教学目标:
1、使学生理解正多边形概念;
2、使学生了解依次连结圆的n等分点所得的多边形是正多边形;过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.
3、通过正多边形定义教学培养学生归纳能力;
4、通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力.
教学重点:
(1)正多边形的定义;
(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.
教学难点:
对正n边形中泛指“n”的理解.
教学过程:
一、新课引入:
同学们思考以下问题:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?[安排中下生回答]3.等边三角形与正方形的边、角性质有什么共同点?[安排中上生回答:各边相等、各角相等].
各边相等,各角相等的多边形叫做正多边形.这就是我们今天学习的内容“7.15正多边形和圆”.
二、新课讲解:
正多边形在生产实践中有广泛的应用性,因此,正多边形的知识对学生进一步学习和参加生产劳动都是必要的.因此本节课首先给出正多边形的定义,然后根据正多边形的定义和圆的有关知识推导出正多边形与圆的第一个关系定理,即n等分圆周就可得到圆的内接或外切正n边形,它是正多边形画图的理论依据,因此也是本节课的重点之一.
同学回答:什么是正多边形?[安排中下生回答:各边相等、各角也相等的多边形叫做正多边形.]
如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.
幻灯展示图形:
上面这些图形都是正几边形?[安排中下生回答:正三角形,正四边形,正五边形,正六边形.]
矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?[安排中下生回答:矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.]
哪位同学记得在同圆中,圆心角、弧、弦、弦心距关系定理?[安排记起来的学生回答:在同圆中,圆心角、弧、弦、弦心距有一组量相等,那么其余量都相等.]
要将圆三等分,那么其中一等份的弧所对圆心角度数是多少?要将圆四等分、五等分、六等分呢?[安排中下生回答:将圆三等分,其中每等份弧所对圆心角120°、将圆四等分,每等份弧所对圆心角90°、五等分,圆心角72°、六等分,圆心角60°]
哪位同学能用量角器将黑板上的圆三等分、四等分、五等分、六等分?[接排四名上等生上黑板完成,其余学生在下面练习本上用量角器等分圆周.]
大家依次连结各分点看所得的圆内接多边形是什么样的多边形?[学生答:正多边形.]
求证:五边形ABCDE是⊙O的内接正五边形.
以幻灯所示五边形为例,哪位同学能证明这五边形的五条边相等?[安排中等生回答:]
哪位同学能证明这五边形的五个角相等?[安排中等生回答:]
前面的证明说明“依次连结圆的五等分点所得的圆内接五边形是正五边形”的观察后的猜想是正确的.如果n等分圆周,(n≥3)、n=6,n=8……是否也正确呢?[安排学生们充分讨论].
因为在同圆中,弧等弦等,n等分圆就得到n条弦等,也就是n边形的各边都相等.又n边形的每个内角对圆的(n-2)条弧,而每一内角所对的弧都相等,根据弧等、圆周角相等,证明了n边形的各角都相等,因此圆内接正五边形的证明具有代表性.
定理:把圆分成n(n≥3)等份:
(1)依次连结各分点所得的多边形是这个圆的内接正n边形;
为何要“依次”连结各分点呢?缺少“依次”二字会出现什么现象?大家讨论讨论看看.
经过圆的五等分点作圆的切线,大家观察以相邻切线的交点为顶点的五边形是不是正五边形?
PQ、QR、RS、ST分别是经过分点A、B、C、D、E的⊙O的切线.
求证:五边形PQRST是⊙O的外切正五边形.
由弧等推得弦等、弦切角等,哪位同学能说明五边形PQRST的各角都相等?[安排中上生回答]哪位同学能证明五边形PQRST的各边都相等?[安排中等生回答.]
前面同学的证明,说明“经过圆的五等分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正五边形.”同样根据弧等弦等、弦切角等就可证明经过圆的n等分点作圆的切线,以相邻切线的交点为顶点的n个等腰三角形全等,从而证明了这个圆的以它n等分点为切点的外切n边形是正n边形.
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.
定理(2)中少“相邻”两字行不行?少“相邻”两字会出现什么现象?同学们相互间讨论研究看看.
三、课堂小结:
本堂课我们学习的知识:
1.学习了正多边形的定义.
2.n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.
四、布置作业
教材P.147.练习2、3;P.172中2、3、4(1).
1、使学生了解在任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆;正多边形都是轴对称图形,有偶数条边的正多边形又是中心对称图形;边数相同的正多边形都相似.
2、使学生理解正多边形的中心、半径、边心距、中心角等概念.
3、通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;
4、通过正多边形有关概念的教学,培养学生的阅读理解能力.
教学重点:
正多边形的性质;正多边形的有关概念.
教学难点:
对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解.
教学过程:
一、新课引入:
上节课我们学习了正多边形的定义,并且知道只要n等分(n≥3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形.那么给定正多边形能否得到圆呢?为解决此问题本堂课继续研究正多边形和圆.
正多边形是一种特殊的多边形,它有一些类似于圆的性质.例如,圆有独特的对称性,它不仅是轴对称图形、中心对称图形,而且它的任意一条直径所在的直线都是它的对称轴,绕圆心旋转任意一个角度都能和原来的图形重合.正多边形也是轴对称图形,正n边形就有n条对称轴,当n为偶数时,它又是中心对称图形,而且绕中
的联系.根据“任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆”这个定理和圆的有关概念,得到了“正n边形的半径和边心矩把正n边形分成2n个全等的直角三角形”这个定理,从而使正多边形的有关计算转变为解直角三角形问题.
二、新课讲解:
复习提问:1.作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么?[安排记起来的学生回答].2.作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么?[请回忆起来的学生回答].
请两名中上学生到黑板前一人画不等边三角形的外接圆与内切圆,另一人画正三角形的外接圆与内切圆,其余学生在练习本上画上述两种三角形的外接圆与内切圆.
教师引导:通过作图不难发现,不等边三角形都既有一个外接圆,又都有一个内切圆.大家观察黑板上两种三角形的外接圆与内切圆,结合你画的图,你发现正三角形的外接圆与内切有什么特殊之处?(学生思考、回答:正三角形的外接圆与内切圆是同心圆.)
教师引导:正方形是不是既有一个外接圆又有一个内切圆,并且两圆同心呢?[学生讨论]在学生讨论的基础上,教师依次提问如下问题:
1.正方形外接圆的圆心在哪?(安排中上生回答:正方形对角线的交点.)
2.根据正方形的哪个性质证明对角线的交点是它的外接圆圆心?(安排中上生回答)
3.正方形有内切圆吗?圆心在哪?半径是谁?(安排中上生回答).
引导:通过大家画图实践与理论探讨发现正方形既有一个外接圆又有一个内切圆并且两圆同心.大家再看看矩形、菱形是否具有这条性质?(学生在练习本上画、前后左右讨论得出矩形只有外接圆,菱形只有内切圆结论)
引导:我们发现正三角形既有外接圆又有内切圆且两圆同心,发现正方形也是如此,我们猜想正多形是否都具备这个性质呢?
挂出预先画好一个正五边形ABCDE的小黑板.
讲解:如果正五边形ABCDE有外接圆,则A、B、C、D、E五点应都在同一个圆上,且它们到圆心的距离相等.大家知道不在同一直线上的三点确定一个圆,不妨过正五边形ABCDE的顶点A、B、C作⊙O,连结OA、OB、OC、OD、OE.OA=OB=OC;证OD=OA、OE=OA即可.
板书:过正五边形ABCDE的顶点A、B、C、作⊙O连结OA、OB、OC、OD.
分析、启发、提问:1.证点D在⊙O上就是证OD=OA,你打算证哪两个三角形全等?(安排中下生回答).2.要证△AOB≌△COD已具备了哪些全等条件?(安排中下生回答).3.要证△AOB≌COD还缺少什么条件?(安排中下生回答).4.谁能证∠3=∠4?(安排中上生完成)
板书:
△OAB≌△ODC
ABCDE有一个外接圆⊙O.
讲授:照此法证明,正六边形、正七边形、…正n边形不都应当有一个外接⊙O吗?
分析、启发、提问:既然正五边形有一个外接⊙O,那么正五边形的五条边也就应是⊙O的五条等弦.根据弦等、弦心距相等,可知点O到五边的距离相等.那么正五边形有无内切圆呢?圆心是谁?半径是谁?(按中等生回答).同样,正n边形也应有一个内切⊙O,且两圆同心.哪位同学能叙述一下正多边形的这个性质定理?(安排中上生回答)
板书:定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.
引导,正n边形既有一个外接圆又有一个内切圆,而且两圆同心就给正多边形带来了一系列的有关概念,请阅读教材P.158下数第2自然段.学生看书,教师板书:1.正多边形中心;2.正多边形半径;3.正多边形的边心距;4.正多边形的中心角.
幻灯显示练习题,教师提问:
1.O是正△ABC的中心,它是正△ABC的______圆与______圆的圆心;
2.OB叫正△ABC的______它是正△ABC的______圆的半径;
3.OD叫作正△ABC的______,它是正△ABC的______圆的半径.
4.正方形ABCD的外接圆圆心O叫做正方形ABCD的______.
5.正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.
6.⊙O是正五边形ABCDE的外接圆,弦AB的弦心距OF叫正五边形ABCDE的______,它是正五边形ABCDE的圆的半径.
7.∠AOB叫做正五边形ABCDE的______角,它的度数是______.
8.图中正六边形ABCDEF的中心角是______,它的度数是______.
9.你发现正六边形ABCDEF的半径与边长具有什么数量关系?为什么?
10.正三角形的一个外角度数是______;正方形的一个外角度数是______;正五边形的一个外角度数是______;正六边形的一个外角度数是______;正n边形的一个外角度数是______.
11.正n边形的一个外角度数与它的______角的度数相等.
教师引导:下面我们研究正多边形都具有哪些性质?
教师提问:根据正多边形的定义,你想到它应具有什么性质?(安排中下生回答)
板书:正多边形性质:1.各边都相等;2.各角都相等.
教师提问:1.什么叫轴对称图形?(安排记起来的学生回答).2.正三角形是不是轴对称图形?(让中下生答).3.它有几条对称轴?(中等生回答).4.正方形是不是轴对称图形?(中下生回答).5.它有几条对称轴?(中等生回答)
幻灯演示:观察图中正五边形、正六边形是不是轴对称图形?如果是,它们又各应有几条对称轴?(学生思考、讨论)
引导:以此类推,对正n边形又该有什么结论?(让中下生回答)
板书:性质3.正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.
教师提问:1.什么叫中心对称图形?(让记起来的学生回答).2.正三角形是不是中心对称图形?正方形呢?正五边形呢?正六边形呢?3.什么样的正多边形是中心对称图形?(安排中等学生回答).
板书:续性质3边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心.
教师提问:1.所有的等边三角形都相似吗?为什么?(安排中上生回答).2.所有的正方形都相似吗?为什么?(安排中等生回答).3.所有的边数相同的正多边形都相似吗?为什么?(由中下生回答).
板书:性质4.边数相同的正多边形相似.
(教师讲解):大家都记得相似多边形的周长比等于相似比.面积的比等于相似比平方,不难证明,相似正多边形的边心距、半径的比都等于相似比.
板书:续性质4,它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.
性质5:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.
三、课堂小结:
本堂课主要学习了正多边形的两部分有关内容:1.概念;2.性质.
教师提问:1.你学习了正多边形的哪些有关概念?2.正多边形有哪些性质?
四、布置作业
教材P.172中4;P.159中练习1、2、3.
学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家应该开始写教案课件了。认真做好教案课件的工作计划,才能完成制定的工作目标!你们知道多少范文适合教案课件?小编特地为大家精心收集和整理了“画正多边形(一)”,但愿对您的学习工作带来帮助。
教学目标:
1、使学生了解用量角器等分圆心角来等分圆,从而可以作出圆内接或圆外切正多边形.
2、使学生会用尺规作圆内接正方形和正六边形,在这个基础上能作圆内接正八边形、正三角形、正十二边形.
3、通过画图培养学生的画图能力;
4、通过画正方形到会画正八边形,通过画六边形到画三角形、正十二边形,培养学生观察、抽象、迁移能力.
5、通过画图中需减小积累误差的思考与操作,培养学生解决实际问题的能力.
教学重点:
(1)用量角器等分圆心角来等分圆,然后作出圆内接或圆外切正多边形;(2)用尺规作圆内接正方形和正六边形.
教学难点:
准确作图.
教学过程:
一、新课引入:
前几课我们学习了正多边形的定义、概念、性质、判定,尤其学习了正多边形与圆关系的两个定理,而后我们又学习了正多边形的有关计算,本堂课我们一起学习画正多边形.
二、新课讲解:
由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是学生必备能力之一,前面已学习了正多边形和圆的关系的第一个定理,即把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形;过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形,所以想到只要知道外接圆半径R或内切圆半径rn,画出圆来,然后n等分圆周就能画出所需的正n边形.
n等分圆周的方法有两种,一种是量角器法,这一种方法简单易学,它是一种常用的方法.其根据是因为相等的圆心角所对弧相等,所以使用量角器等分圆心角,可以达到把圆任意等分的目的,由于学生已具备使用量角器的能力,所以只要讲明根据,让学生动手操作即可.
另一种方法是用尺规等分圆周法,其实质也是等分圆心角,但尺规不能任意等分圆,只适用于一些特殊情况,其中重点是正方形和正六边形的作法,这是因为正八边形、正三角形、正十二边形都是由此作基础而画出来的.
由于尺规作图在理论上准确,但在实际操作中有误差积累,如何减少误差使图形趋于准确?这是一个锻炼学生解决问题的好时机,应让学生亲手实验、观察对比,从而得出结论.
(三)重点、难点的学习与目标完成过程
复习提问:1.哪位同学记得正多边形与圆关系的第一个定理?(安排中下生回答)2.哪位同学记得在同圆或等圆中,相等的圆心角所对的弧有什么性质?(安排中下生回答:相等的圆心角所对的弧相等)
现在我们要画半径为R的正n边形,从正多边形与圆关系的第一个定理中,你有什么启发?(安排学生相互讨论后,让中等生回答:只要把半径为R的圆n等分,依次连结n个等分点就得正n边形)那么怎样把半径为R的圆n等分呢?从刚才复习的第二问题中,你又受到什么启发?大家相互间讨论.(安排中等生回答:把360°的圆心角n等分)如果要作半径2cm的正九边形,你打算如何作呢?大家互相讨论看看.(安排中等生回答:先画半径2cm的圆,然后把360°的圆心角9等份,每一份40°),用什么工具可得到40°角呢?(安排中下生回答:量角器)我们本堂课所讲画正多边形的第一种方法就是用量角器等分圆,大家用量角器画出半径为2的内接正九边形.
学生在画图实践中必然出现两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个40°的圆心角,然后在圆上依次截取40°圆心角所对弧的等弧,于是得到圆的9等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正九边形的边长误差较大.对此学生必然迷惑不解,在此教师应肯定作法理论上的正确性,然后讲出图形不够准确的原因是由于误差积累的结果,然后引导学生讨论,研究减小误差积累的二个途径:其一,调整圆规两脚间的距离,使之尽可能准确的等于所画正九边形的边长.其二,若有可能,尽可能减少操作次数,减少产生误差的机会.
大家想想如何画一个半径为2cm的正方形呢?(安排中下生回答:先画半径2cm的圆,用量角器作90°的圆心角.)画出∠AOB=90°后,方法1,可依次作90°圆心角;方法2,用圆规依次截取等于AB的弧,大家观察有没有更好的方法?(安排中等生回答:将AO与BO边延长交⊙O于C、D).正方形一边所对的圆心角是90°角,不用量角器用尺规能不能做出90°的圆心角呢?用尺规如何作半径为2cm的正方形?(安排中上等生回答,先作半径2cm的圆,然后画两条互相垂直的直径)
请同学们用尺规画出半径为2cm的正方形.
大家想想看,借助这个图形,能否作出⊙O的内接正八边形?同学们互相研究研究,(安排中上生回答:能,过圆心O作正方形各边的垂线与圆相交即得⊙O的八等分点)为什么?根据什么定理?(安排中上等生回答:垂径定理)
还有什么方法?(安排中上等生作各直角的角平分线.)
请同学们用此二法在图上画出正八边形.
照此方法,同学们想想看,你还能画出边数为几的正多边形?(安排中下生回答:16边形等)
综上所述及同学们的画图实践可知:只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形……
大家再思考一个问题:如何画半径为2cm的正六边形呢?你都有哪些方法?大家讨论.
方法1.画半径2cm的⊙O,然后用量角器画60°的圆心角,依次画下去即六等分圆周.
方法2.画半径2cm的⊙O,然后用量角器画出60°的圆心角,
如果有同学想到方法3更好,若无则提示学生:前面在研究正多边形的有关计算时,得到正六边形的半径与边长有一种什么样的数量关系?(安排中下生回答:相等)那么哪位同学可不用量角器,仅用尺规作出半径2cm的圆内接正六边形?(安排一名中等生到黑板画图,其余在下面画图)
在学生画图完毕后展示两种不同的画法:其一,在⊙O上依次截取AB=BC=CD=DE=EF,由于误差积累AB≠FA,其二,首先画出⊙O的直径AD,然后分别以A、D为圆心,2cm长为半径画弧交⊙O于B、F、C、E.画出图形比较准确.
请同学们用第二种方法画半径3cm的圆内接正六边形(安排学生在练习本上画)如果我们沿用由正方形画正八边形的思路同学们想想看,会画正六边形就应会画正多少边形?(安排中下生回答:正十二边形,正二十四边形…)理论上我们可以一直画下去,但大家不难发现,随着边数的增加,正多边形越来越接近于圆,正多边形将越来越难画.
大家再观察,会画正六边形,除上述正多边形外,还可得到正几边形?(安排中等生回答:正三角形)
画半径为2cm的正三角形,尺规作图时必得先画出正六边形吗?哪位同学有好方法?(安排举手同学回答:画出⊙O直径AB,以A为圆心,2cm为半径画弧交⊙O于C、D,连结B、D、C即可)
请同学们按此法画半径为2cm的正三角形.
请同学们思考一下如何用尺规画半径为2cm的正十二边形?
在学生充分讨论研究的多种方案中送出:先作互相垂直的直径,然后分别以直径的四个端点为圆心2cm长为半径画弧,交⊙O的各点即得⊙O的12等分点.引导学生观察∠DOE=∠DOB-∠EOB
∠DOB=90°,∠EOB=60°∴∠DOE=30°.
∴DE是⊙O内接正12边形一边.
三、课堂小结:
这堂课你学了哪些知识?(安排中等生回答:1.用量角器等分圆周作正n边形;2.用尺规作正方形及由此扩展作正八边形、用尺规作正六边形及由此扩展作正12边形、正三角形)
四、布置作业
教材P.168中练习1、2;P.173中13.文章来源:http://m.jab88.com/j/68726.html
更多