88教案网

高考物理第一轮考纲知识复习:万有引力与航天

一名优秀的教师在教学方面无论做什么事都有计划和准备,作为教师就需要提前准备好适合自己的教案。教案可以让讲的知识能够轻松被学生吸收,帮助教师能够井然有序的进行教学。所以你在写教案时要注意些什么呢?下面是由小编为大家整理的“高考物理第一轮考纲知识复习:万有引力与航天”,仅供参考,希望能为您提供参考!

第4节万有引力与航天
【考纲知识梳理】
一、开普勒行星运动定律
1.开普勒第一定律(轨道定律):所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
2.开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过的相等的面积。(近日点速率最大,远日点速率最小)
3.开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的平方的比值都相等。
二、万有引力定律
1.内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比。
2.公式:
3.适用条件:适用于质点间的相互作用
三、万有定律的应用
1.讨论重力加速度g随离地面高度h的变化情况:物体的重力近似为地球对物体的引力,即。所以重力加速度,可见,g随h的增大而减小。
2.算中心天体的质量的基本思路:
(1)从环绕天体出发:通过观测环绕天体运动的周期T和轨道半径r;就可以求出中心天体的质量M
(2)从中心天体本身出发:只要知道中心天体的表面重力加速度g和半径R就可以求出中心天体的质量M。
3.解卫星的有关问题:在高考试题中,应用万有引力定律解题的知识常集中于两点:
(1)是天体运动的向心力来源于天体之间的万有引力。即
(2)是地球对物体的万有引力近似等于物体的重力,即从而得出(黄金代换,不考虑地球自转)
4.卫星:相对地面静止且与地球自转具有相同周期的卫星。
①定高:h=36000km②定速:v=3.08km/s③定周期:=24h④定轨道:赤道平面
5、三种宇宙速度:第一、第二、第三宇宙速度
①第一宇宙速度(环绕速度):是卫星环绕地球表面运行的速度,也是绕地球做匀速圆周运动的最大速度,也是发射卫星的最小速度V1=7.9Km/s。
②第二宇宙速度(脱离速度):使物体挣脱地球引力束缚的最小发射速度,V2=11.2Km/s。
③第三宇宙速度(逃逸速度):使物体挣脱太阳引力束缚的最小发射速度,V3=16.7Km/s。
【要点名师透析】
一、应用万有引力定律分析天体的运动
1.解决天体(卫星)运动问题的基本思路
(1)天体运动的向心力来源于天体之间的万有引力,即
(2)在中心天体表面或附近运动时,万有引力近似等于重力,即(g0表示天体表面的重力加速度).
注意:①在研究卫星的问题中,若已知中心天体表面的重力加速度g0时,常运用GM=g0R2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用巨大,此式通常称为黄金代换式.
②利用此关系可求行星表面重力加速度、轨道处重力加速度:
在行星表面重力加速度:
在离地面高为h的轨道处重力加速度:,所以
2.应用实例
(1)估算中心天体质量的基本思路
①从环绕天体出发:通过观测环绕天体运动的周期T和轨道半径r就可以求出中心天体的质量M.
②从中心天体本身出发:只要知道中心天体表面的重力加速度g和半径R就可以求出中心天体的质量M.
(2)估算中心天体的密度ρ测出卫星绕天体做匀速圆周运动的半径r和周期T,由
【例1】(20xx安徽高考)为了对火星及其周围的空间环境进行探测,我国预计于20xx年10月发射第一颗火星探测器“萤火一号”.假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G.仅利用以上数据,可以计算出()
A.火星的密度和火星表面的重力加速度
B.火星的质量和火星对“萤火一号”的引力
C.火星的半径和“萤火一号”的质量
D.火星表面的重力加速度和火星对“萤火一号”的引力
【答案】选A.设火星的半径为R,火星的质量为M,
由F万=F向可得:
联立可以求出火星的半径R,火星的质量M,由密度公式,可进一步求出火星的密度;由可进一步求出火星表面的重力加速度.由于不知道“萤火一号”的质量,所以不能求出火星对“萤火一号”的引力,只有A正确.
二、卫星的运行规律
1.卫星的动力学规律
由万有引力提供向心力
3.卫星的“变轨问题”分析
卫星在运行中的变轨有两种情况,即离心运动和向心运动.
当万有引力恰好提供卫星所需向心力时,即
时,卫星做匀速圆周运动;当某时刻速度发生突变时,轨道半径将发生变化.
(1)速度突然增大时,万有引力小于向心力,做离心运动.
(2)速度突然减小时,,万有引力大于向心力,做向心运动.
4.地球同步卫星的特点
(1)轨道平面一定:轨道平面和赤道平面重合.
(2)周期一定:与地球自转周期相同,即T=24h=86400s.
(3)角速度一定:与地球自转的角速度相同.
(4)高度一定:据得=4.24×104km,卫星离地面高度h=r-R≈6R(为恒量).
(5)速率一定:运动速度v=2πr/T=3.07km/s(为恒量).
(6)绕行方向一定:与地球自转的方向一致.
5.极地卫星和近地卫星
(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.
(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9km/s.
(3)两种卫星的轨道平面一定通过地球的球心.
【例2】(20xx江苏高考)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有()
A.在轨道Ⅱ上经过A的速度小于经过B的速度
B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能
C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期
D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度
【答案】选A、B、C.
【详解】根据开普勒定律可知,航天飞机在近地点的速度大于在远地点的速度,A正确;在轨道Ⅰ上航天飞机受到的万有引力恰好提供向心力,而在轨道Ⅱ上万有引力大于向心力,航天飞机做向心运动,因此在轨道Ⅱ上经过A的速度小于在轨道Ⅰ上经过A的速度,所以B正确;由开普勒第三定律可知,,R2R1,所以T2T1,C正确;根据,在A点时加速度相等,D错误.
【感悟高考真题】
1.(20xx江苏物理T7)一行星绕恒星作圆周运动。由天文观测可得,其运动周期为T,速度为v,引力常量为G,则
A.恒星的质量为B.行星的质量为
C.行星运动的轨道半径为D.行星运动的加速度为
【答案】选ACD.
【详解】根据周期公式可得,C对,根据向心加速度公式,D对,根据万有引力提供向心力,可得,A对。
2.(20xx福建理综T13)“嫦娥二号”是我国月球探测第二期工程的先导星。若测得“嫦娥二号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期T,已知引力常量为G,半径为R的球体体积公式,则可估算月球的
A.密度B.质量C.半径D.自转周期
【答案】选A.
【详解】由万有引力提供向心力有,由于在月球表面
轨道有r=R,由球体体积公式联立解得月球的密度,故选A。
3.(20xx新课标全国卷T19)卫星电话信号需要通过地球同步卫星传送。如果你与同学在地面上用卫星电话通话,则从你发出信号至对方接收到信号所需最短时间最接近于(可能用到的数据:月球绕地球运动的轨道半径约为3.8×105km,运行周期约为27天,地球半径约为6400km,无线电信号的传播速度为3×108m/s,)
A.0.1sB.0.25sC.0.5sD.1s
【答案】选B。
【详解】根据开普勒第三定律可得:,则同步卫星的轨道半径为,代入题设已知得,r卫=r月3272=4.22×107m,因此同步卫星到地面的最近距离为L=r卫-r=4.22×107m-6.4×106m=3.58×107m,从发出信号至对方接收到信号所需最短时间t=2Lc=2.4s,即A、C、D错,B正确。
4.【答案】甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道。以下判断正确的是
A.甲的周期大于乙的周期B.乙的速度大于第一宇宙速度
C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方
【答案】选A、C。
【详解】由题意知甲卫星的轨道半径比乙大,由万有引力提供向心力可得,得出周期和轨道半径的关系,轨道半径越大,卫星周期越长。可得出A选项正确。有由万有引力充当向心力的另一个表达式可得线速度和轨道半径的关系,轨道半径越大,线速度越小。可得出B项错误。又由,得,故轨道半径越大,向心加速度越小。可得出C项正确。地球同步卫星的轨道应在赤道正上方,不可能经过北极,D项错误。
5.(20xx天津理综T8)质量为m的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动。已知月球质量为M,月球半径为R,月球表面重力加速度为g,引力常量为G,不考虑月球自转的影响,则航天器的
A.线速度B.角速度
C.运行周期D.向心加速度
【答案】选AC.
【详解】月球对探月航天器的万有引力提供探月航天器在月球附近做匀速圆周运动所需要的向心力,根据牛顿第二定律列方程得,则探月航天器的线速度为,选项A正确,其加速度,选项D错误,又知,在月球附近满足,因此探月航天器的角速度,其周期为,选项B错误,而选项C正确。
6.(20xx浙江理综T19)为了探测X星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1,总质量为m1。随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2则
A.X星球的质量为
B.X星球表面的重力加速度为
C.登陆舱在r1与r2轨道上运动时的速度大小之比为
D.登陆舱在半径为r2轨道上做圆周运动的周期为
【答案】选AD.
【详解】探测飞船绕星球运动时,由万有引力充当向心力,满足,可得:,A正确;又根据(R为星球半径),B错误;根据:,可得:,C错误;根据:,可得:,D正确.
7.(20xx广东理综T20)已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力常量为G。有关同步卫星,下列表述正确的是
A.卫星距离地面的高度为
B.卫星的运行速度小于第一宇宙速度
C.卫星运行时受到的向心力大小为
D.卫星运行的向心加速度小于地球表面的重力加速度
【答案】选B.D.
【详解】对同步卫星有万有引力提供向心力,所以,故A错误;第一宇宙速度是最大的环绕速度,B正确;同步卫星运动的向心力等于万有引力,应为:,C错误;同步卫星的向心加速度为,地球表面的重力加速度,知,D正确。
8.(20xx四川理综T17)据报道,天文学家近日发现了一颗距地球40光年的“超级地球”,名为“55Cancrie”该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的,母星的体积约为太阳的60倍.假设母星与太阳密度相同,“55Cancrie”与地球均做匀速圆周运动,则“55Cancrie”与地球的
A.轨道半径之比约为B.轨道半径之比约为
C.向心加速度之比约为D.向心加速度之比约为
【答案】选B.
【详解】由公式,可得通式,从而判断A错B对;再由得通式,可知C、D皆错.
9.(20xx北京高考T15)由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的
A.质量可以不同B.轨道半径可以不同
C.轨道平面可以不同D.速率可以不同
【答案】选A.
【详解】万有引力提供卫星的向心力,解得周期,环绕速度,可见周期相同的情况下轨道半径必然相同,B错误,轨道半径相同必然环绕速度相同,D错误,同步卫星相对于地面静止在赤道上空,所有的同步卫星轨道运行在赤道上空同一个圆轨道上,C错误,同步卫星的质量可以不同,A正确.
10.(20xx大纲版全国T19)我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球。如果按圆形轨道计算,并忽略卫星质量的变化,则在每次变轨完成后与变轨前相比,
A.卫星动能增大,引力势能减小B.卫星动能增大,引力势能增大
C.卫星动能减小,引力势能减小D.卫星动能减小,引力势能增大
【答案】选D.
【详解】当卫星在圆周轨道上做匀速圆周运动时,万有引力充当向心力,所以环绕周期,环绕速度可以看出,周期越大,轨道半径越大,轨道半径越大,环绕速度越小,动能越小.在变轨过程中,克服引力做功,引力势能增加,所以D选项正确。
11.(20xx重庆理综T21)某行星和地球绕太阳公转的轨道均可视为圆。每过N年,该行星会运行到日地连线的延长线上,如题21图所示。该行星与地球的公转半径之比为
A.B.
C.D.
【答案】选B.
【详解】地球周期年,经过N年,地球比行星多转一圈,即多转,角速度之差为,所以,即,由开普勒第三定律得
12.(20xx海南物理T12)20xx年4月10日,我国成功发射第8颗北斗导航卫星,建成以后北斗导航卫星系统将包含多颗地球同步卫星,这有助于减少我国对GPS导航系统的依赖,GPS由运行周期为12小时的卫星群组成,设北斗导航系统的同步卫星和GPS导航卫星的轨道半径分别为和,向心加速度分别为和,则=_______,=_____(可用根式表示)
【答案】
【详解】依据题意可知h,h,由开普勒第三定律,所以;由万有引力提供向心力公式,可得.
13.(20xx安徽高考T22)(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即,是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量的表达式。已知引力常量为G,太阳的质量为。
(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为m,月球绕地球运动的周期为S,试计算地球的质量。(,结果保留一位有效数字)
【答案】(1)(2)
【详解】(1)因行星绕太阳作匀速圆周运动,于是轨道半长轴a即为轨道半径r,根据万有引力定律和牛顿第二定律有①
于是有②

(2)在地月系统中,
得解得
14.(20xx上海高考物理T22B)人造地球卫星在运行过程中由于受到微小的阻力,轨道半径将缓慢减小。在此运动过程中,卫星所受万有引力大小将(填“减小”或“增大”);其动能将(填“减小”或“增大”)。
【答案】根据万有引力公式,当轨道半径减小的过程中,万有引力增大,根据环绕速度公式,当轨道半径减小的过程中,环绕速度增大,卫星动能增大.
〖答案〗增大,增大
15.(20xx全国卷2)21.已知地球同步卫星离地面的高度约为地球半径的6倍。若某行星的平均密度为地球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,则该行星的自转周期约为
A.6小时B.12小时C.24小时D.36小时
【答案】B
【解析】地球的同步卫星的周期为T1=24小时,轨道半径为r1=7R1,密度ρ1。某行星的同步卫星周期为T2,轨道半径为r2=3.5R2,密度ρ2。根据牛顿第二定律和万有引力定律分别有
两式化简得小时
【命题意图与考点定位】牛顿第二定律和万有引力定律应用于天体运动。
16(20xx新课标卷)20.太阳系中的8大行星的轨道均可以近似看成圆轨道.下列4幅图是用来描述这些行星运动所遵从的某一规律的图像.图中坐标系的横轴是,纵轴是;这里T和R分别是行星绕太阳运行的周期和相应的圆轨道半径,和分别是水星绕太阳运行的周期和相应的圆轨道半径.下列4幅图中正确的是
答案:B
解析:根据开普勒周期定律:周期平方与轨道半径三次方正比可知,
两式相除后取对数,得:,整理得:,选项B正确。
17(20xx北京卷)16.一物体静置在平均密度为的球形天体表面的赤道上。已知万有引力常量G,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为
A.B.C.D.
答案:D
【解析】赤道表面的物体对天体表面的压力为零,说明天体对物体的万有引力恰好等于物体随天体转动所需要的向心力,有,化简得,正确答案为D。
18(20xx上海物理)15.月球绕地球做匀速圆周运动的向心加速度大小为,设月球表面的重力加速度大小为,在月球绕地球运行的轨道处由地球引力产生的加速度大小为,则
(A)(B)(C)(D)
解析:
根据月球绕地球做匀速圆周运动的向心力由地球引力提供,选B。
本题考查万有引力定律和圆周运动。难度:中等。这个题出的好。

19(20xx上海物理)24.如图,三个质点a、b、c质量分别为、、().在C的万有引力作用下,a、b在同一平面内绕c沿逆时针方向做匀速圆周运动,轨道半径之比,则它们的周期之比=______;从图示位置开始,在b运动一周的过程中,a、b、c共线了____次。
【解析】根据,得,所以,
在b运动一周的过程中,a运动8周,所以a、b、c共线了8次。
本题考查万有引力和圆周运动。难度:中等。
20(20xx天津卷)6.探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比
A.轨道半径变小B.向心加速度变小
C.线速度变小D.角速度变小
答案:A
21(20xx福建卷)14.火星探测项目我过继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目。假设火星探测器在火星表面附近圆形轨道运行周期为,神州飞船在地球表面附近圆形轨道运行周期为,火星质量与地球质量之比为p,火星半径与地球半径之比为q,则、之比为
A.B.C.D.
答案:D
解析:设中心天体的质量为M,半径为R,当航天器在星球表面飞行时,由
和,解得,即;又因为,所以,。
【命题特点】本题关注我国航天事业的发展,考查万有引力在天体运动中的应用,这也几乎是每年高考中必考的题型。
22(20xx山东卷)18.1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东红一号”发射成功,开创了我国航天事业的新纪元。“东方红一号”的运行轨道为椭圆轨道,其近地点和运地点的高度分别为439km和2384km,则
A.卫星在点的势能大于点的势能
B.卫星在点的角速度大于点的角速度
C.卫星在点的加速度大于点的加速度
D.卫星在点的速度大于7.9km/s
答案:BC
解析:
A.根据,因为<,所以<,A错误;
B.根据,因为>,且<,所以>,B正确;
C.根据,因为<,所以>,C正确;
D.根据,因为>R,R为地球半径,所以<7.9km/s,D错误。
本题选BC。
本题考查万有引力定律和圆周运动。
难度:中等。
23(20xx重庆卷)16.月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。据此观点,可知月球与地球绕O点运动的线速度大小之比约为
A1:6400B1:80
C80:1D6400:1
【答案】C
【解析】月球和地球绕O做匀速圆周运动,它们之间的万有引力提供各自的向心力,则地球和月球的向心力相等。且月球和地球和O始终共线,说明月球和地球有相同的角速度和周期。因此有,所以,线速度和质量成反比,正确答案C。
24(20xx浙江卷)20.宇宙飞船以周期为T绕地地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示。已知地球的半径为R,地球质量为M,引力常量为G,地球处置周期为T。太阳光可看作平行光,宇航员在A点测出的张角为,则
A.飞船绕地球运动的线速度为
B.一天内飞船经历“日全食”的次数为T/T0
C.飞船每次“日全食”过程的时间为
D.飞船周期为T=
答案:AD
25(20xx全国卷1)25.(18分)如右图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O的两侧。引力常数为G。
求两星球做圆周运动的周期。
在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行为的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T2。已知地球和月球的质量分别为5.98×1024kg和7.35×1022kg。求T2与T1两者平方之比。(结果保留3位小数)
【答案】⑴⑵1.01
【解析】⑴A和B绕O做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等。且A和B和O始终共线,说明A和B有相同的角速度和周期。因此有
,,连立解得,
对A根据牛顿第二定律和万有引力定律得
化简得
⑵将地月看成双星,由⑴得
将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得
化简得
所以两种周期的平方比值为
【考点模拟演练】
1.近年来,人类发射的多枚火星探测器已经相继在火星上着陆,正在进行着激动人心的科学探究,为我们将来登上火星、开发和利用火星资源奠定了坚实的基础.如果火星探测器环绕火星做“近地”匀速圆周运动,并测得该运动的周期为T,则火星的平均密度ρ的表达式为(k为某个常数)()
A.ρ=kTB.ρ=kT
C.ρ=kT2D.ρ=kT2
【答案】D
【详解】火星探测器环绕火星做“近地”匀速圆周运动时,GMmR2=m4π2T2R,又M=43πR3ρ,可得:ρ=3πGT2=kT2,故只有D正确.
2.(20xx辅仁检测)宇宙飞船在半径为R1的轨道上运行,变轨后的半径为R2,R1>R2.宇宙飞船绕地球做匀速圆周运动,则变轨后宇宙飞船的()
A.线速度变小B.角速度变小
C.周期变大D.向心加速度变大
【答案】D
【详解】根据GmMr2=mv2r=mω2r=m4π2rT2=ma向得v=GMr,可知变轨后飞船的线速度变大,A错;角速度变大,B错;周期变小,C错;向心加速度变大,D正确.
3.在圆轨道上做匀速圆周运动的国际空间站里,一宇航员手拿一只小球相对于太空舱静止“站立”于舱内朝向地球一侧的“地面”上,如图所示.下列说法正确的是()
A.宇航员相对于地球的速度介于7.9km/s与11.2km/s之间
B.若宇航员相对于太空舱无初速释放小球,小球将落到“地面”上
C.宇航员将不受地球的引力作用
D.宇航员对“地面”的压力等于零
【答案】D
【详解】7.9km/s是发射卫星的最小速度,是卫星环绕地球运行的最大速度,可见,所有环绕地球运转的卫星、飞船等,其运行速度均小于7.9km/s,故A错误;若宇航员相对于太空舱无初速释放小球,由于惯性,小球仍具有原来的速度,所以地球对小球的万有引力正好提供它做匀速圆周运动需要的向心力,即GMm′r2=m′v2r,其中m′为小球的质量,
故小球不会落到“地面”上,而是沿原来的轨道继续做匀速圆周运动,故B错误;宇航员受地球的引力作用,此引力提供宇航员随空间站绕地球作圆周运动的向心力,否则宇航员将脱圆周轨道,故C错;因宇航员受的引力全部提供了向心力,宇航员不能对“地面”产生压力,处于完全失重状态,D正确.
4.我国未来将建立月球基地,并在绕月轨道上建造空间站.如图4-4-10所示,关闭动力的航天飞机在月球引力作用下经椭圆轨道向月球靠近,并将与空间站在B处对接.已知空间站绕月轨道半径为r,周期为T,万有引力常量为G,下列说法中正确的是()
A.图中航天飞机在飞向B处的过程中,月球引力做正功
B.航天飞机在B处由椭圆轨道可直接进入空间站轨道
C.根据题中条件可以算出月球质量
D.根据题中条件可以算出空间站受到月球引力的大小
【答案】AC
【详解】航天飞机在飞向B处的过程中,飞机受到的引力方向和飞行方向之间的夹角是锐角,月球引力做正功;由运动的可逆性知,航天飞机在B处先减速才能由椭圆轨道进入空间站轨道;设绕月球飞行的空间站质量为m,GMmr2=m4π2T2r,可以算出月球质量M;空间站的质量不知,不能算出空间站受到的月球引力大小.
5.为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的“嫦娥一号”卫星绕月球经过一年多的运行,完成了既定任务,于2009年3月1日16时13分成功撞月.如图所示为“嫦娥一号”卫星撞月的模拟图,卫星在控制点开始进入撞月轨道.假设卫星绕月球做圆周运动的轨道半径为R,周期为T,引力常量为G.根据题中信息,以下说法正确的是()
A.可以求出月球的质量
B.可以求出月球对“嫦娥一号”卫星的引力
C.“嫦娥一号”卫星在控制点处应减速
D.“嫦娥一号”在地面的发射速度大于11.2km/s
【答案】AC
【详解】卫星绕月球做圆周运动万有引力提供向心力,有
GM月mR2=m4π2T2R,则M月=4π2R3GT2,选项A正确;因卫星质量m未知,无法求出月球对“嫦娥一号”卫星的引力,选项B错误;卫星在控制点开始进入撞月轨道,做近心运动,则速度要减小,选项C正确;“嫦娥一号”在地面的发射速度大于7.9km/s,小于11.2km/s,选项D错误.
6.(20xx广东六校联合体联考)我们在推导第一宇宙速度的公式v=gR时,需要做一些假设和选择一些理论依据,下列必要的假设和理论依据有()
A.卫星做半径等于2倍地球半径的匀速圆周运动
B.卫星所受的重力全部作为其所需的向心力
C.卫星所受的万有引力仅有一部分作为其所需的向心力
D.卫星的运转周期必须等于地球的自转周期
【答案】B
【详解】第一宇宙速度是卫星的最大环绕速度,只有其运行轨道半径最小时,它的运行速度才最大,而卫星的最小轨道半径等于地球半径,故A错误;在地球表面附近我们认为万有引力近似等于重力,故B正确,C错误;同步卫星的运转周期等于地球的自转周期,而同步卫星的运行轨道半径大于地球半径,即大于近地轨道卫星半径,故同步卫星的周期大于近地轨道卫星,D错误.
7.1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”发射成功,开创了我国航天事业的新纪元.“东方红一号”的运行轨道为椭圆轨道,其近地点M和远地点N的高度分别为439km和2384km,则()
A.卫星在M点的势能大于N点的势能
B.卫星在M点的角速度小于N点的角速度
C.卫星在M点的加速度大于N点的加速度
D.卫星在N点的速度大于7.9km/s
【答案】C
【详解】卫星从M点到N点,万有引力做负功,势能增大,A项错误;由开普勒第二定律知,M点的角速度大于N点的角速度,B项错误;由于卫星在M点所受万有引力较大,因而加速度较大,C项正确;卫星在远地点N的速度小于其在该点做圆周运动的线速度,而第一宇宙速度7.9km/s是线速度的最大值,D项错误.
8.如图所示,是美国的“卡西尼”号探测器经过长达7年的“艰苦”旅行,进入绕土星飞行的轨道.若“卡西尼”号探测器在半径为R的土星上空离土星表面高h的圆形轨道上绕土星飞行,环绕n周飞行时间为t,已知引力常量为G,则下列关于土星质量M和平均密度ρ的表达式正确的是()
A.M=4π2R+h3Gt2,ρ=3πR+h3Gt2R3
B.M=4π2R+h2Gt2,ρ=3πR+h2Gt2R3
C.M=4π2t2R+h3Gn2,ρ=3πt2R+h3Gn2R3
D.M=4π2n2R+h3Gt2,ρ=3πn2R+h3Gt2R3
【答案】D
【详解】设“卡西尼”号的质量为m,土星的质量为M,“卡西尼”号围绕土星的中心做匀速圆周运动,其向心力由万有引力提供,GMmR+h2=m(R+h)2πT2,其中T=tn,解得M=4π2n2R+h3Gt2.又土星体积V=43πR3,所以ρ=MV=3πn2R+h3Gt2R3.
9.宇航员在月球上做自由落体实验,将某物体由距月球表面高h处释放,经时间t后落到月球表面(设月球半径为R).据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为
()
A.2RhtB.2Rht
C.RhtD.Rh2t
【答案】B
【详解】设月球表面处的重力加速度为g0,则h=12g0t2,设飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为v,由牛顿第二定律得mg0=mv2R,两式联立解得v=2Rht,选项B对.
10.下表是卫星发射的几组数据,其中发射速度v0是燃料燃烧完毕时火箭具有的速度,之后火箭带着卫星依靠惯性继续上升,到达指定高度h后再星箭分离,分离后的卫星以环绕速度v绕地球运动.根据发射过程和表格中的数据,下面哪些说法是正确的

()
卫星离地面
高度h(km)环绕速度
v(km/s)发射速度v0
(km/s)
07.917.91
2007.788.02
5007.618.19
10007.358.42
50005.529.48
∞011.18
A.不计空气阻力,在火箭依靠惯性上升的过程中机械能守恒
B.离地越高的卫星机械能越大
C.离地越高的卫星环绕周期越大
D.当发射速度达到11.18km/s时,卫星能脱离地球到达宇宙的任何地方
【答案】AC
【详解】由机械能守恒定律知,A正确.对B选项,由于卫星的机械能除了与高度有关外,还与质量有关,所以是错误的;由GMmr2=m4π2T2r知,离地面越高的卫星周期越大,C正确;从列表中可以看出,11.18km/s的发射速度是第二宇宙速度,此速度是使卫星脱离地球围绕太阳运转,成为太阳的人造行星的最小发射速度,但逃逸不出太阳系,D错误.
11.如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h,已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.
(1)求卫星B的运动周期;
(2)若卫星B运行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多少时间,它们再一次相距最近?
【答案】(1)2πR+h3gR2(2)2πgR2R+h3-ω0
【详解】根据万有引力提供向心力,列出万有引力与周期的关系,即可求出卫星B的运行周期.第二问关键是要寻找A、B两卫星再一次相距最近时它们转过的角度关系,只要分析出A、B两卫星哪一个角速度大,就能确定相同时间内A、B转过的角度之间的关系.
(1)设卫星B的运行周期为TB,由万有引力定律和向心力公式得
GMmR+h2=m4π2TB2(R+h),①
GMmR2=mg,②
联立①②得TB=2πR+h3gR2.③
(2)用ω表示卫星的角速度,r表示卫星的轨道半径,由万有引力定律和向心力公式得GMmr2=mrω2,④
联立②④得ω=gR2r3,⑤
因为rArB,所以ω0ωB,用t表示所需的时间
(ωB-ω0)t=2π,⑥
由③得ωB=gR2R+h3,⑦
代入⑥得t=2πgR2R+h3-ω0.
12.(17分)一飞船在某星球表面附近,受星球引力作用而绕其做匀速圆周运动的速率为v1,飞船在离该星球表面高度为h处,受星球引力作用而绕其做匀速圆周运动的速率为v2,已知万有引力常量为G.试求:
(1)该星球的质量;
(2)若设该星球的质量为M,一个质量为m的物体在离该星球球心r远处具有的引力势能为Ep=-GMmr,则一颗质量为m1的卫星由r1轨道变为r2(r1<r2)轨道,对卫星至少做多少功?(卫星在r1、r2轨道上均做匀速圆周运动,结果请用M、m1、r1、r2、G表示)
设星球的半径为R,质量为M,则
【答案】(1)hv21v22Gv21-v22(2)G(Mm12r1-Mm12r2)
【详解】(1)飞船需要的向心力由万有引力提供,则
GMmR2=mv21R
GMmR+h2=mv22R+h
解得M=hv21v22Gv21-v22.
(2)卫星在轨道上有动能和势能,其总和为E(机械能),则GMm1r2=m1v2r
E=Ek+Ep=12m1v2+(-GMm1r)=-GMm12r
W=ΔE=E2-E1=G(Mm12r1-Mm12r2).

延伸阅读

高考物理第一轮万有引力定律专项复习


4.6万有引力定律
审核人:上课时间:编号:25
考纲要求与解读:
1、掌握万有引力与物体的重力的关系
2、会用万有引力定律求中心天体的质量和密度
【基础知识梳理】
一.开普勒运动定律
(1)开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个上.
(2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的相等.
(3)开普勒第三定律:所有行星的轨道的半长轴的方跟公转周期的的比值都相等.
二.万有引力定律
(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.
(2)公式:F=G,其中,称为为有引力恒量。
(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为.对于均匀的球体,r是.
三、万有引力和重力
1、重力实际上是万有引力的一个.另一个分力就是物体随地球自转时需要的。
2、重力加速度g随纬度变化而变化,从赤道到两极逐渐.
3、在赤道处,物体的万有引力分解为两个分力F向和m2g刚好在一条直线上,则有F=,
四.天体表面重力加速度问题
设天体表面重力加速度为g,天体半径为R,由mg=得g=。
五.天体质量和密度的计算
原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力.
G=mr,由此可得:M=;ρ===(R为行星的半径)
【典型例题】
1、万有引力与重力的关系
例1放在地球赤道上质量为m的物体,受到的重力G与它受到的地球引力F相比较()
A.G=FB.GFC.GFD.不能确定
变式训练1宇宙飞船以a=g/2的加速度匀加速上升,由于超重现象,用弹簧秤测得质量为10kg的物体重量为75N,由此可求飞船所处的位置距地面的高度为多少?(地球半径R=6400km)

2、万有引力定律的基本应用
例2如图所示,在半径为R的均匀铅球中挖出一个球形空穴,空穴与球相切,并通过铅球的球心.在未挖去空穴前铅球质量为M.求有空穴的铅球与至铅球球心距离为d、质量为m的小球间的引力.

变式训练2设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作是均匀的球体,月球仍沿开采前的圆周轨道运动,则与开采前相比()
A.地球与月球间的万有引力将变大B.地球与月球间的万有引力将变小
C.月球绕地球运动的周期将变短D.月球绕地球运动的周期将变长
2、讨论天体运动规律的基本思路
【例3】兴趣小组成员共同协作,完成了下面的两个实验:①当飞船停留在距X星球一定高度的P点时,正对着X星球发射一个激光脉冲,经时间t1后收到反射回来的信号,此时观察X星球的视角为θ,如图所示.②当飞船在X星球表面着陆后,把一个弹射器固定在星球表面上,竖直向上弹射一个小球,经测定小球从弹射到落回的时间为t2.
已知用上述弹射器在地球上做同样实验时,小球在空中运动的时间为t,又已知地球表面重力加速度为g,万有引力常量为G,光速为c,地球和X星球的自转以及它们对物体的大气阻力均可不计,试根据以上信息,求:
(1)X星球的半径R;(2)X星球的质量M;(3)X星球的第一宇宙速度v;
(4)在X星球发射的卫星的最小周期T.

变式训练3.宇航员在一星球表面上的某高处,沿水平方向抛出一小球。经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L。若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为L。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G。求该星球的质量M。
3、双星问题的处理思路及注意点
例4天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。(引力常量为G)

针对训练4:神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时.发现了LMCX3双星系统,它由可见星A和不可见的暗星B构成,两星视为质点,不考虑其他天体的影响A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图所示引力常量为G,由观测能够得到可见星A的速率v和运行周期T(l)可见星A所受暗星B的引力F,可等效为位于O点处质量为m’的星体(视为质点)对它的引力.设A和B的质量分别为m1、m2,试求m’用m1、m2表示);(2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式;(3)恒星演化到末期.如果其质量大于太阳质量ms的2倍,它将有可能成为黑洞。若可见星A的速率v=2.7×l05m/s,运行周期T=4.7π×l04s,质量m1=6ms,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×10-11Nm2/kg2,ms=2.0×1030kg)

3、天体运动中的几个加速度问题
【例5】一卫星绕某行星做匀速圆周运动,已知行星表面的重力加速度为g0,行星的质量M与卫星的质量m之比M/m=81,行星的半径R0与卫星的半径R之比R0/R=3.6,行星与卫星之间的距离r与行星的半径R0之比r/R0=60。设卫星表面的重力加速度为g,则在卫星表面有……
经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的1/3600。上述结果是否正确?若正确,列式证明;若有错误,求出正确结果。

【巩固练习】
1.第一次通过实验比较准确的测出引力常量的科学家是()
A.牛顿B.伽利略C.胡克D.卡文迪许
2.下列事例中,不是由于万有引力起决定作用的物理现象是()
A.月亮总是在不停地绕着地球转动
B.地球周围包围着稠密的大气层,它们不会散发到太空去
C.潮汐D.把许多碎铅块压紧,就成一块铅块
3.在研究宇宙发展演变的理论中,有一种学说叫做“宇宙膨胀说”,这种学说认为万有引力常量G在缓慢地减小.根据这一理论,在很久很久以前,太阳系中地球的公转情况与现在相比()
A.公转半径R较大B.公转周期T较小C.公转速率v较大D.公转角速度ω较小
4.假设地球自转加快,则仍静止在赤道附近的物体变大的物理量是()
A.地球的万有引力B.自转向心力C.地面的支持力D.重力
5.2003年10月15日,我国成功地发射了“神舟五号”载人飞船,经过21小时的太空飞行,返回舱于次日安全着陆.已知飞船在太空中运行的轨道是一个椭圆,椭圆的一个焦点是地球的球心,如图所示,飞船在飞行中是无动力飞行,只受到地球的万有引力作用,在飞船从轨道的A点沿箭头方向运行到B点的过程中,有以下说法:①飞船的速度逐渐增大②飞船的速度逐渐减小③飞船的机械能守恒④飞船的机械能逐渐增大.上述说法中正确的是()
A.①③B.①④C.②③D.②④
6.组成星球的物质是靠引力吸引在一起的,这样的星球有一个最大的自转速率.如果超过了该速率,星球的万有引力将不足以维持其赤道附近的物体做圆周运动.由此能得到半径为R、密度为ρ、质量为M且均匀分布的的最小转动周期T.下列表达式中正确的是()
A.B.C.D.
7.一颗小行星环绕太阳作匀速圆周运动的半径是地球公转半径的4倍,则它的环绕周期是()
A.1年B.2年C.4年D.8年.
8.在地球大气层外有很多太空垃圾绕地球做匀速圆周运动,每到太阳活动期,由于受太阳的影响,地球大气层的厚度开始增加,而使得部分垃圾进入大气层,开始做靠近地球的向心运动,产生这一结果的原因是()
A.由于太空垃圾受到地球引力减小而导致的向心运动
B.由于太空垃圾受到地球引力增大而导致的向心运动
C.地球的引力提供了太空垃圾做匀速圆周运动所需的向心力,所以产生向心运动的结果与空气阻力无关D.由于太空垃圾受到空气阻力而导致的向心运动
★9.宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用。已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。设每个星体的质量均为。
(1)试求第一种形式下,星体运动的线速度和周期。
(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?

高考物理一轮复习万有引力(一)教案


第7讲万有引力(一)
主讲教师:徐建烽首师大附中物理特级教师
一、变轨问题:
题一:俄罗斯“和平”号空间站于2001年3月23日坠入新西兰和智利之间的南太平洋。空间站在进入稠密大气层烧毁前,处于自由运动状态,因受高空稀薄空气阻力的影响,在绕地球运动的同时,将很缓慢地向地球靠近,在这个过程中()
A.空间站的角速度逐渐减小
B.空间站的加速度逐渐减小
C.空间站的势能逐渐转变为动能和内能
D.空间站的动能逐渐转变为内能

题二:如图所示是地球同步卫星发射过程的运行轨道示意图,图中实心黑圈代表地球。发射卫星时首先用火箭将卫星送入近地轨道1(可视为圆轨道),当通过轨道的A点时点燃喷气发动机改变卫星的速度,进入椭圆形轨道2,当卫星通过轨道2远端的B点时再次点燃喷气发动机改变卫星的速度,进入同步轨道3,即可开始正常工作。不计卫星喷气过程中质量的变化,以下说法正确的是()
①卫星在轨道1运动时的线速度比在轨道3运动时的线速度大
②卫星在轨道1运动时的机械能比在轨道3运动时的机械能小
③卫星在轨道1上运动通过A点时,需使卫星减速才能进入轨道2运动
④卫星在轨道2上运动通过B点时受到的地球引力,比在轨道3上通过B点时受到的地球引力小
A.只有①②B.只有①②③C.只有①④D.都不正确

二、密度估算引出的两个重要推论
题三:(黄金代换版)地球表面重力加速度为g,地球半径为R,引力常量为G,下式关于地球密度的估算式正确的是()
A.B.C.D.
题四:(周期版)一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量()
A.飞船的轨道半径B.飞船的运行速度
C.飞船的运行周期D.行星的质量

三、与力学的结合
题五:宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球,经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,求该星球的质量。

题六:在天体演变的过程中,红色巨星发生“超新星爆炸”后,可以形成中子星(电子被迫同原子核中的质子相结合而形成中子),中子星具有极高的密度。
(1)若已知该中子星的卫星运行的最小周期为1.2×10-3s,求该中子星的密度;
(2)中子星也绕自转轴自转,为使该中子星不因自转而被瓦解,则其自转角速度最大不能超过多少?
第7讲万有引力(一)
题一:D题二:A题三:A题四:C题五:26LR23Gt2题六:(1)1.0×1017kg/m3;(2)5.2×103rad/s

20xx高考物理《万有引力与航天》材料分析


作为优秀的教学工作者,在教学时能够胸有成竹,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师在教学期间更好的掌握节奏。你知道怎么写具体的教案内容吗?为此,小编从网络上为大家精心整理了《20xx高考物理《万有引力与航天》材料分析》,仅供您在工作和学习中参考。

20xx高考物理《万有引力与航天》材料分析

第4节万有引力与航天
考点一|开普勒行星运动定律

1.第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在这些椭圆的一个焦点上.
2.第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.
3.第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.其表达式为=k,其中a是椭圆轨道的半长轴,T是行星绕太阳公转的周期,k是一个对所有行星都相同的常量。

1.(20xx·余姚调研)关于太阳系中各行星的轨道,以下说法中正确的是()
A.所有行星绕太阳运动的轨道都是椭圆
B.有的行星绕太阳运动的轨道是圆
C.不同行星绕太阳运动的椭圆轨道的半长轴是相同的
D.不同的行星绕太阳运动的轨道都相同
A[八大行星的轨道都是椭圆,A正确,B错误;不同行星离太阳远近不同,轨道不同,半长轴也就不同,C、D错误.]
2.关于行星的运动,下列说法中不正确的是()
A.关于行星的运动,早期有“地心说”与“日心说”之争,而“地心说”容易被人们所接受的原因之一是由于相对运动使得人们观察到太阳东升西落
B.所有行星围绕太阳运动的轨道都是椭圆,且近地点速度小,远地点速度大
C.开普勒第三定律=k,式中k的值仅与中心天体的质量有关
D.开普勒三定律也适用于其他星系的行星运动
B[根据开普勒第二定律可以推断出近地点速度大,远地点速度小,故选项B错误.]
3.(20xx·温州模拟)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()
A.太阳位于木星运行轨道的中心
B.火星和木星绕太阳运行速度的大小始终相等
C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方
D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积
C[太阳位于木星椭圆运行轨道的一个焦点上,不同的行星运行在不同的椭圆轨道上,其运行周期和速度均不相同,不同的行星相同时间内,与太阳连线扫过的面积不相等,A、B、D均错误;由开普勒第三定律可知,C正确.]

考点二|万有引力定律及应用

1.万有引力定律
(1)内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的平方成反比.
(2)表达式:F=G
G为引力常量:G=6.67×10-11N·m2/kg2.
(3)适用条件
①公式适用于质点间的相互作用.当两个物体间的距离远大于物体本身的大小时,物体可视为质点.
②质量分布均匀的球体可视为质点,r是两球心间的距离.2.解决天体(卫星)运动问题的基本思路
(1)天体运动的向心力来源于天体之间的万有引力,即
G=man=m=mω2r=m.
(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G=mg(g表示天体表面的重力加速度).3.天体质量和密度的估算
(1)利用天体表面的重力加速度g和天体半径R.
由于G=mg,故天体质量M=,
天体密度ρ===.
(2)通过观察卫星绕天体做匀速圆周运动的周期T和轨道半径r.
①由万有引力等于向心力,即G=mr,得出中心天体质量M=;
②若已知天体半径R,则天体的平均密度
ρ===.

(20xx·浙江10月学考)如图441所示,“天宫二号”在距离地面393km的近圆轨道运行,已知万有引力常量G=6.67×10-11N·m2/kg2,地球质量M=6.0×1024kg,地球半径R=6.4×103km.由以上数据可估算()

图441
A.“天宫二号”质量
B.“天宫二号”运行速度
C.“天宫二号”受到的向心力
D.地球对“天宫二号”的引力
B[根据万有引力定律,F向=F万=G=m,其中m为卫星质量,R为轨道半径,即地球半径与离地高度之和,则已知G、M、R,可得到运行速度v,无法得到卫星质量m,亦无法求得F向、F万.故选B.]

1.嫦娥三号远离地球飞近月球的过程中,地球和月球对它的万有引力F1、F2的大小变化情况是()
A.F1、F2均减小
B.F1、F2均增大
C.F1减小、F2增大
D.F1增大、F2减小
C[根据万有引力定律F=G,可知F1减小、F2增大,故选C.]
2.地球质量大约是月球质量的81倍,一飞行器位于地球与月球之间,当地球对它的引力和月球对它的引力大小相等时,飞行器距月球球心的距离与月球球心距地球球心之间的距离之比为()
A.1∶9B.9∶1
C.1∶10D.10∶1
C[设月球质量为m,则地球质量为81m,地月间距离为r,飞行器质量为m0,当飞行器距月球为r′时,地球对它的引力等于月球对它的引力,则G=G,所以=9,r=10r′,r′∶r=1∶10,故选项C正确.]
3.20xx年12月17日,我国发射了首颗探测“暗物质”的空间科学卫星“悟空”,使我国的空间科学探测进入了一个新阶段.已知“悟空”在距地面为h的高空绕地球做匀速圆周运动,地球质量为M,地球半径为R,引力常量为G,则可以求出()
A.“悟空”的质量
B.“悟空”的密度
C.“悟空”的线速度大小
D.地球对“悟空”的万有引力
C[根据万有引力充当向心力G=m,可求得“悟空”的线速度v=,因无法求出“悟空”的质量,从而无法求出“悟空”的密度和地球对“悟空”的万有引力,选项C正确,A、B、D错误.]
4.对于万有引力定律的表达式,下列说法正确的是()
A.G是引力常量,是人为规定的
B.当r等于零时,万有引力为无穷大
C.两物体受到的引力总是大小相等,与两物体质量是否相等无关
D.r是两物体间最近的距离
C[引力常量G的值是卡文迪许在实验室里用实验测定的,而不是人为规定的,故A错误;当两个物体间的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用,故B错误;力是物体间的相互作用,万有引力同样适用于牛顿第三定律,即两物体受到的引力总是大小相等,与两物体质量是否相等无关,故C正确;r是两质点间的距离,质量分布均匀的球体可视为质点,此时r是两球心间的距离,故D错误.]
5.过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51pegb”的发现拉开了研究太阳系外行星的序幕.“51pegb”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的,该中心恒星与太阳的质量比约为()
A.B.1
C.5D.10
B[根据万有引力提供向心力,有G=mr,可得M=,所以恒星质量与太阳质量之比为==3×2≈1,故选项B正确.]

考点三|宇宙航行、经典力学的局限性

1.卫星的各物理量随轨道半径变化的规律2.三个宇宙速度
(1)第一宇宙速度
v1=7.9km/s,卫星在地球表面附近绕地球做匀速圆周运动的速度,又称环绕速度.
(2)第二宇宙速度
v2=11.2km/s,使卫星挣脱地球引力束缚的最小地面发射速度,又称脱离速度.
(3)第三宇宙速度
v3=16.7km/s,使卫星挣脱太阳引力束缚的最小地面发射速度,也叫逃逸速度.
3.第一宇宙速度的推导
方法一:由G=m得v1==7.9×103m/s.
方法二:由mg=m得
v1==7.9×103m/s.
第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,Tmin=2π=5075s≈85min.
4.宇宙速度与运动轨迹的关系
(1)v发=7.9km/s时,卫星绕地球做匀速圆周运动.
(2)7.9km/sR,所以v7.9km/s,C正确.]
2.关于地球的第一宇宙速度,下列表述正确的是()
A.第一宇宙速度又叫环绕速度
B.第一宇宙速度又叫脱离速度
C.第一宇宙速度跟地球的质量无关
D.第一宇宙速度跟地球的半径无关
A[第一宇宙速度又叫环绕速度,故A正确,B错误;根据定义有G=m,得v=,其中,M为地球质量,R为地球半径,故C、D错误.]
3.某行星有甲、乙两颗卫星,它们的轨道均为圆形,甲的轨道半径为R1,乙的轨道半径为R2,R2R1.根据以上信息可知()
A.甲的质量大于乙的质量
B.甲的周期大于乙的周期
C.甲的速率大于乙的速率
D.甲所受行星的引力大于乙所受行星的引力
C[轨道半径越小,向心加速度、线速度、角速度越大,周期越小,B错,C对;卫星质量不能比较,A错;因为两卫星质量不知道,万有引力也不能比较,D错.]
4.我国成功发射的“神舟”号载人宇宙飞船和人造地球同步通信卫星都绕地球做匀速圆周运动,已知飞船的轨道半径小于同步卫星的轨道半径。则可判定()
A.飞船的运行周期小于同步卫星的运行周期
B.飞船的线速度小于同步卫星的线速度
C.飞船的角速度小于同步卫星的角速度
D.飞船的向心加速度小于同步卫星的向心加速度
A[该卫星的质量为m,轨道半径为r,周期T,线速度为v,角速度为ω,向心加速度为an,地球的质量为M,由万有引力定律得G=m=m=mω2r=man,故T=2π,v=,ω=,an=,因为飞船的轨道半径小于同步卫星的轨道半径,所以飞船的运行周期小于同步卫星的运行周期,飞船的线速度大于同步卫星的线速度,飞船的角速度大于同步卫星的角速度,飞船的向心加速度大于同步卫星的向心加速度,选项A正确,B、C、D错误.]
5.如图444所示,a、b、c三颗卫星在各自的轨道上运行,轨道半径rambmc
D.三个卫星的运行周期为Ta

高三物理《万有引力与航天》教材分析


高三物理《万有引力与航天》教材分析

考点16万有引力与航天
考点名片
考点细研究:要点:以万有引力定律为基础的行星、卫星匀速圆周运动模型及其应用;双星模型、估算天体的质量和密度等;以开普勒三定律为基础的椭圆运行轨道及卫星的发射与变轨、能量等相关内容;万有引力定律与地理、数学、航天等知识的综合应用。
备考正能量:高考对本考点的命题比较固定,基本是一个选择题,个别省份有填空题和计算题出现。考点内容与人造卫星、载人航天、探月计划等热点话题密切联系,考查的频率也越来越高,应密切关注。

一、基础与经典
1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()
A.太阳位于木星运行轨道的中心
B.火星和木星绕太阳运行速度的大小始终相等
C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方
D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积
答案C
解析由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A错误。火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误。根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确。对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误。
2.关于万有引力定律,下列说法正确的是()
A.牛顿提出了万有引力定律,并测定了引力常量的数值
B.万有引力定律只适用于天体之间
C.万有引力的发现,揭示了自然界一种基本相互作用的规律
D.地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是相同的
答案C
解析万有引力存在于一切物体间,B错误;牛顿提出万有引力定律,卡文迪许测定了万有引力恒量,A错误;万有引力是自然界的一种基本相互作用,它与距离的平方成反比,故C正确,D错误。
3.a、b、c、d是在地球大气层外的圆形轨道上运行的四颗人造卫星。其中a、c的轨道相交于P,b、d在同一个圆轨道上,b、c轨道在同一平面上。某时刻四颗卫星的运行方向及位置如图所示。下列说法中正确的是()

A.a、c的加速度大小相等,且大于b的加速度
B.b、c的角速度大小相等,且小于a的角速度
C.a、c的线速度大小相等,且小于d的线速度
D.a、c存在在P点相撞的危险
答案A
解析由图可知:ra=rcab,A正确。G=m=mω2r=ma,可知,B、C错误;a、c周期相同,故不可能同时到达同一位置,D错误。
4.(多选)如图所示,近地人造卫星和月球绕地球的运行轨道可视为圆。设卫星、月球绕地球运行周期分别为T卫、T月,地球自转周期为T地,则()

A.T卫T月
C.T卫r同r卫,由开普勒第三定律=k可知,T月T同T卫,又同步卫星的周期T同=T地,故有T月T地T卫,选项A、C正确。
5.研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时。假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比()
A.距地面的高度变大B.向心加速度变大
C.线速度变大D.角速度变大
答案A
解析根据G=m2r可知r=,若T增大,r增大,h=r-R,故A正确。根据a=可知,r增大,a减小,B错误。根据G=可得v=,r增大,v减小,C错误。ω=,T增大,ω减小,D错误。
6.某行星和地球绕太阳公转的轨道均可视为圆,每过N年,该行星会运行到日地连线的延长线上,如图所示。该行星与地球的公转半径之比为()

A.B.
C.D.
答案B
解析地球公转周期T1=1年,设T2为行星的公转周期,每过N年,行星会运行到日地连线的延长线上,即地球比该行星多转一圈,有N-N=2π,解得:T2=年,故行星与地球的公转周期之比为;由G=mr得:=,即rT,故行星与地球的公转半径之比为,B正确。
7.(多选)“神舟九号”飞船与“天宫一号”成功对接,在飞船完成任务后返回地面,要在A点从圆形轨道进入椭圆轨道,B为轨道上的一点,如图所示,关于“神舟九号”的运动,下列说法中正确的有()

A.在轨道上经过A的速度小于经过B的速度
B.在轨道上经过A的速度小于在轨道上经过A的速度
C.在轨道上运动的周期小于在轨道上运动的周期
D.在轨道上经过A的加速度小于在轨道上经过A的加速度
答案ABC
解析“神舟九号”飞船在轨道上经过远地点A的速度小于经过近地点B的速度,选项A正确;飞船从圆形轨道进入椭圆轨道,需要在A点减速,选项B正确;由开普勒第三定律=k可知,轨道半长轴越长周期越长,轨道上的周期小于轨道上的运动周期,选项C正确;a=可知,rA不变,所以在轨道上经过A的加速度等于在轨道上经过A的加速度,选项D错误。
8.(多选)设同步卫星离地心的距离为r,运行速率为v1,加速度为a1;地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球的半径为R,则下列比值正确的是()
A.=B.=C.=D.=
答案BD
解析地球同步卫星的角速度和地球赤道上的物体随地球自转的角速度相同,由a1=ω2r,a2=ω2R可得,=,B项正确;对于地球同步卫星和以第一宇宙速度运动的近地卫星,由万有引力提供向心力,即m=;m=,得=,D项正确。
9.(多选)宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称为双星系统。在浩瀚的银河系中,多数恒星都是双星系统。设某双星系统A、B绕其连线上的O点做匀速圆周运动,如图所示。若,则()

A.星球A的质量一定大于B的质量
B.星球A的线速度一定大于B的线速度
C.双星间距离一定,双星的质量越大,其转动周期越大
D.双星的质量一定,双星之间的距离越大,其转动周期越大
答案BD
解析设双星质量分别为mA、mB,轨道半径为RA、RB,两者间距为L,周期为T,角速度为ω,由万有引力定律可知:=mAω2RA,=mBω2RB,又有RA+RB=L,可得=,G(mA+mB)=ω2L3。由知,mAvB,B正确。由T=及G(mA+mB)=ω2L3可知C错误,D正确。
10.(多选)在太阳系中有一颗半径为R的行星,若在该行星表面以初速度v0竖直向上抛出一物体,上升的最大高度为H,已知该物体所受的其他力与行星对它的万有引力相比较可忽略不计。根据这些条件,可以求出的物理量是()
A.太阳的密度
B.该行星的第一宇宙速度
C.该行星绕太阳运行的周期
D.卫星绕该行星运行的最小周期
答案BD
解析由v=2gH,得该行星表面的重力加速度g=
根据mg=m=mR,解得该行星的第一宇宙速度v=,卫星绕该行星运行的最小周期T=,所以B、D正确;因不知道行星绕太阳运动的任何量,故不能算太阳的密度和该行星绕太阳运动的周期,所以A、C错误。
二、真题与模拟
11.20xx·全国卷]关于行星运动的规律,下列说法符合史实的是()
A.开普勒在牛顿定律的基础上,导出了行星运动的规律
B.开普勒在天文观测数据的基础上,总结出了行星运动的规律
C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因
D.开普勒总结出了行星运动的规律,发现了万有引力定律
答案B
解析行星运动的规律是开普勒在第谷长期观察行星运动数据的基础上总结归纳出来的,并不是在牛顿运动定律的基础上导出的,但他并没有找出行星按这些规律运动的原因,A、C错误,B正确。牛顿发现了万有引力定律,D错误。
12.20xx·江苏高考](多选)如图所示,两质量相等的卫星A、B绕地球做匀速圆周运动,用R、T、Ek、S分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积。下列关系式正确的有()

A.TATBB.EkAEkB
C.SA=SBD.=
答案AD
解析卫星做圆周运动,万有引力提供向心力,即G=m=mR2,得v=,T=2π,由于RARB可知,TATB,vAa1a3B.a3a2a1
C.a3a1a2D.a1a2a3
答案D
解析对于东方红一号卫星,在远地点由牛顿第二定律可知=m1a1,即a1=(r1=2060km)。对于东方红二号卫星,由牛顿第二定律可知=m2a2,即a2=(r2=35786km)。因为r1a2,由圆周运动规律可知,对东方红二号卫星:a2=r2,对地球赤道上的物体:a3=R,因为r2R,所以a2a3,综上可得a1a2a3,D正确。
15.20xx·天津高考]我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接。假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()

A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接
B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接
C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
答案C
解析卫星绕地球做圆周运动,满足G=。若加速,则会造成G,卫星将做离心运动,向外跃迁。因此要想使两卫星对接绝不能同轨道加速或减速,只能从低轨道加速或从高轨道减速,C正确,A、B、D错误。
16.20xx·广东高考](多选)在星球表面发射探测器,当发射速度为v时,探测器可绕星球表面做匀速圆周运动;当发射速度达到v时,可摆脱星球引力束缚脱离该星球。已知地球、火星两星球的质量比约为101,半径比约为21。下列说法正确的有()
A.探测器的质量越大,脱离星球所需要的发射速度越大
B.探测器在地球表面受到的引力比在火星表面的大
C.探测器分别脱离两星球所需要的发射速度相等
D.探测器脱离星球的过程中,势能逐渐增大
答案BD
解析由G=m得,v=,则有v=,由此可知探测器脱离星球所需要的发射速度与探测器的质量无关,A项错误;由F=G及地球、火星的质量、半径之比可知,探测器在地球表面受到的引力比在火星表面的大,B项正确;由v=可知,探测器脱离两星球所需的发射速度不同,C项错误;探测器在脱离两星球的过程中,引力做负功,引力势能是逐渐增大的,D项正确。
17.20xx·重庆高考]宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为()
A.0B.C.D.
答案B
解析对飞船进行受力分析,可得G=mg,得g=,B项正确。
18.20xx·江苏高考]过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51pegb”的发现拉开了研究太阳系外行星的序幕。“51pegb”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的。该中心恒星与太阳的质量比约为()
A.B.1C.5D.10
答案B
解析行星绕恒星做匀速圆周运动,万有引力提供向心力,由G=mr2,得M=,则该中心恒星的质量与太阳的质量之比=·=3×=1.04,B项正确。
19.20xx·全国卷](多选)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落。已知探测器的质量约为1.3×103kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8m/s2。则此探测器()
A.在着陆前的瞬间,速度大小约为8.9m/s
B.悬停时受到的反冲作用力约为2×103N
C.从离开近月圆轨道到着陆这段时间内,机械能守恒
D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度
答案BD
解析由题述地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,由公式G=mg,可得月球表面的重力加速度约为地球表面重力加速度的,即g月=1.6m/s2,由v2=2g月h,解得此探测器在着陆瞬间的速度v≈3.6m/s,选项A错误;由平衡条件可得悬停时受到的反冲作用力约为F=mg月=1.3×103×1.6N≈2×103N,选项B正确;从离开近月圆轨道到着陆这段时间,由于受到了反冲作用力,且反冲作用力对探测器做负功,所以探测器机械能减小,选项C错误;由G=m,G=mg,解得v=,由于地球半径和地球表面的重力加速度均大于月球,所以探测器在近月轨道上运行的线速度要小于人造卫星在近地轨道上运行的线速度,选项D正确。
20.20xx·山东高考]如图,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动。以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小。以下判断正确的是()

A.a2a3a1B.a2a1a3
C.a3a1a2D.a3a2a1
答案D
解析因空间站建在拉格朗日点,所以月球与空间站绕地球转动的周期相同,空间站半径小,由a=ω2r得a1a2a1,选项D正确。

一、基础与经典
21.宇航员驾驶宇宙飞船到达月球表面,关闭动力,飞船在近月圆形轨道绕月运行的周期为T;接着,宇航员调整飞船动力,安全着陆,宇航员在月球表面离地某一高度处将一质量为m的小球以初速度v0水平抛出,其水平射程为s。已知月球的半径为R,引力常量为G,求:
(1)月球的质量M;
(2)小球开始抛出时离地的高度;
(3)小球落地时重力的瞬时功率。
答案(1)(2)(3)
解析(1)飞船在近月圆形轨道上运动时,月球对飞船的万有引力提供向心力,有G=mR2,
解得月球的质量M=。
(2)小球做平抛运动,水平方向做匀速直线运动,有s=v0t,
竖直方向做自由落体运动,有h=gt2,
在月球表面,小球受到月球的万有引力近似等于重力,有
G=mR2=mg,
联立解得小球开始抛出时离地的高度为h=。
(3)小球落地时速度的竖直分量为v=gt=,
重力的瞬时功率为P=mgv=m·=。
22.如图所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L。已知A、B的中心和O点始终共线,A和B分别在O点的两侧。引力常量为G。

(1)求两星球做圆周运动的周期。
(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期为T2。已知地球和月球的质量分别为5.98×1024kg和7.35×1022kg。求T2与T1两者的平方之比。(结果保留3位小数)
答案(1)2π(2)1.012
解析(1)A和B绕O点做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等,且A、B的中心和O点始终共线,说明A和B组成双星系统且有相同的角速度和周期。设A、B做圆周运动的半径分别为r、R,则有
mω2r=Mω2R,r+R=L,
联立解得R=L,r=L,
对A,根据牛顿第二定律和万有引力定律得
=m2L,
解得T=2π。
(2)由题意,可以将地月系统看成双星系统,由(1)得
T1=2π,
若认为月球绕地心做圆周运动,则根据牛顿第二定律和万有引力定律得
=m2L,
解得T2=2π,
所以T2与T1的平方之比为
===1.012。
二、真题与模拟
23.20xx·天津高考]万有引力定律揭示了天体运行规律与地上物体运动规律具有内在的一致性。
(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果。已知地球质量为M,自转周期为T,万有引力常量为G。将地球视为半径为R、质量均匀分布的球体,不考虑空气的影响。设在地球北极地面称量时,弹簧秤的读数为F0。
a.若在北极上空高出地面h处称量,弹簧秤读数为F1,求比值的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留2位有效数字);
b.若在赤道地面称量,弹簧秤读数为F2,求比值的表达式。
(2)设想地球绕太阳公转的圆周轨道半径r、太阳的半径为RS和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变,仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?
答案(1)a.=0.98b.=1-
(2)与现实地球的1年时间相同
解析(1)设小物体质量为m。
a.在北极地面G=F0,在北极上空高出地面h处
G=F1,
得=,h=1.0%R时,=≈0.98。
b.在赤道地面,小物体随地球自转做匀速圆周运动,受到万有引力和弹簧秤的作用力,有G-F2=mR,
得=1-。
(2)地球绕太阳做匀速圆周运动,受到太阳的万有引力。设太阳质量为MS,地球质量为M,地球公转周期为TE,有G=M,得TE==,其中ρS为太阳的密度。
由上式可知,地球公转周期TE仅与太阳的密度、地球公转轨道半径与太阳半径之比有关。因此“设想地球”的1年与现实地球的1年时间相同。
24.20xx·云南重点中学联考]有一质量为m的航天器靠近地球表面绕地球做匀速圆周运动(轨道半径等于地球半径),某时刻航天器启动发动机,向后喷气,在很短的时间内动能变为原来的,此后轨道变为椭圆,远地点与近地点距地心的距离之比是21,经过远地点和经过近地点的速度之比为12。已知地球半径为R,地球表面重力加速度为g。
(1)求航天器在靠近地球表面绕地球做圆周运动时的周期T;
(2)求航天器靠近地球表面绕地球做圆周运动时的动能;
(3)在从近地点运动到远地点的过程中航天器克服地球引力所做的功为多少?
答案(1)2π(2)mgR(3)mgR
解析(1)由牛顿第二定律mg=m2R,
解得T=2π。
(2)设航天器靠近地球表面绕地球做圆周运动时的速度为v1,由mg=m,解得Ek1=mv=mgR。
(3)由题意,喷气后航天器在近地点的动能为Ek2=Ek1=mgR,
航天器在远地点的动能为Ek3=Ek2=mgR。
由动能定理得航天器克服地球引力所做的功为
W=Ek2-Ek3=mgR。

文章来源:http://m.jab88.com/j/70896.html

更多

最新更新

更多