动轨迹的长短和位置均发生变化,要会灵活运用平面几何知识去解决.
计算机演示:(1)随粒子入射速度方向的变化,粒子飞离磁场时速度偏转角的变化。(2)随粒子入射速度方向的变化,粒子做匀速圆周运动的圆心的运动轨迹。其轨迹为以a点为圆心的一段圆弧。
【例题17】如图所示,很长的平行边界面M、N与N、P间距分别为L1、L2,其间分别有磁感应强度为B1与B2的匀强磁场区,磁场方向均垂直纸面向里.已知B1≠B2,一个带正电的粒子电量为q,质量为m,以大小为v0。的速度垂直边界面M与磁场方向射入MN间磁场区,试讨论粒子速度v0应满足什么条件,才能通过两个磁场区,并从边界面P射出?(不计粒子重力)
问题:
1.该粒子在两磁场中运动速率是否相同?
2.什么是粒子运动通过磁场或不通过磁场的临界条件?
3.画出轨迹草图并计算。
分析:带电粒子在两磁场中做半径不同的匀速圆周运动,但因为洛仑兹力永远不做功,所以带电粒子运动速率不变.粒子恰好不能通过两磁场的临界条件是粒子到达边界P时,其速度方向平行于边界面。粒子在磁场中轨迹如图所示。再利用平面几何和圆运动规律即可求解。
解:如图所示,设O1、O2分别为带电粒子在磁场B1和B2中运动轨迹的圆心。则
在磁场B1中运动的半径为
在磁场B2中运动的半径为
设角α、β分别为粒子在磁场B1和B2中运动轨迹所对应圆心角,则由几何关系知
,,且α+β=90°
所以
若粒子能通过两磁场区,则
小结:
1.洛仑兹力永远不做功,因此磁场中带电粒子的动能不变。
2.仔细审题,挖掘隐含条件。
【例题18】在M、N两条长直导线所在的平面内,一带电粒子的运动轨迹,如图所示.已知两条导线M、N只有一条中有恒定电流,另一条导线中无电流,关于电流、电流方向和粒子带电情况及运动方向,可能是
A.M中通有自上而下的恒定电流,带正电的粒子从b点向a点运动
B.M中通有自上而下的恒定电流,带负电的粒子从a点向b点运动
C.N中通有自下而上的恒定电流,带正电的粒子从b点向a点运动
D.N中通有自下而上的恒定电流,带负电的粒子从a点向b点运动
让学生讨论得出结果。很多学生会选择所有选项,或对称选择A、D(或B、C)。前者是因为没有考虑直线电流在周围产生非匀强磁场,带电粒子在其中不做匀速圆周运动。后者是在选择过程中有很强的猜测成分。
分析:两根直线电流在周围空间产生的磁场为非匀强磁场,靠近导线处磁场强,远离导线处磁场弱。所以带电粒子在该磁场中不做匀速圆周运动,而是复杂曲线运动。因为带电粒子在运动中始终只受到洛仑兹力作用,所以可以定性使用圆运动半径规律R=mv/Bq。由该规律知,磁场越强处,曲率半径越小,曲线越弯曲;反之,曲线弯曲程度越小。
解:选项A、B正确。
小结:这是一道带电粒子在非匀强磁场中运动的问题,这时粒子做复杂曲线运动,不再是匀速圆周运动。但在定性解决这类问题时可使用前面所分析的半径公式。洛仑兹力永远不做功仍成立。
五、带电粒子在混合场中的运动
1.速度选择器
正交的匀强磁场和匀强电场组成速度选择器。带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。否则将发生偏转。这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq,。在本图中,速度方向必须向右。
(1)这个结论与离子带何种电荷、电荷多少都无关。
(2)若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。
【例题19】某带电粒子从图中速度选择器左端由中点O以速度v0向右射去,从右端中心a下方的b点以速度v1射出;若增大磁感应强度B,该粒子将打到a点上方的c点,且有ac=ab,则该粒子带___电;第二次射出时的速度为_____。
解:B增大后向上偏,说明洛伦兹力向上,所以为带正电。由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同。,故。
【例题20】如图所示,一个带电粒子两次以同样的垂直于场线的初速度v0分别穿越匀强电场区和匀强磁场区,场区的宽度均为L偏转角度均为α,求E∶B
解:分别利用带电粒子的偏角公式。在电场中偏转:
,在磁场中偏转:,由以上两式可得。可以证明:当偏转角相同时,侧移必然不同(电场中侧移较大);当侧移相同时,偏转角必然不同(磁场中偏转角较大)。
2.带电微粒在重力、电场力、磁场力共同作用下的运动
(1)带电微粒在三个场共同作用下做匀速圆周运动。必然是电场力和重力平衡,而洛伦兹力充当向心力。
【例题21】一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。则该带电微粒必然带_____,旋转方向为_____。若已知圆半径为r,电场强度为E磁感应强度为B,则线速度为_____。
解:因为必须有电场力与重力平衡,所以必为负电;由左手定则得逆时针转动;再由
(2)与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。必要时加以讨论。
【例题22】质量为m带电量为q的小球套在竖直放置的绝缘杆上,球与杆间的动摩擦因数为μ。匀强电场和匀强磁场的方向如图所示,电场强度为E,磁感应强度为B。小球由静止释放后沿杆下滑。设杆足够长,电场和磁场也足够大,求运动过程中小球的最大加速度和最大速度。
解:不妨假设设小球带正电(带负电时电场力和洛伦兹力都将反向,结论相同)。刚释放时小球受重力、电场力、弹力、摩擦力作用,向下加速;开始运动后又受到洛伦兹力作用,弹力、摩擦力开始减小;当洛伦兹力等于电场力时加速度最大为g。随着v的增大,洛伦兹力大于电场力,弹力方向变为向右,且不断增大,摩擦力随着增大,加速度减小,当摩擦力和重力大小相等时,小球速度达到最大。
若将磁场的方向反向,而其他因素都不变,则开始运动后洛伦兹力向右,弹力、摩擦力不断增大,加速度减小。所以开始的加速度最大为;摩擦力等于重力时速度最大,为。

20xx高三物理知识点:磁场


20xx高三物理知识点:磁场

一、磁场
磁极和磁极之间的相互作用是通过磁场发生的。
电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。
电流和电流之间的相互作用也是通过磁场产生的
磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。

二、磁现象的电本质
1.罗兰实验
正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。
2.安培分子电流假说
法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现象的电本质的。
一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。
3.磁现象的电本质
运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。

三、磁场的方向
规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。

高三物理教案:《磁场对电流作用》教学设计


一名优秀的教师就要对每一课堂负责,作为教师就要早早地准备好适合的教案课件。教案可以让学生能够在课堂积极的参与互动,使教师有一个简单易懂的教学思路。那么一篇好的教案要怎么才能写好呢?为此,小编从网络上为大家精心整理了《高三物理教案:《磁场对电流作用》教学设计》,希望对您的工作和生活有所帮助。

本文题目:高三物理教案:磁场对电流作用

第三课时:磁场对电流的作用习题课

1、导线框放置在光滑水平面上,在其中放一个矩形线圈,通以顺时针方向电流,线圈三个边平行于线框的三个边,且边间距离相等,A端接电池的正极,B接负极,则矩形线圈的运动情况是:( )

A、静止不动 B、向左平动 C、向右平动 D、转动

2、如图所示,在玻璃皿的中心放一个圆柱形电极,沿边缘内壁放一个圆环形电极,把它们分别与电池的两极相连,然后在玻璃皿中放入导电液体,如盐水.如果把玻璃皿放在磁场中,如图所示,将会发生的现象是( )

A、没有什么现象 B、液体会向玻璃皿中间流动

C、液体会顺时针流动 D、液体会逆时针流动

3、长L的直导线ab放在相互平行的金属导轨上,导轨宽为d,通过ab的电流强度为I,匀强磁场的磁感应强度为B,方向垂直纸面向里,ab与导轨的夹角为θ,则ab所受的磁场力的大小为:( )

A、BIL B、BId C、 D、

4、如图所示,一位于XY平面内的矩形通电线圈只能绕OX轴转动,线圈的四个边分别与X、Y轴平行.线圈中电流方向如图.当空间加上如下所述的哪种磁场时,线圈会转动起来?( )

A、方向沿X轴的恒定磁场 B、方向沿Y轴的恒定磁场

C、方向沿Z轴的恒定磁场 D、方向沿Z轴的变化磁场

5、条形磁铁放在光滑斜面上,用平行于斜面的轻弹簧拉住而平衡.A为水平放置的导线的截面.导线中无电流时,磁铁对斜面的压力为 N1;当导线中有电流通过时,磁铁对斜面的压力为N2,此时弹簧的伸长量减小,则( )

A.N1

B.N1 =N2 A中电流方向向外

C.N1 >N2 A中电流方向向内

D.N1 >N2 A中电流方向向外

6.如图11.2-1所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直纸面向外运动,可以

A.将a、c端接在电源正极,b、d端接在电源负极

B.将b、d端接在电源正极,a、c端接在电源负极

C.将a、d端接在电源正极,b、c端接在电源负极

D.将a、c端接交流电源的一端,b、d端接在交流电源的另一端

7.条形磁铁放在水平桌面上,它的上方靠近S极一侧悬挂一根与它垂直的导电棒,如图11.2-12所示(图中只画出棒的截面图).在棒中通以垂直纸面向里的电流的瞬间,可能产生的情况是

A.磁铁对桌面的压力减小B.磁铁对桌面的压力增大

C.磁铁受到向左的摩擦力D.磁铁受到向右的摩擦力

8. 如图11.2-13所示,把一重力不计的通电直导线水平放在蹄形磁铁磁极的正上方,导线可以自由转动,当导线通入图示方向电流I时,导线的运动情况是(从上往下看)( )

A.顺时针方向转动,同时下降 B.顺时针方向转动,同时上升

C.逆时针方向转动,同时下降 D.逆时针方向转动,同时上升

9. 一通电细杆置于倾斜的导轨上,杆与导轨间有摩擦,当有电流时直杆恰好在导轨上静止.图11.2-16是它的四个侧视图,标出了四种可能的磁场方向,其中直杆与导轨间的摩擦力可能为零的是( )

10、如图所示,原来静止的圆形通电线圈通以逆时针方向的电流I,在其直径AB上靠近B点放一根垂直于线圈平面的固定不动的长直导线,通过如图所示的方向的电流I′,在磁场力作用下圆线圈将( )

A、向左运动 B、向右运动 C、以直径AB为轴运动 D、静止不动

13、在倾角为θ的光滑斜面上放置有一通有电流I,长为L,质量为m的导体棒,如图,(1)欲使棒静止在斜面上,外加磁场的磁感应强度B的最小值为多大?沿什么方向? (2)欲使棒静止在斜面上,且对斜面无压力,应加匀强磁场B的值为多大?沿什么方向?(3)欲使棒能静止在斜面上,外加磁场的方向应在什么范围内?请在图中画出。

11、 在倾角 =30°的斜面上,固定一金属框,宽l=0.25m,接入电动势E=12V、内阻不计的电池.垂直框面放有一根质量m=0.2kg的金属棒ab,它与框架的动摩擦因数为 ,整个装置放在磁感应强度B=0.8T的垂直框面向上的匀强磁场中(如图11.2-5).当调节滑动变阻器R的阻值在什么范围内时,可使金属棒静止在框架上?(设最大静摩擦力等于滑动摩擦力,框架与棒的电阻不计,g=10m/s2)

高三物理教案:《磁场对电流的作用》教学设计


俗话说,磨刀不误砍柴工。高中教师要准备好教案,这是高中教师的任务之一。教案可以让学生能够在教学期间跟着互动起来,让高中教师能够快速的解决各种教学问题。优秀有创意的高中教案要怎样写呢?小编收集并整理了“高三物理教案:《磁场对电流的作用》教学设计”,大家不妨来参考。希望您能喜欢!

本文题目:高三物理教案:磁场对电流的作用教案

第二课时:磁场对电流的作用

上课时间:

考点要求与解读:

1. 安培力 安培力的方向 Ⅰ

2. 匀强磁场中的安培力 Ⅱ

基础知识梳理:

一、磁场对通电直导线的作用——安培力

1、大小:在匀强磁场中,当导线方向与磁场方向一致时F安= ;当导线方向与磁场垂直时,F安= 。

2、方向:用“ 定则”判定。

3、注意:F安=BIL的适用条件:①一般只适用于匀强磁场;②L⊥B;③如果是弯曲的通电导线,则L是指有效长度,它等于导线两端点所连直线的长度(如图所示),相应的电流方向沿L由始端流向末端.

二、安培力的应用

(一)、安培力作用下物体的运动方向的判断

1、电流元法:即把整段电流等效为多段直线电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断出整段电流所受合力方向,最后确定运动方向。

2、特殊位置法:把电流或磁铁转到一个便于分析的特殊位置后再判断安培力方向,从而确定运动方向。

3、等效法:环形电流和通电螺线管都可以等效成条形磁铁,条形磁铁也可等效成环形电流或通电螺线管,通电螺线管也可以等效成很多匝的环形电流来分析。

4、利用结论法:①两电流相互平行时无转动趋势,同向电流相互 ;,反向电流相互 ;②两电流不平行时,有转动到相互平行且电流方向相同的趋势。利用这些结论分析,可以事半功倍.

(二).处理相关安培力问题时要注意图形的变换

安培力的方向总是垂直于电流方向和磁场方向决定的平面,即一定垂直于B和I,但B和I不一定垂直.有关安培力的力、电综合题往往涉及到三维立体空间问题,如果我们变三维为二维便可变难为易,迅速解题。

典型例题:

1、通电导线或线圈在安培力作用小的平动和转动问

[例1](1) 如图,把轻质线圈用细线挂在磁铁N极附近,磁铁的轴线穿过线圈的圆心且垂直于线圈的平面,当线圈内通过图示方向的电流时,线圈将怎样运动?_________________

(2)如图所示,有一根竖直长直通电导线和一个通电三角形金属框处在同一平面,直导线和ab平行,当长直导线内通以向上的电流时,若不计重力,则三角形金属框架将会( )

A、水平向左运动 B、水平向上运动 C、处于静止状态 D、会发生转动

[例2] 、一矩形通电线框abcd,可绕其中心轴OO′转动,它处在与OO′垂直的匀强磁场中(如图).在磁场作用下线框开始转动,最后静止在平衡位置.则平衡后:( )

A.线框四边都不受磁场的作用力.

B.线框四边受到指向线框外部的磁场作用力,但合力为零.

C.线框四边受到指向线框内部的磁场作用力,但合力为零.

D.线框的一对边受到指向线框外部的磁场作用力,另一对边受到指向线框内部的磁场作用力,但合力为零.

2、安培力参与的动力学的问题

[例3] 、 如图所示,通电导体棒AC静止于水平轨道上,棒的质量为m,长为L,通过的电流为I,匀强磁场的磁感强度为B,方向和轨道平面成?角。求轨道受到AC棒的压力和摩擦力各多大。

[例4]如图所示,电源电动势E=2V,内阻r=0.5 Ω,竖直导轨电阻可以忽略不计,金属棒的质量m=0.1kg,R=0.5Ω,它与导轨间的动摩擦因数μ=0.4,有效长度为l=0.2m,靠在导轨的外面,为使金属棒不滑动,应加一与纸面成30°与棒垂直且向里的磁场,问:

(1)此磁场是斜向上还是斜向下?

(2)B的范围是多少?

[例5]如图所示,一个密度ρ=9g/cm3、横截面积S=10mm2的金属环,处于径向对称方向发散的磁场中,环上各处的磁感应强度为B=0. 35 T,若在环中通以顺时针方向(俯视)电流I=10 A,并保持△t=0. 2 s,试分析:环将做什么运动?运动的距离是多少?(不计空气阻力,g= 10 m/s2)

文章来源:http://m.jab88.com/j/75845.html

更多

最新更新

更多