88教案网

高考物理一轮复习万有引力(一)教案

学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家在认真写教案课件了。将教案课件的工作计划制定好,就可以在接下来的工作有一个明确目标!适合教案课件的范文有多少呢?请您阅读小编辑为您编辑整理的《高考物理一轮复习万有引力(一)教案》,欢迎阅读,希望您能够喜欢并分享!

第7讲万有引力(一)
主讲教师:徐建烽首师大附中物理特级教师
一、变轨问题:
题一:俄罗斯“和平”号空间站于2001年3月23日坠入新西兰和智利之间的南太平洋。空间站在进入稠密大气层烧毁前,处于自由运动状态,因受高空稀薄空气阻力的影响,在绕地球运动的同时,将很缓慢地向地球靠近,在这个过程中()
A.空间站的角速度逐渐减小
B.空间站的加速度逐渐减小
C.空间站的势能逐渐转变为动能和内能
D.空间站的动能逐渐转变为内能

题二:如图所示是地球同步卫星发射过程的运行轨道示意图,图中实心黑圈代表地球。发射卫星时首先用火箭将卫星送入近地轨道1(可视为圆轨道),当通过轨道的A点时点燃喷气发动机改变卫星的速度,进入椭圆形轨道2,当卫星通过轨道2远端的B点时再次点燃喷气发动机改变卫星的速度,进入同步轨道3,即可开始正常工作。不计卫星喷气过程中质量的变化,以下说法正确的是()
①卫星在轨道1运动时的线速度比在轨道3运动时的线速度大
②卫星在轨道1运动时的机械能比在轨道3运动时的机械能小
③卫星在轨道1上运动通过A点时,需使卫星减速才能进入轨道2运动
④卫星在轨道2上运动通过B点时受到的地球引力,比在轨道3上通过B点时受到的地球引力小
A.只有①②B.只有①②③C.只有①④D.都不正确

二、密度估算引出的两个重要推论
题三:(黄金代换版)地球表面重力加速度为g,地球半径为R,引力常量为G,下式关于地球密度的估算式正确的是()
A.B.C.D.
题四:(周期版)一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量()
A.飞船的轨道半径B.飞船的运行速度
C.飞船的运行周期D.行星的质量

三、与力学的结合
题五:宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球,经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,求该星球的质量。m.JAB88.COM

题六:在天体演变的过程中,红色巨星发生“超新星爆炸”后,可以形成中子星(电子被迫同原子核中的质子相结合而形成中子),中子星具有极高的密度。
(1)若已知该中子星的卫星运行的最小周期为1.2×10-3s,求该中子星的密度;
(2)中子星也绕自转轴自转,为使该中子星不因自转而被瓦解,则其自转角速度最大不能超过多少?
第7讲万有引力(一)
题一:D题二:A题三:A题四:C题五:26LR23Gt2题六:(1)1.0×1017kg/m3;(2)5.2×103rad/s

相关知识

高考物理第一轮考纲知识复习:万有引力与航天


第4节万有引力与航天
【考纲知识梳理】
一、开普勒行星运动定律
1.开普勒第一定律(轨道定律):所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
2.开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过的相等的面积。(近日点速率最大,远日点速率最小)
3.开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的平方的比值都相等。
二、万有引力定律
1.内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比。
2.公式:
3.适用条件:适用于质点间的相互作用
三、万有定律的应用
1.讨论重力加速度g随离地面高度h的变化情况:物体的重力近似为地球对物体的引力,即。所以重力加速度,可见,g随h的增大而减小。
2.算中心天体的质量的基本思路:
(1)从环绕天体出发:通过观测环绕天体运动的周期T和轨道半径r;就可以求出中心天体的质量M
(2)从中心天体本身出发:只要知道中心天体的表面重力加速度g和半径R就可以求出中心天体的质量M。
3.解卫星的有关问题:在高考试题中,应用万有引力定律解题的知识常集中于两点:
(1)是天体运动的向心力来源于天体之间的万有引力。即
(2)是地球对物体的万有引力近似等于物体的重力,即从而得出(黄金代换,不考虑地球自转)
4.卫星:相对地面静止且与地球自转具有相同周期的卫星。
①定高:h=36000km②定速:v=3.08km/s③定周期:=24h④定轨道:赤道平面
5、三种宇宙速度:第一、第二、第三宇宙速度
①第一宇宙速度(环绕速度):是卫星环绕地球表面运行的速度,也是绕地球做匀速圆周运动的最大速度,也是发射卫星的最小速度V1=7.9Km/s。
②第二宇宙速度(脱离速度):使物体挣脱地球引力束缚的最小发射速度,V2=11.2Km/s。
③第三宇宙速度(逃逸速度):使物体挣脱太阳引力束缚的最小发射速度,V3=16.7Km/s。
【要点名师透析】
一、应用万有引力定律分析天体的运动
1.解决天体(卫星)运动问题的基本思路
(1)天体运动的向心力来源于天体之间的万有引力,即
(2)在中心天体表面或附近运动时,万有引力近似等于重力,即(g0表示天体表面的重力加速度).
注意:①在研究卫星的问题中,若已知中心天体表面的重力加速度g0时,常运用GM=g0R2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用巨大,此式通常称为黄金代换式.
②利用此关系可求行星表面重力加速度、轨道处重力加速度:
在行星表面重力加速度:
在离地面高为h的轨道处重力加速度:,所以
2.应用实例
(1)估算中心天体质量的基本思路
①从环绕天体出发:通过观测环绕天体运动的周期T和轨道半径r就可以求出中心天体的质量M.
②从中心天体本身出发:只要知道中心天体表面的重力加速度g和半径R就可以求出中心天体的质量M.
(2)估算中心天体的密度ρ测出卫星绕天体做匀速圆周运动的半径r和周期T,由
【例1】(20xx安徽高考)为了对火星及其周围的空间环境进行探测,我国预计于20xx年10月发射第一颗火星探测器“萤火一号”.假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G.仅利用以上数据,可以计算出()
A.火星的密度和火星表面的重力加速度
B.火星的质量和火星对“萤火一号”的引力
C.火星的半径和“萤火一号”的质量
D.火星表面的重力加速度和火星对“萤火一号”的引力
【答案】选A.设火星的半径为R,火星的质量为M,
由F万=F向可得:
联立可以求出火星的半径R,火星的质量M,由密度公式,可进一步求出火星的密度;由可进一步求出火星表面的重力加速度.由于不知道“萤火一号”的质量,所以不能求出火星对“萤火一号”的引力,只有A正确.
二、卫星的运行规律
1.卫星的动力学规律
由万有引力提供向心力
3.卫星的“变轨问题”分析
卫星在运行中的变轨有两种情况,即离心运动和向心运动.
当万有引力恰好提供卫星所需向心力时,即
时,卫星做匀速圆周运动;当某时刻速度发生突变时,轨道半径将发生变化.
(1)速度突然增大时,万有引力小于向心力,做离心运动.
(2)速度突然减小时,,万有引力大于向心力,做向心运动.
4.地球同步卫星的特点
(1)轨道平面一定:轨道平面和赤道平面重合.
(2)周期一定:与地球自转周期相同,即T=24h=86400s.
(3)角速度一定:与地球自转的角速度相同.
(4)高度一定:据得=4.24×104km,卫星离地面高度h=r-R≈6R(为恒量).
(5)速率一定:运动速度v=2πr/T=3.07km/s(为恒量).
(6)绕行方向一定:与地球自转的方向一致.
5.极地卫星和近地卫星
(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.
(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9km/s.
(3)两种卫星的轨道平面一定通过地球的球心.
【例2】(20xx江苏高考)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有()
A.在轨道Ⅱ上经过A的速度小于经过B的速度
B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能
C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期
D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度
【答案】选A、B、C.
【详解】根据开普勒定律可知,航天飞机在近地点的速度大于在远地点的速度,A正确;在轨道Ⅰ上航天飞机受到的万有引力恰好提供向心力,而在轨道Ⅱ上万有引力大于向心力,航天飞机做向心运动,因此在轨道Ⅱ上经过A的速度小于在轨道Ⅰ上经过A的速度,所以B正确;由开普勒第三定律可知,,R2R1,所以T2T1,C正确;根据,在A点时加速度相等,D错误.
【感悟高考真题】
1.(20xx江苏物理T7)一行星绕恒星作圆周运动。由天文观测可得,其运动周期为T,速度为v,引力常量为G,则
A.恒星的质量为B.行星的质量为
C.行星运动的轨道半径为D.行星运动的加速度为
【答案】选ACD.
【详解】根据周期公式可得,C对,根据向心加速度公式,D对,根据万有引力提供向心力,可得,A对。
2.(20xx福建理综T13)“嫦娥二号”是我国月球探测第二期工程的先导星。若测得“嫦娥二号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期T,已知引力常量为G,半径为R的球体体积公式,则可估算月球的
A.密度B.质量C.半径D.自转周期
【答案】选A.
【详解】由万有引力提供向心力有,由于在月球表面
轨道有r=R,由球体体积公式联立解得月球的密度,故选A。
3.(20xx新课标全国卷T19)卫星电话信号需要通过地球同步卫星传送。如果你与同学在地面上用卫星电话通话,则从你发出信号至对方接收到信号所需最短时间最接近于(可能用到的数据:月球绕地球运动的轨道半径约为3.8×105km,运行周期约为27天,地球半径约为6400km,无线电信号的传播速度为3×108m/s,)
A.0.1sB.0.25sC.0.5sD.1s
【答案】选B。
【详解】根据开普勒第三定律可得:,则同步卫星的轨道半径为,代入题设已知得,r卫=r月3272=4.22×107m,因此同步卫星到地面的最近距离为L=r卫-r=4.22×107m-6.4×106m=3.58×107m,从发出信号至对方接收到信号所需最短时间t=2Lc=2.4s,即A、C、D错,B正确。
4.【答案】甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道。以下判断正确的是
A.甲的周期大于乙的周期B.乙的速度大于第一宇宙速度
C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方
【答案】选A、C。
【详解】由题意知甲卫星的轨道半径比乙大,由万有引力提供向心力可得,得出周期和轨道半径的关系,轨道半径越大,卫星周期越长。可得出A选项正确。有由万有引力充当向心力的另一个表达式可得线速度和轨道半径的关系,轨道半径越大,线速度越小。可得出B项错误。又由,得,故轨道半径越大,向心加速度越小。可得出C项正确。地球同步卫星的轨道应在赤道正上方,不可能经过北极,D项错误。
5.(20xx天津理综T8)质量为m的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动。已知月球质量为M,月球半径为R,月球表面重力加速度为g,引力常量为G,不考虑月球自转的影响,则航天器的
A.线速度B.角速度
C.运行周期D.向心加速度
【答案】选AC.
【详解】月球对探月航天器的万有引力提供探月航天器在月球附近做匀速圆周运动所需要的向心力,根据牛顿第二定律列方程得,则探月航天器的线速度为,选项A正确,其加速度,选项D错误,又知,在月球附近满足,因此探月航天器的角速度,其周期为,选项B错误,而选项C正确。
6.(20xx浙江理综T19)为了探测X星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1,总质量为m1。随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2则
A.X星球的质量为
B.X星球表面的重力加速度为
C.登陆舱在r1与r2轨道上运动时的速度大小之比为
D.登陆舱在半径为r2轨道上做圆周运动的周期为
【答案】选AD.
【详解】探测飞船绕星球运动时,由万有引力充当向心力,满足,可得:,A正确;又根据(R为星球半径),B错误;根据:,可得:,C错误;根据:,可得:,D正确.
7.(20xx广东理综T20)已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力常量为G。有关同步卫星,下列表述正确的是
A.卫星距离地面的高度为
B.卫星的运行速度小于第一宇宙速度
C.卫星运行时受到的向心力大小为
D.卫星运行的向心加速度小于地球表面的重力加速度
【答案】选B.D.
【详解】对同步卫星有万有引力提供向心力,所以,故A错误;第一宇宙速度是最大的环绕速度,B正确;同步卫星运动的向心力等于万有引力,应为:,C错误;同步卫星的向心加速度为,地球表面的重力加速度,知,D正确。
8.(20xx四川理综T17)据报道,天文学家近日发现了一颗距地球40光年的“超级地球”,名为“55Cancrie”该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的,母星的体积约为太阳的60倍.假设母星与太阳密度相同,“55Cancrie”与地球均做匀速圆周运动,则“55Cancrie”与地球的
A.轨道半径之比约为B.轨道半径之比约为
C.向心加速度之比约为D.向心加速度之比约为
【答案】选B.
【详解】由公式,可得通式,从而判断A错B对;再由得通式,可知C、D皆错.
9.(20xx北京高考T15)由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的
A.质量可以不同B.轨道半径可以不同
C.轨道平面可以不同D.速率可以不同
【答案】选A.
【详解】万有引力提供卫星的向心力,解得周期,环绕速度,可见周期相同的情况下轨道半径必然相同,B错误,轨道半径相同必然环绕速度相同,D错误,同步卫星相对于地面静止在赤道上空,所有的同步卫星轨道运行在赤道上空同一个圆轨道上,C错误,同步卫星的质量可以不同,A正确.
10.(20xx大纲版全国T19)我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球。如果按圆形轨道计算,并忽略卫星质量的变化,则在每次变轨完成后与变轨前相比,
A.卫星动能增大,引力势能减小B.卫星动能增大,引力势能增大
C.卫星动能减小,引力势能减小D.卫星动能减小,引力势能增大
【答案】选D.
【详解】当卫星在圆周轨道上做匀速圆周运动时,万有引力充当向心力,所以环绕周期,环绕速度可以看出,周期越大,轨道半径越大,轨道半径越大,环绕速度越小,动能越小.在变轨过程中,克服引力做功,引力势能增加,所以D选项正确。
11.(20xx重庆理综T21)某行星和地球绕太阳公转的轨道均可视为圆。每过N年,该行星会运行到日地连线的延长线上,如题21图所示。该行星与地球的公转半径之比为
A.B.
C.D.
【答案】选B.
【详解】地球周期年,经过N年,地球比行星多转一圈,即多转,角速度之差为,所以,即,由开普勒第三定律得
12.(20xx海南物理T12)20xx年4月10日,我国成功发射第8颗北斗导航卫星,建成以后北斗导航卫星系统将包含多颗地球同步卫星,这有助于减少我国对GPS导航系统的依赖,GPS由运行周期为12小时的卫星群组成,设北斗导航系统的同步卫星和GPS导航卫星的轨道半径分别为和,向心加速度分别为和,则=_______,=_____(可用根式表示)
【答案】
【详解】依据题意可知h,h,由开普勒第三定律,所以;由万有引力提供向心力公式,可得.
13.(20xx安徽高考T22)(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即,是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量的表达式。已知引力常量为G,太阳的质量为。
(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为m,月球绕地球运动的周期为S,试计算地球的质量。(,结果保留一位有效数字)
【答案】(1)(2)
【详解】(1)因行星绕太阳作匀速圆周运动,于是轨道半长轴a即为轨道半径r,根据万有引力定律和牛顿第二定律有①
于是有②

(2)在地月系统中,
得解得
14.(20xx上海高考物理T22B)人造地球卫星在运行过程中由于受到微小的阻力,轨道半径将缓慢减小。在此运动过程中,卫星所受万有引力大小将(填“减小”或“增大”);其动能将(填“减小”或“增大”)。
【答案】根据万有引力公式,当轨道半径减小的过程中,万有引力增大,根据环绕速度公式,当轨道半径减小的过程中,环绕速度增大,卫星动能增大.
〖答案〗增大,增大
15.(20xx全国卷2)21.已知地球同步卫星离地面的高度约为地球半径的6倍。若某行星的平均密度为地球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,则该行星的自转周期约为
A.6小时B.12小时C.24小时D.36小时
【答案】B
【解析】地球的同步卫星的周期为T1=24小时,轨道半径为r1=7R1,密度ρ1。某行星的同步卫星周期为T2,轨道半径为r2=3.5R2,密度ρ2。根据牛顿第二定律和万有引力定律分别有
两式化简得小时
【命题意图与考点定位】牛顿第二定律和万有引力定律应用于天体运动。
16(20xx新课标卷)20.太阳系中的8大行星的轨道均可以近似看成圆轨道.下列4幅图是用来描述这些行星运动所遵从的某一规律的图像.图中坐标系的横轴是,纵轴是;这里T和R分别是行星绕太阳运行的周期和相应的圆轨道半径,和分别是水星绕太阳运行的周期和相应的圆轨道半径.下列4幅图中正确的是
答案:B
解析:根据开普勒周期定律:周期平方与轨道半径三次方正比可知,
两式相除后取对数,得:,整理得:,选项B正确。
17(20xx北京卷)16.一物体静置在平均密度为的球形天体表面的赤道上。已知万有引力常量G,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为
A.B.C.D.
答案:D
【解析】赤道表面的物体对天体表面的压力为零,说明天体对物体的万有引力恰好等于物体随天体转动所需要的向心力,有,化简得,正确答案为D。
18(20xx上海物理)15.月球绕地球做匀速圆周运动的向心加速度大小为,设月球表面的重力加速度大小为,在月球绕地球运行的轨道处由地球引力产生的加速度大小为,则
(A)(B)(C)(D)
解析:
根据月球绕地球做匀速圆周运动的向心力由地球引力提供,选B。
本题考查万有引力定律和圆周运动。难度:中等。这个题出的好。

19(20xx上海物理)24.如图,三个质点a、b、c质量分别为、、().在C的万有引力作用下,a、b在同一平面内绕c沿逆时针方向做匀速圆周运动,轨道半径之比,则它们的周期之比=______;从图示位置开始,在b运动一周的过程中,a、b、c共线了____次。
【解析】根据,得,所以,
在b运动一周的过程中,a运动8周,所以a、b、c共线了8次。
本题考查万有引力和圆周运动。难度:中等。
20(20xx天津卷)6.探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比
A.轨道半径变小B.向心加速度变小
C.线速度变小D.角速度变小
答案:A
21(20xx福建卷)14.火星探测项目我过继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目。假设火星探测器在火星表面附近圆形轨道运行周期为,神州飞船在地球表面附近圆形轨道运行周期为,火星质量与地球质量之比为p,火星半径与地球半径之比为q,则、之比为
A.B.C.D.
答案:D
解析:设中心天体的质量为M,半径为R,当航天器在星球表面飞行时,由
和,解得,即;又因为,所以,。
【命题特点】本题关注我国航天事业的发展,考查万有引力在天体运动中的应用,这也几乎是每年高考中必考的题型。
22(20xx山东卷)18.1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东红一号”发射成功,开创了我国航天事业的新纪元。“东方红一号”的运行轨道为椭圆轨道,其近地点和运地点的高度分别为439km和2384km,则
A.卫星在点的势能大于点的势能
B.卫星在点的角速度大于点的角速度
C.卫星在点的加速度大于点的加速度
D.卫星在点的速度大于7.9km/s
答案:BC
解析:
A.根据,因为<,所以<,A错误;
B.根据,因为>,且<,所以>,B正确;
C.根据,因为<,所以>,C正确;
D.根据,因为>R,R为地球半径,所以<7.9km/s,D错误。
本题选BC。
本题考查万有引力定律和圆周运动。
难度:中等。
23(20xx重庆卷)16.月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。据此观点,可知月球与地球绕O点运动的线速度大小之比约为
A1:6400B1:80
C80:1D6400:1
【答案】C
【解析】月球和地球绕O做匀速圆周运动,它们之间的万有引力提供各自的向心力,则地球和月球的向心力相等。且月球和地球和O始终共线,说明月球和地球有相同的角速度和周期。因此有,所以,线速度和质量成反比,正确答案C。
24(20xx浙江卷)20.宇宙飞船以周期为T绕地地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示。已知地球的半径为R,地球质量为M,引力常量为G,地球处置周期为T。太阳光可看作平行光,宇航员在A点测出的张角为,则
A.飞船绕地球运动的线速度为
B.一天内飞船经历“日全食”的次数为T/T0
C.飞船每次“日全食”过程的时间为
D.飞船周期为T=
答案:AD
25(20xx全国卷1)25.(18分)如右图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O的两侧。引力常数为G。
求两星球做圆周运动的周期。
在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行为的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T2。已知地球和月球的质量分别为5.98×1024kg和7.35×1022kg。求T2与T1两者平方之比。(结果保留3位小数)
【答案】⑴⑵1.01
【解析】⑴A和B绕O做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等。且A和B和O始终共线,说明A和B有相同的角速度和周期。因此有
,,连立解得,
对A根据牛顿第二定律和万有引力定律得
化简得
⑵将地月看成双星,由⑴得
将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得
化简得
所以两种周期的平方比值为
【考点模拟演练】
1.近年来,人类发射的多枚火星探测器已经相继在火星上着陆,正在进行着激动人心的科学探究,为我们将来登上火星、开发和利用火星资源奠定了坚实的基础.如果火星探测器环绕火星做“近地”匀速圆周运动,并测得该运动的周期为T,则火星的平均密度ρ的表达式为(k为某个常数)()
A.ρ=kTB.ρ=kT
C.ρ=kT2D.ρ=kT2
【答案】D
【详解】火星探测器环绕火星做“近地”匀速圆周运动时,GMmR2=m4π2T2R,又M=43πR3ρ,可得:ρ=3πGT2=kT2,故只有D正确.
2.(20xx辅仁检测)宇宙飞船在半径为R1的轨道上运行,变轨后的半径为R2,R1>R2.宇宙飞船绕地球做匀速圆周运动,则变轨后宇宙飞船的()
A.线速度变小B.角速度变小
C.周期变大D.向心加速度变大
【答案】D
【详解】根据GmMr2=mv2r=mω2r=m4π2rT2=ma向得v=GMr,可知变轨后飞船的线速度变大,A错;角速度变大,B错;周期变小,C错;向心加速度变大,D正确.
3.在圆轨道上做匀速圆周运动的国际空间站里,一宇航员手拿一只小球相对于太空舱静止“站立”于舱内朝向地球一侧的“地面”上,如图所示.下列说法正确的是()
A.宇航员相对于地球的速度介于7.9km/s与11.2km/s之间
B.若宇航员相对于太空舱无初速释放小球,小球将落到“地面”上
C.宇航员将不受地球的引力作用
D.宇航员对“地面”的压力等于零
【答案】D
【详解】7.9km/s是发射卫星的最小速度,是卫星环绕地球运行的最大速度,可见,所有环绕地球运转的卫星、飞船等,其运行速度均小于7.9km/s,故A错误;若宇航员相对于太空舱无初速释放小球,由于惯性,小球仍具有原来的速度,所以地球对小球的万有引力正好提供它做匀速圆周运动需要的向心力,即GMm′r2=m′v2r,其中m′为小球的质量,
故小球不会落到“地面”上,而是沿原来的轨道继续做匀速圆周运动,故B错误;宇航员受地球的引力作用,此引力提供宇航员随空间站绕地球作圆周运动的向心力,否则宇航员将脱圆周轨道,故C错;因宇航员受的引力全部提供了向心力,宇航员不能对“地面”产生压力,处于完全失重状态,D正确.
4.我国未来将建立月球基地,并在绕月轨道上建造空间站.如图4-4-10所示,关闭动力的航天飞机在月球引力作用下经椭圆轨道向月球靠近,并将与空间站在B处对接.已知空间站绕月轨道半径为r,周期为T,万有引力常量为G,下列说法中正确的是()
A.图中航天飞机在飞向B处的过程中,月球引力做正功
B.航天飞机在B处由椭圆轨道可直接进入空间站轨道
C.根据题中条件可以算出月球质量
D.根据题中条件可以算出空间站受到月球引力的大小
【答案】AC
【详解】航天飞机在飞向B处的过程中,飞机受到的引力方向和飞行方向之间的夹角是锐角,月球引力做正功;由运动的可逆性知,航天飞机在B处先减速才能由椭圆轨道进入空间站轨道;设绕月球飞行的空间站质量为m,GMmr2=m4π2T2r,可以算出月球质量M;空间站的质量不知,不能算出空间站受到的月球引力大小.
5.为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的“嫦娥一号”卫星绕月球经过一年多的运行,完成了既定任务,于2009年3月1日16时13分成功撞月.如图所示为“嫦娥一号”卫星撞月的模拟图,卫星在控制点开始进入撞月轨道.假设卫星绕月球做圆周运动的轨道半径为R,周期为T,引力常量为G.根据题中信息,以下说法正确的是()
A.可以求出月球的质量
B.可以求出月球对“嫦娥一号”卫星的引力
C.“嫦娥一号”卫星在控制点处应减速
D.“嫦娥一号”在地面的发射速度大于11.2km/s
【答案】AC
【详解】卫星绕月球做圆周运动万有引力提供向心力,有
GM月mR2=m4π2T2R,则M月=4π2R3GT2,选项A正确;因卫星质量m未知,无法求出月球对“嫦娥一号”卫星的引力,选项B错误;卫星在控制点开始进入撞月轨道,做近心运动,则速度要减小,选项C正确;“嫦娥一号”在地面的发射速度大于7.9km/s,小于11.2km/s,选项D错误.
6.(20xx广东六校联合体联考)我们在推导第一宇宙速度的公式v=gR时,需要做一些假设和选择一些理论依据,下列必要的假设和理论依据有()
A.卫星做半径等于2倍地球半径的匀速圆周运动
B.卫星所受的重力全部作为其所需的向心力
C.卫星所受的万有引力仅有一部分作为其所需的向心力
D.卫星的运转周期必须等于地球的自转周期
【答案】B
【详解】第一宇宙速度是卫星的最大环绕速度,只有其运行轨道半径最小时,它的运行速度才最大,而卫星的最小轨道半径等于地球半径,故A错误;在地球表面附近我们认为万有引力近似等于重力,故B正确,C错误;同步卫星的运转周期等于地球的自转周期,而同步卫星的运行轨道半径大于地球半径,即大于近地轨道卫星半径,故同步卫星的周期大于近地轨道卫星,D错误.
7.1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”发射成功,开创了我国航天事业的新纪元.“东方红一号”的运行轨道为椭圆轨道,其近地点M和远地点N的高度分别为439km和2384km,则()
A.卫星在M点的势能大于N点的势能
B.卫星在M点的角速度小于N点的角速度
C.卫星在M点的加速度大于N点的加速度
D.卫星在N点的速度大于7.9km/s
【答案】C
【详解】卫星从M点到N点,万有引力做负功,势能增大,A项错误;由开普勒第二定律知,M点的角速度大于N点的角速度,B项错误;由于卫星在M点所受万有引力较大,因而加速度较大,C项正确;卫星在远地点N的速度小于其在该点做圆周运动的线速度,而第一宇宙速度7.9km/s是线速度的最大值,D项错误.
8.如图所示,是美国的“卡西尼”号探测器经过长达7年的“艰苦”旅行,进入绕土星飞行的轨道.若“卡西尼”号探测器在半径为R的土星上空离土星表面高h的圆形轨道上绕土星飞行,环绕n周飞行时间为t,已知引力常量为G,则下列关于土星质量M和平均密度ρ的表达式正确的是()
A.M=4π2R+h3Gt2,ρ=3πR+h3Gt2R3
B.M=4π2R+h2Gt2,ρ=3πR+h2Gt2R3
C.M=4π2t2R+h3Gn2,ρ=3πt2R+h3Gn2R3
D.M=4π2n2R+h3Gt2,ρ=3πn2R+h3Gt2R3
【答案】D
【详解】设“卡西尼”号的质量为m,土星的质量为M,“卡西尼”号围绕土星的中心做匀速圆周运动,其向心力由万有引力提供,GMmR+h2=m(R+h)2πT2,其中T=tn,解得M=4π2n2R+h3Gt2.又土星体积V=43πR3,所以ρ=MV=3πn2R+h3Gt2R3.
9.宇航员在月球上做自由落体实验,将某物体由距月球表面高h处释放,经时间t后落到月球表面(设月球半径为R).据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为
()
A.2RhtB.2Rht
C.RhtD.Rh2t
【答案】B
【详解】设月球表面处的重力加速度为g0,则h=12g0t2,设飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为v,由牛顿第二定律得mg0=mv2R,两式联立解得v=2Rht,选项B对.
10.下表是卫星发射的几组数据,其中发射速度v0是燃料燃烧完毕时火箭具有的速度,之后火箭带着卫星依靠惯性继续上升,到达指定高度h后再星箭分离,分离后的卫星以环绕速度v绕地球运动.根据发射过程和表格中的数据,下面哪些说法是正确的

()
卫星离地面
高度h(km)环绕速度
v(km/s)发射速度v0
(km/s)
07.917.91
2007.788.02
5007.618.19
10007.358.42
50005.529.48
∞011.18
A.不计空气阻力,在火箭依靠惯性上升的过程中机械能守恒
B.离地越高的卫星机械能越大
C.离地越高的卫星环绕周期越大
D.当发射速度达到11.18km/s时,卫星能脱离地球到达宇宙的任何地方
【答案】AC
【详解】由机械能守恒定律知,A正确.对B选项,由于卫星的机械能除了与高度有关外,还与质量有关,所以是错误的;由GMmr2=m4π2T2r知,离地面越高的卫星周期越大,C正确;从列表中可以看出,11.18km/s的发射速度是第二宇宙速度,此速度是使卫星脱离地球围绕太阳运转,成为太阳的人造行星的最小发射速度,但逃逸不出太阳系,D错误.
11.如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h,已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.
(1)求卫星B的运动周期;
(2)若卫星B运行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多少时间,它们再一次相距最近?
【答案】(1)2πR+h3gR2(2)2πgR2R+h3-ω0
【详解】根据万有引力提供向心力,列出万有引力与周期的关系,即可求出卫星B的运行周期.第二问关键是要寻找A、B两卫星再一次相距最近时它们转过的角度关系,只要分析出A、B两卫星哪一个角速度大,就能确定相同时间内A、B转过的角度之间的关系.
(1)设卫星B的运行周期为TB,由万有引力定律和向心力公式得
GMmR+h2=m4π2TB2(R+h),①
GMmR2=mg,②
联立①②得TB=2πR+h3gR2.③
(2)用ω表示卫星的角速度,r表示卫星的轨道半径,由万有引力定律和向心力公式得GMmr2=mrω2,④
联立②④得ω=gR2r3,⑤
因为rArB,所以ω0ωB,用t表示所需的时间
(ωB-ω0)t=2π,⑥
由③得ωB=gR2R+h3,⑦
代入⑥得t=2πgR2R+h3-ω0.
12.(17分)一飞船在某星球表面附近,受星球引力作用而绕其做匀速圆周运动的速率为v1,飞船在离该星球表面高度为h处,受星球引力作用而绕其做匀速圆周运动的速率为v2,已知万有引力常量为G.试求:
(1)该星球的质量;
(2)若设该星球的质量为M,一个质量为m的物体在离该星球球心r远处具有的引力势能为Ep=-GMmr,则一颗质量为m1的卫星由r1轨道变为r2(r1<r2)轨道,对卫星至少做多少功?(卫星在r1、r2轨道上均做匀速圆周运动,结果请用M、m1、r1、r2、G表示)
设星球的半径为R,质量为M,则
【答案】(1)hv21v22Gv21-v22(2)G(Mm12r1-Mm12r2)
【详解】(1)飞船需要的向心力由万有引力提供,则
GMmR2=mv21R
GMmR+h2=mv22R+h
解得M=hv21v22Gv21-v22.
(2)卫星在轨道上有动能和势能,其总和为E(机械能),则GMm1r2=m1v2r
E=Ek+Ep=12m1v2+(-GMm1r)=-GMm12r
W=ΔE=E2-E1=G(Mm12r1-Mm12r2).

万有引力理论


作为优秀的教学工作者,在教学时能够胸有成竹,高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以让讲的知识能够轻松被学生吸收,帮助授课经验少的高中教师教学。你知道如何去写好一份优秀的高中教案呢?以下是小编为大家收集的“万有引力理论”欢迎您阅读和收藏,并分享给身边的朋友!

总课题万有引力与航天总课时第14课时
课题万有引力理论的成就课型新授课



标知识与技能
1、了解万有引力定律在天文学上的应用
2、会用万有引力定律计算天体的质量和密度
3、掌握综合运用万有引力定律和圆周运动学知识分析具体问题的方法
过程与方法
通过求解太阳.地球的质量,培养学生理论联系实际的运用能力
情感态度与价值观
通过介绍用万有引力定律发现未知天体的过程,使学生懂得理论来源于实践,反过来又可以指导实践的辨证唯物主义观点
教学
重点1、行星绕太阳的运动的向心力是由万有引力提供的。
2、会用已知条件求中心天体的质量。
教学
难点根据已有条件求中心天体的质量。
学法
指导自主阅读、合作探究、精讲精练、
教学
准备
教学
设想知识回顾→合作探究→突出重点,突破难点→典型例题分析→巩固知识→达标提升
教学过程
师生互动补充内容或错题订正
任务一知识回顾

1、请同学们回顾前面所学匀速圆周运动的知识,然后写出向心加速度的三种表达形式?

2、上节我们学习了万有引力定律的有关知识,现在请同学们回忆一下,万有引力定律的内容及公式是什么?公式中的G又是什么?G的测定有何重要意义?

任务二合作探究
(认真阅读教材,回答下列问题)
一、“科学真实迷人”
引导:求天体质量的方法一:是根据重力加速度求天体质量,即引力=重力mg=GMm/R2
1、推导出地球质量的表达式,说明卡文迪许为什么能把自己的实验说成是“称量地球的重量”?

2、设地面附近的重力加速度g=9.8m/s2,地球半径R=6.4×106m,引力常量G=6.67×10-11Nm2/kg2,试估算地球的质量。(写出解题过程。)

二、计算天体的质量
(学生阅读教材“天体质量的计算”部分的内容,同时考虑下列问题)
引导:求天体质量的方法二:是根据天体的圆周运动,即其向心力由万有引力提供,
1、应用万有引力定律求解中心天体质量的基本思路是什么?

2、根据环绕天体的运动情况求解其向心加速度有几种求法?

3、应用天体运动的动力学方程——万有引力充当向心力求出的天体质量有几种表达式?各是什么?各有什么特点?

4、应用此方法能否求出环绕天体的质量?为什么?

例题:把地球绕太阳公转看做是匀速圆周运动,平均半径为1.5×1011m,已知引力常量为:G=6.67×10-11Nm2/kg2,则可估算出太阳的质量大约是多少千克?(结果取一位有效数字,写出规范解答过程)

三、发现未知天体
(请同学们阅读课文“发现未知天体”部分的内容,考虑以下问题)
1、应用万有引力定律除可估算天体质量外,还可以在天文学上有何应用?

2、应用万有引力定律发现了哪些行星?

3、怎样应用万有引力定律来发现未知天体的?发表你的看法。(交流讨论)

任务三达标提升
1.地球公转的轨道半径是R1,周期是T1,月球绕地球运转的轨道半径是R2,周期是T2,则太阳质量与地球质量之比是()
A.B.C.D.
2.把太阳系各行星的轨迹近似的看作匀速圆周运动,则离太阳越远的行星,写列说法错误的是()
A.周期越小B.线速度越小C.角速度越小D.加速度越小
3.一颗小行星绕太阳做匀速圆周运动的半径是地球公转半径的4倍,则这颗小行星运转的周期是()
A.4年B.6年C.8年8/9年
4.下面说法错误的是()
A.海王星是人们依据万有引力定律计算出轨道而发现的
B.天王星是人们依据万有引力定律计算出轨道而发现的
C.天王星的运动轨道偏离根据万有引力定律计算出来的轨道,其原因是由于天王星受到轨道外面其他行星的引力作用
D.冥王星是人们依据万有引力定律计算出轨道而发现的
5、(多项选择)利用下列哪组数据,可以计算出地球的质量(已知引力常量G)()
A.已知地球的半径R和地面的重力加速度g
B.已知卫星绕地球做匀速圆周运动的轨道半径r和线速度v
C.已知卫星绕地球做匀速圆周运动的轨道半径r和周期T
D.以上说法都不正确
6、设地球表面重力加速度为g0,物体在距离地心4R(R是地球的半径)处,由于地球的作用而产生的加速度为g,则g/g0为()
A.1B.1/9C.1/4D.1/16
7.假设火星和地球都是球体,火星质量M火和地球质量M地之比为M火/M地=p,火星半径R火和地球半径R地之比为R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力加速度g地之比g火/g地等于()
A.p/q2B.pq2C.p/qD.pq
8.通过天文观测到某行星的一个卫星运动的周期为T,轨道半径为r,若把卫星的运动近似看成匀速圆周运动,试求出该行星的质量.

20xx高考物理复习资料:万有引力


20xx高考物理复习资料:万有引力

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11Nm2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。匀速圆周运动公式总结1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。平抛运动公式总结1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt3.水平方向位移:x=Vot4.竖直方向位移:y=gt2/25.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2,合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V07.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo8.水平方向加速度:ax=0;竖直方向加速度:ay=g注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

万有引力与航天


第4讲万有引力与航天
图4-4-4
三颗人造地球卫星A、B、C在同一平面内沿不同的轨道绕地球做匀速圆周运动,且绕行方向相同,已知RA<RB<RC.若在某一时刻,它们正好运行到同一条直线上,如图4-4-4所示.那么再经过卫星A的四分之一周期时,卫星A、B、C的位置可能是()
答案:C
2.(2009全国Ⅰ,19)天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11Nm2/kg2,由此估算该行星的平均密度约为()
A.1.8×103kg/m3B.5.6×103kg/m3C.1.1×104kg/m3D.2.9×104kg/m3
解析:近地卫星绕地球做圆周运动时,所受万有引力充当其做圆周运动的向心力,即:GMmR2=m2πT2R,由密度、质量和体积关系M=ρ43πR3解两式得:ρ=3πGT2≈5.60×103kg/m3.由已知条件可知该行星密度是地球密度的25/4.7倍,即ρ=5.60×103×254.7kg/m3=2.9×104kg/m3.
答案:D
3.质量相等的甲、乙两颗卫星分别贴近某星球表面和地球表面围绕其做匀速圆周运动,已知该星球和地球的密度相同,半径分别为R和r,则()
A.甲、乙两颗卫星的加速度之比等于R∶r
B.甲、乙两颗卫星所受的向心力之比等于1∶1
C.甲、乙两颗卫星的线速度之比等于1∶1
D.甲、乙两颗卫星的周期之比等于R∶r
解析:由F=GMmR2和M=ρ43πR3可得万有引力F=43GπRmρ,又由牛顿第二定律F=ma可得,A正确.卫星绕星球表面做匀速圆周运动时,万有引力等于向心力,因此B错误.由F=43GπRmρ,F=mv2R可得,选项C错误.由F=43GπRmρ,F=mR4π2T2可知,周期之比为1∶1,故D错误.
答案:A
4.
图4-4-5
为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的“嫦娥一号”卫星经过一年多的绕月运行,完成了既定任务,于2009年3月1日16时13分成功撞月.如图4-4-5为“嫦娥一号”卫星撞月的模拟图,卫星在控制点①开始进入撞月轨道.假设卫星绕月球做圆周运动的轨道半径为R,周期为T,引力常量为G.根据题中信息,以下说法正确的是()
A.可以求出月球表面的重力加速度
B.可以求出月球对“嫦娥一号”卫星的引力
C.“嫦娥一号”卫星在控制点①处应减速
D.“嫦娥一号”在地面的发射速度大于11.2km/s
解析:根据Gm1m2R2=m24π2T2R,已知卫星的T、R和引力常量G,可以求月球的质量m1;因为不知道“嫦娥一号”卫星的质量,故无法知道月球对“嫦娥一号”卫星的引力,B项错误;在控制点①,卫星要做向心运动,故需要减速,C项正确;11.2km/s是第二宇宙速度,是卫星脱离地球引力的束缚成为太阳的人造行星的最小发射速度,而“嫦娥一号”卫星并不能脱离地球引力的范围,故其发射速度小于11.2km/s,D项错误.
答案:C
5.
图4-4-6
神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系麦哲伦云时,发现了LMCX3双星系统,它由可见星A和不可见的暗星B构成.两星视为质点,不考虑其他天体的影响,A、B围绕两者的连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图4-4-6所示.引力常量为G,由观测能够得到可见星A的速率v和运行周期T.
(1)可见星A所受暗星B的引力FA可等效为位于O点处质量为m′的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2,试求m′(用m1、m2表示);
(2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式.
解析:(1)由Gm1m2(r1+r2)2=m1ω2r1=m2ω2r2,可得r1/r2=m2/m1,
又由Gm1m2(r1+r2)2=Gm1m′r21,可解得:m′=m32(m1+m2)2.
(2)由v=2πr1T,得r1=vT2π,再由Gm1m2(r1+r2)2=m1v2r1可得:Gm32(m1+m2)2=v3T2π.
答案:(1)m′=m32(m1+m2)2(2)Gm32(m1+m2)2=v3T2π
1.可以发射一颗这样的人造地球卫星,使其圆轨道()
A.与地球表面上某一纬度线(非赤道)是共面同心圆
B.与地球表面上某一经度线所决定的圆是共面同心圆
C.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的
D.与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的

解析:人造卫星绕地球做圆周运动所需的向心力是万有引力提供的,人造卫星受地球的引力一定指向地心,所以任何人造卫星的稳定轨道平面都是通过地心的.A选项所述的卫星不能满足这个条件,A错.B选项所述的卫星虽然满足这个条件,但是由于地球在自转,经线所决定的平面也在转动,这样的卫星又不可能有与地球自转同方向的速度,所以不可能始终在某一经线所决定的平面内,如图所示,故B项也错.无论高低如何,轨道平面与地球赤道平面重合的卫星都是存在的,C选项所述卫星就是地球同步卫星,而D项所述卫星不是同步卫星,故C、D项都对.
答案:CD
2.据报道,2009年4月29日,美国亚利桑那州一天文观测机构发现一颗与太阳系其他行星逆向运行的小行星,代号为2009HC82.该小行星绕太阳一周的时间为T年,直径2~3千米,而地球与太阳之间的距离为R0.如果该行星与地球一样,绕太阳运动可近似看做匀速圆周运动,则小行星绕太阳运动的半径约为()
A.R03T2B.R031TC.R031T2D.R03T
解析:小行星和地球绕太阳做圆周运动,都是由万有引力提供向心力,有Gm1m2R2=m22πT2R,可知小行星绕太阳运行轨道半径为R=R03T212=R03T2,A正确.
答案:A
3.
图4-4-7
2008年9月27日16时40分,我国航天员翟志刚打开“神舟”七号载人飞船轨道舱舱门,首度实施空间出舱活动,在茫茫太空第一次留下中国人的足迹(如图4-4-7所示).翟志刚出舱时,“神舟”七号的运行轨道可认为是圆周轨道.下列关于翟志刚出舱活动的说法正确的是()
A.假如翟志刚握着哑铃,肯定比举着五星红旗费力
B.假如翟志刚自由离开“神舟”七号,他将在同一轨道上运行
C.假如没有安全绳束缚且翟志刚使劲向前推“神舟”七号,他将可能沿竖直线自由落向地球
D.假如“神舟”七号上有着和轮船一样的甲板,翟志刚在上面行走的步幅将比在地面上大
解析:“神舟”七号上的一切物体都处于完全失重状态,受到的万有引力提供向心力,A错B对;假如没有安全绳束缚且翟志刚使劲向前推“神舟”七号,将使他对地的速度减小,翟志刚将在较低轨道运动,C错误;由于“神舟”七号上的一切物体都处于完全失重状态,就算“神舟”七号上有着和轮船一样的甲板,翟志刚也几乎不能行走,D错误.
答案:B
4.
图4-4-8
在美国东部时间2009年2月10日上午11时55分(北京时间11日0时55分),美国一颗质量约为560kg的商用通信卫星“铱33”与俄罗斯一颗已经报废的质量约为900kg军用通信卫星“宇宙2251”相撞,碰撞发生的地点在俄罗斯西伯利亚上空,同时位于国际空间站轨道上方434千米的轨道上,如图4-4-8所示.如果将卫星和空间站的轨道都近似看做圆形,则在相撞前一瞬间下列说法正确的是()
A.“铱33”卫星比“宇宙2251”卫星的周期大
B.“铱33”卫星比国际空间站的运行速度大
C.“铱33”卫星的运行速度大于第一宇宙速度
D.“宇宙2251”卫星比国际空间站的角速度小
解析:由题意知两卫星的轨道半径相等且大于空间站的轨道半径,故A项错.又v=GMr,所以“铱33”卫星的运行速度小于空间站的运行速度,第一宇宙速度为地球表面卫星的最大运行速度,故B、C均错.由ω=GMr3可知,半径越小,ω越大,故D正确.
答案:D
5.(20xx杭州七校联考)一宇宙飞船绕地心做半径为r的匀速圆周运动,飞船舱内有一质量为m的人站在可称体重的台秤上.用R表示地球的半径,g表示地球表面处的重力加速度,g′表示宇宙飞船所在处的地球引力加速度,FN表示人对秤的压力,下列说法中正确的是()
A.g′=0B.g′=R2r2gC.FN=0D.FN=mRrg
解析:做匀速圆周运动的飞船及其上的人均处于完全失重状态,台秤无法测出其重力,故FN=0,C正确,D错误;对地球表面的物体,GMmR2=mg,宇宙飞船所在处,GMmr2=mg′,可得:g′=R2r2g,A错误,B正确.
答案:BC
6.“探路者”号宇宙飞船在宇宙深处飞行过程中,发现A、B两颗均匀球形天体,两天体各有一颗靠近其表面飞行的卫星,测得两颗卫星的周期相等,以下判断正确的是()
A.天体A、B的质量一定不相等
B.两颗卫星的线速度一定相等
C.天体A、B表面的重力加速度之比等于它们的半径之比
D.天体A、B的密度一定相等
解析:假设某行星有卫星绕其表面旋转,万有引力提供向心力,可得GMmR2=m4π2T2R,那么该行星的平均密度为ρ=MV=M43πR3=3πGT2卫星的环绕速度v=GMR,表面的重力加速度g=GMR2=G4ρπR3,所以正确答案是CD.
答案:CD
7.2008年9月25日21时10分,载着翟志刚、刘伯明、景海鹏三位宇航员的“神舟七号”飞船在中国酒泉卫星发射中心发射成功.9月27日翟志刚成功实施了太空行走.如果“神舟七号”飞船在离地球表面h高处的轨道上做周期为T的匀速圆周运动,已知地球的半径R,万有引力常量为G.在该轨道上,“神舟七号”航天飞船()
A.运行的线速度大小为2πhT
B.运行的线速度小于第一宇宙速度
C.运行时的向心加速度大小为4π2(R+h)T2
D.地球表面的重力加速度大小可表示为4π2(R+h)3T2R2
解析:本题考查天体运动和万有引力定律的应用.由于飞船的轨道半径为R+h,故A项错误;第一宇宙速度是环绕的最大速度,所以飞船运行的速度小于第一宇宙速度,B项正确;运行的向心加速度为a=4π2(R+h)T2,C项正确;在地球表面mg=GMmR2,对飞船GMm(R+h)2=m4π2T2(R+h),所以地球表面的重力加速度g=4π2(R+h)3T2R2,D项正确.
答案:BCD
8.
图4-4-9
2008年9月我国成功发射“神舟七号”载人航天飞船.如图4-4-9为“神舟七号”绕地球飞行时的电视直播画面,图中数据显示,飞船距地面的高度约为地球半径的120.已知地球半径为R,地面附近的重力加速度为g,大西洋星距地面的高度约为地球半径的6倍.设飞船、大西洋星绕地球均做匀速圆周运动.则()
A.“神舟七号”飞船在轨运行的加速度为0.91g
B.“神舟七号”飞船在轨运行的速度为gR
C.大西洋星在轨运行的角速度为g343R
D.大西洋星在轨运行的周期为2π343Rg
解析:“神舟七号”飞船在轨运行时,由牛顿第二定律得GMm1(R+h)2=m1a=m1v2(R+h),h=R20,由物体在地球表面受到的万有引力近似等于物体重力得:GM=gR2,所以有a=400441g=0.91g,v=20gR21,故A正确.大西洋星绕地球做匀速圆周运动时,由牛顿第二定律得GMm2(R+h′)2=m2(R+h′)ω2=m2(R+h′)4π2T2,且h′=6R,所以有ω=g343R,T=2π343Rg,故CD正确.
答案:ACD
9.(2009福建,14)“嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r,运行速率为v,当探测器在飞越月球上一些环形山中的质量密集区上空时()
A.r、v都将略为减小B.r、v都将保持不变
C.r将略为减小,v将略为增大D.r将略为增大,v将略为减小
解析:当探测器飞越月球上一些环形山中的质量密集区的上空时,相当于探测器和月球重心间的距离变小了,由万有引力定律F=Gm1m2r2可知,探测器所受月球的引力将增大,这时的引力略大于探测器以原来轨道半径运行所需要的向心力,探测器将做靠近圆心的运动,使轨道半径略为减小,而且月球的引力对探测器做正功,使探测器的速度略微增加,故A、B、D选项错误,C选项正确.
答案:C
10.
图4-4-10
如图4-4-10是“嫦娥一号”奔月示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测.下列说法正确的是()
A.发射“嫦娥一号”的速度必须达到第三宇宙速度
B.在绕月圆轨道上,卫星周期与卫星质量有关
C.卫星受月球的引力与它到月球中心距离的平方成反比
D.在绕月圆轨道上,卫星受地球的引力大于受月球的引力
解析:本题考查了与万有引力定律相联的多个知识点,如万有引力公式、宇宙速度、卫星的周期等,设问角度新颖.第三宇宙速度是卫星脱离太阳系的最小发射速度,所以“嫦娥一号”卫星的发射速度一定小于第三宇宙速度,A项错误;设卫星轨道半径为r,由万有引力定律知卫星受到的引力F=GMmr2,C项正确.设卫星的周期为T,由GMmr2=m4π2T2r得T2=4π2GMr3,所以卫星的周期与月球质量有关,与卫星质量无关,B项错误.卫星在绕月轨道上运行时,由于离地球很远,受到地球引力很小,卫星做圆周运动的向心力主要是月球引力提供,D错误.
答案:C
11.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原地.(取地球表面重力加速度g=10m/s2,阻力不计)
(1)求该星球表面附近的重力加速度g′;
(2)已知该星球的半径与地球半径之比为R星∶R地=1∶4,求该星球的质量与地球质量之比M星∶M地.
解析:(1)设竖直上抛初速度为v0,则v0=gt/2=g′5t/2,故g′=15g=2m/s2.
(2)设小球质量为m,则mg=GMmR2M=gR2G,故M星M地=g′R2星gR2地=15×116=180.
答案:(1)2m/s2(2)180
12.
图4-4-11
欧盟和我国合作的“伽利略”全球卫星定位系统的空间部分由平均分布在三个轨道平面上的30颗轨道卫星构成,每个轨道平面上有10颗卫星,从而实现高精度的导航定位.现假设“伽利略”系统中每颗卫星均围绕地心O做匀速圆周运动,轨道半径为r,一个轨道平面上某时刻10颗卫星所在位置如图4-4-11所示,相邻卫星之间的距离相等,卫星1和卫星3分别位于轨道上A、B两位置,卫星按顺时针运行.地球表面重力加速度为g,地球的半径为R,不计卫星间的相互作用力.求卫星1由A位置运行到B位置所需要的时间.
解析:设地球质量为M,卫星质量为m,每颗卫星的运行周期为T,万有引力常量为G,由万有引力定律和牛顿定律有GmMr2=mr2πT2①
地球表面重力加速度为g=GMR2②
联立①②式可得T=2πRr3g③
卫星1由A位置运行到B位置所需要的时间为t=210T④
联立③④式可得t=2π5Rr3g.
答案:2π5Rr3g

文章来源:http://m.jab88.com/j/68717.html

更多

最新更新

更多