88教案网

高考物理知识点复习:力与运动的关系

经验告诉我们,成功是留给有准备的人。作为高中教师就要好好准备好一份教案课件。教案可以让学生们能够在上课时充分理解所教内容,帮助高中教师掌握上课时的教学节奏。关于好的高中教案要怎么样去写呢?以下是小编为大家精心整理的“高考物理知识点复习:力与运动的关系”,欢迎大家与身边的朋友分享吧!

20xx年高考物理知识点复习:力与运动的关系

一、部分物理量新解读
1质量m
360百科-质量,这个链接里的解释非常全面。
结论:除计算重力时应用引力质量概念外,在运动中的质量均为惯性质量。惯性质量相当于力转化成加速度的能力。惯性质量是运动物体固有的属性。属基本量
2速度v
运动本身唯一的表现形式,它只与物体本身现实状态有关,无需追述过程。V=s/t是导
出量。属第一种导出方式。
3位移s
运动的结果,它不由物体本身决定,而是取决于参照系和环境起始点。属基本量
4外力F
速度改变的外界条件,不是物体固有性质。属基本量
5时间t
不专属于运动学的一个量,并且也不属于物体。属基本量
6加速度
是外力经过惯性质量作用转化而成,虽然属于物体,但需要追述过程,且始终受外力影
响。质量相当于购物中的定价,是稳定的规则性的东西。而加速度相当于实际购买价,是受购买量影响的。a=v/t是导出量。属第一种导出方式。
二、变量的鉴定
标量:时间t(周期T)
矢量:位移s、速度v(平均速度、瞬时速度、角速度ω)、加速度a(平均加速度、瞬时加速度)要搞清哪些是基本量(如时间、位移、质量),哪些是定义量(如速度、加速度),哪些是组合量(如功、能、动量)
三、各变量之间的关系,按各基本运动类型分析即各种公式,在此省略。
1F与t的关系。Ft=冲量
2F与s的关系。Fs=功
3F与V的关系。P=mv动量
4F与a的关系。F=ma合外力,实际上的牛顿第二定律。

精选阅读

高考物理知识点复习:力的分类


20xx年高考物理知识点复习:力的分类

中学的力分为三类:引力(重力)、接触力(弹力)、阻力(摩擦力)下面分别介绍它们的特性
1引力:关键词:非接触、普遍性、吸引力、相互性、作用效果的巨大差异性,引力与两物体质量有关,随两物体间距离变化而变化。典型的以重力为例研究:
(1)非接触:
与接触力相区分,实际上是一种场力,以后学电场和磁场时体会一下不同。重力也可称重力场。
(2)普遍性:
任何两个可作为研究对象的物体(原话是质点或不考虑转动的均匀球体,应该是一个具体的描述,以后均用研究对象表示满足条件的情况),不论大小,都相互存在一个引力,称为万有引力。重力只是其中一种常见的而已,但地球可以作为研究对象吗?我们要注意,我们假设地球(或严格说起主要作用的地心)是均匀分布的一个小球,且我们每次都要强调,“不考虑地球自转”。少了这句话,概念就不严谨。
(3)吸引性:
两个物体总是相互吸引的,重力解释了地球上的物体为什么不漂浮在空中的道理
(4)相互性:
引力是相互的,满足牛顿第三定律。说明人对地球同样有引力。
(5)变化性:
两个研究对象A和B产生一个万有引力,而另外两个研究对象C和D产生另一个万有引力,它们是不同的,这与两对象质量构成有关;同样是A和B,随着吸引过程,距离发生变化,引力却逐渐变化,引出万有引力定律。
(6)作用效果的差异性:
一个人同时受到地球和另一个人的引力,地球吸引效果明显,而另一个人的吸引效果几乎看不到。用各国家之间的外交做比喻,国家的实力(相当于质量)、国家的地理位置(相当于距离)决定了外交的紧密程度(引力),实力弱的国家一定去依附实力强的国家,造成不同的作用效果。探究一下,一个对象同时受多个引力,会怎么样?可参考多国外交平衡来研究。
2接触力(弹力)关键词:接触、相互性、传递性、弹力、变形、弹性极限。以水平桌面B上静止的物体A为例
(1)接触:
两物体必须接触,接触的方式可以是面面接触、线面接触,也可以是点面、点线接触,总之要有接触。如此例物体平平放在桌面上,属于面接触。
(2)相互性:
两物体既可为施力体,也可为受力体,由于需选用研究对象为受力体,此例应选A为受力体。
(3)传递性:
虽然接触力必须是两个接触的物体,但我们却可以研究任意两个不直接接触的物体的力的作用效果,即在一个物体上施力,在不直接接触的另一个物体上的作用效果。因为力具有传递性,它们可以通过中间媒介联系起来,事实上,所有的机械都利用了这一特性。
(4)弹力:
发生形变的物体,要恢复原状,对与它接触的物体产生的作用力(书上原定义)。这个涵义包括三个方面:一是必须产生形变,二是能恢复原状,三是一定是另一个物体的施力。下面分别讲述
A一定是另一个物体的施力,因为力的定义已经说过,一个物体不能给自己施力。
B物体必须产生形变,两物体都可能发生形变,但我们只研究对受力体有影响的变形,我们分别研究,如果B产生变形,就可能直接对A产生弹力。如果A变形,A可能先作为施力体对B施加一个弹力,根据牛顿第三定律获得反作用力,得到向上的弹力。为什么是可能,而不是一定呢?看下条。
C形变必须能够恢复原状或有恢复原状的趋势,也就是说,一旦造成这个形变的力撤销,形变就能完全恢复原状,不满足这一条,弹力不能存在。以例说,物体A的质量不断加大,桌子的变形会越来越大,以致超过桌子的弹性限度,使桌子产生了永久变形甚至断裂。此时显然没有弹力可言。
3阻力(摩擦力)虽然有其他阻力,但这里只讨论摩擦力)。
摩擦力的定义如下(简略化,原定义的第一句、第二句完全可以不要):两个物体的接触面上所产生的阻碍两物体间相对运动或相对运动趋势的力称为摩擦力。
关键词:两个物体、接触、阻碍、相对运动、相对运动趋势
(1)两个物体:
不用说了,任何一个力都是两个物体之间的作用,看力的定义。
(2)接触:
既然两物体接触,就可能同时存在弹力。摩擦力一定总是沿着接触面的。
(3)阻碍:
自然是阻挡,目的是阻止相对运动,已经运动的,用动摩擦力设法使之停下来,没有动的,用静摩擦力让它动不了。方向自然是与运动或运动趋势的方向相反。
(4)相对运动:
是可见的,是动摩擦力产生的条件。
(5)相对运动趋势:
不可见,状态不好判断。有一个办法,假设接触面光滑(或称摩擦力为0)来判断物体是不是会在接触面上运动,如果会,就说明有相对运动的趋势,相对运动趋势的方向就和假设光滑时物体的运动方向相同,而静摩擦力的方向就和相对运动趋势方向相反。
4弹力和摩擦力的共性和区别
首先,它们都是抗拒改变的力,弹力试图恢复原来的现状,摩擦力试图阻止相对运动,但它们采取的策略是不同的。下面以军事为例,假设现有某部队共有10个团,现在受到外部强敌的侵入,摩擦力采取直接阻挡,寸步不让,对方出一个团兵力,我就出一个团兵力,出三个团我就出三个团,直到十个团的全部兵力耗尽,当敌人足够强时,抵抗失败,当敌人已经胜利后,就只有打打游击了。因此动摩擦力小于静摩擦力。而弹力则不同,遇到强敌,它是步步为营,某一团把守的地方让给敌人,同时将该处兵力进行集结,保存了力量。一旦敌方生变,即可反扑,一举恢复失地。但如果一味退却,连根据地都没有了,也就谈不上反击了,这就是弹性极限。
其次,它们都是后发力,即必须先有变形或趋势才能有弹力,以及有相对运动及趋势才能有摩擦力。
再次,抗拒是相对的,我们可以充分利用它们得到我们所需要的力。如我们走路时,脚向后蹬,给摩擦力一个错觉,我要向后运动,摩擦力上当了,它给了我们向前走的动力。同样,弹力也被我们应用在各种弹跳。
最后,一个特定的情况下,它们产生了联系,即滑动摩擦力=动摩擦系数x压力。
因此,弹力、摩擦力可以可以统称为接触力。但力的方向一个是平行于接触面,一个是垂直于接触面。
四、力的平衡
1平衡形式
(1)二力平衡,作用在同一物体上的两个力,大小相等,方向相反,且作用在同一条直线上。
(2)三力平衡,三个力组成首尾相接的三角形,即视为三力平衡。
(3)多力平衡,两种方法,一是逐步合成法,直到三力平衡;二是用正交分解法,水平和垂直方向分别平衡即可。
2总平衡与分向平衡
(1)总平衡:该物体总的合外力为0
(2)分向平衡:沿指定方向上的合力为0
(3)总合外力不为0时,与合外力垂直方向合力必为0,即该方向平衡。
3平衡的作用效果。
(1)运动状态不变。
(2)动量守恒。
五、定律
1胡克定律
弹簧发生形变时,弹力的大小F与弹簧的伸长量或缩短量x成正比,F=kx,k称为劲度系数。胡克定律最大的作用是使用弹簧测力计。
2牛顿第三定律
两个物体之间的作用力与反作用力总是大小相等,方向相反,且作用在同一条直线上。
注意其与平衡力的辩析。
3万有引力定律
自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物质的质量m1和m2的乘积成正比,与它们之间距离的平方成反比。自己写出公式
六、涉及的变量和常量
变量:力
常量:劲度系数k、动摩擦系数μ、弹性限度、引力常量G=?需记住
七、基本能力:
1受力分析
这是一个能力,需要不断的训练。
2正交分解法,数学知识中已经描述。
3非质点物质作用点的确定。如重心的确定。

高考物理知识点:力(常见的力、力的合成与分解)


俗话说,凡事预则立,不预则废。作为高中教师就要精心准备好合适的教案。教案可以让学生们能够更好的找到学习的乐趣,减轻高中教师们在教学时的教学压力。高中教案的内容要写些什么更好呢?小编收集并整理了“高考物理知识点:力(常见的力、力的合成与分解)”,欢迎大家与身边的朋友分享吧!

高考物理知识点:力(常见的力、力的合成与分解)

1)常见的力
1.重力G=mg(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2(k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

高考物理知识点复习:运动


20xx年高考物理知识点复习:运动

第三部分运动
一、运动的完整描述
在一定的时间内,外力作用于物体上,通过惯性质量转换成加速度使物体速度从v1变为v2,运动产生一定的位移。第一步是造成运动的原因,第三步是运动的结果,只有第二步才是运动本身。
速度是运动的唯一属性,外力是造成速度改变的最根本原因,质量作为实现手段,将外力转化为加速度,从而造成速度改变。位移是速度改变后的结果。所有物理量围绕速度v进行。
二、运动的基本种类(只记住这四种就行了)。
1匀速直线运动
2初速度为0的匀加速运动(自由落体运动即是其代表)
3末速度为0的匀减速运动(上抛运动即是其代表)
4匀速圆周运动
三、运动的合成与分解
1中学所研究的运动都可以看作以上基本运动种类的合成,也就是说,解题时我们可以把运动分解为基本类型。
2平抛运动是水平方向的匀速直线运动与垂直方向的自由落体运动合成。
3斜抛运动有两种分解方法:一是分两段,前一段由水平方向的匀速直线运动和垂直向上的上抛运动合成,后一段由水平方向的匀速直线运动和垂直向下的自由落体运动合成;第二种分解方法是:是沿初速度方向的匀速直线运动和平抛的合成
4初速度v0不为0的匀加速直线运动可以由初速度为0的匀加速直线运动和同一直线上以v0的匀速直线运动合成。
5末速度vt不为0的匀减速直线运动可以由末速度为0的匀减速直线运动和同一直线上以vt的匀速直线运动合成。
6天体运动及单摆的运动是圆周运动的变形。
注意:第4、5条绝不是多此一举,它在解决两个物体运动中脱开的问题时非常有用。
四、定律
牛顿第一定律,即惯性定律。

高考物理力与运动冲刺专题复习


古人云,工欲善其事,必先利其器。高中教师要准备好教案,这是教师工作中的一部分。教案可以更好的帮助学生们打好基础,帮助高中教师有计划有步骤有质量的完成教学任务。你知道怎么写具体的高中教案内容吗?为此,小编从网络上为大家精心整理了《高考物理力与运动冲刺专题复习》,欢迎大家与身边的朋友分享吧!

20xx届高考黄冈中学物理冲刺讲解、练习题、预测题01:第1专题力与运动(1)
知识网络
考点预测
本专题复习三个模块的内容:运动的描述、受力分析与平衡、牛顿运动定律的运用.运动的描述与受力分析是两个相互独立的内容,它们通过牛顿运动定律才能连成一个有机的整体.虽然运动的描述、受力平衡在近几年(特别是2008年以前)都有独立的命题出现在高考中(如2008年的全国理综卷Ⅰ第23题、四川理综卷第23题),但由于理综考试题量的局限以及课改趋势,独立考查前两模块的命题在20xx年高考中出现的概率很小,大部分高考卷中应该都会出现同时考查三个模块知识的试题,而且占不少分值.
在综合复习这三个模块内容的时候,应该把握以下几点:
1.运动的描述是物理学的重要基础,其理论体系为用数学函数或图象的方法来描述、推断质点的运动规律,公式和推论众多.其中,平抛运动、追及问题、实际运动的描述应为复习的重点和难点.
2.无论是平衡问题,还是动力学问题,一般都需要进行受力分析,而正交分解法、隔离法与整体法相结合是最常用、最重要的思想方法,每年高考都会对其进行考查.
3.牛顿运动定律的应用是高中物理的重要内容之一,与此有关的高考试题每年都有,题型有选择题、计算题等,趋向于运用牛顿运动定律解决生产、生活和科技中的实际问题.此外,它还经常与电场、磁场结合,构成难度较大的综合性试题.

一、运动的描述
要点归纳
(一)匀变速直线运动的几个重要推论和解题方法
1.某段时间内的平均速度等于这段时间的中间时刻的瞬时速度,即v-t=vt2.
2.在连续相等的时间间隔T内的位移之差Δs为恒量,且Δs=aT2.
3.在初速度为零的匀变速直线运动中,相等的时间T内连续通过的位移之比为:
s1∶s2∶s3∶…∶sn=1∶3∶5∶…∶(2n-1)
通过连续相等的位移所用的时间之比为:
t1∶t2∶t3∶…∶tn=1∶(2-1)∶(3-2)∶…∶(n-n-1).
4.竖直上抛运动
(1)对称性:上升阶段和下落阶段具有时间和速度等方面的对称性.
(2)可逆性:上升过程做匀减速运动,可逆向看做初速度为零的匀加速运动来研究.
(3)整体性:整个运动过程实质上是匀变速直线运动.
5.解决匀变速直线运动问题的常用方法
(1)公式法
灵活运用匀变速直线运动的基本公式及一些有用的推导公式直接解决.
(2)比例法
在初速度为零的匀加速直线运动中,其速度、位移和时间都存在一定的比例关系,灵活利用这些关系可使解题过程简化.
(3)逆向过程处理法
逆向过程处理法是把运动过程的“末态”作为“初态”,将物体的运动过程倒过来进行研究的方法.
(4)速度图象法
速度图象法是力学中一种常见的重要方法,它能够将问题中的许多关系,特别是一些隐藏关系,在图象上明显地反映出来,从而得到正确、简捷的解题方法.
(二)运动的合成与分解
1.小船渡河
设水流的速度为v1,船的航行速度为v2,河的宽度为d.
(1)过河时间t仅由v2沿垂直于河岸方向的分量v⊥决定,即t=dv⊥,与v1无关,所以当v2垂直于河岸时,渡河所用的时间最短,最短时间tmin=dv2.
(2)渡河的路程由小船实际运动轨迹的方向决定.当v1<v2时,最短路程smin=d;当v1>v2时,最短路程smin=v1v2d,如图1-1所示.
图1-1
2.轻绳、轻杆两末端速度的关系
(1)分解法
把绳子(包括连杆)两端的速度都沿绳子的方向和垂直于绳子的方向分解,沿绳子方向的分运动相等(垂直方向的分运动不相关),即v1cosθ1=v2cos_θ2.
(2)功率法
通过轻绳(轻杆)连接物体时,往往力拉轻绳(轻杆)做功的功率等于轻绳(轻杆)对物体做功的功率.
3.平抛运动
如图1-2所示,物体从O处以水平初速度v0抛出,经时间t到达P点.
图1-2
(1)加速度水平方向:ax=0竖直方向:ay=g
(2)速度水平方向:vx=v0竖直方向:vy=gt
合速度的大小v=v2x+v2y=v20+g2t2
设合速度的方向与水平方向的夹角为θ,有:
tanθ=vyvx=gtv0,即θ=arctangtv0.
(3)位移水平方向:sx=v0t竖直方向:sy=12gt2
设合位移的大小s=s2x+s2y=(v0t)2+(12gt2)2
合位移的方向与水平方向的夹角为α,有:
tanα=sysx=12gt2v0t=gt2v0,即α=arctangt2v0
要注意合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即θ≠2α,而是tanθ=2tanα.
(4)时间:由sy=12gt2得,t=2syg,平抛物体在空中运动的时间t只由物体抛出时离地的高度sy决定,而与抛出时的初速度v0无关.
(5)速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(g=ΔvΔt)相等,且必沿竖直方向,如图1-3所示.
图1-3
任意两时刻的速度与速度的变化量Δv构成直角三角形,Δv沿竖直方向.
注意:平抛运动的速率随时间并不均匀变化,而速度随时间是均匀变化的.
(6)带电粒子(只受电场力的作用)垂直进入匀强电场中的运动与平抛运动相似,出电场后做匀速直线运动,如图1-4所示.
图1-4
故有:y=(L′+L2)tanα=(L′+L2)qULdmv20.
热点、重点、难点
(一)直线运动
高考中对直线运动规律的考查一般以图象的应用或追及问题出现.这类题目侧重于考查学生应用数学知识处理物理问题的能力.对于追及问题,存在的困难在于选用哪些公式来列方程,作图求解,而熟记和运用好直线运动的重要推论往往是解决问题的捷径.
●例1如图1-5甲所示,A、B两辆汽车在笔直的公路上同向行驶.当B车在A车前s=84m处时,B车的速度vB=4m/s,且正以a=2m/s2的加速度做匀加速运动;经过一段时间后,B车的加速度突然变为零.A车一直以vA=20m/s的速度做匀速运动,从最初相距84m时开始计时,经过t0=12s后两车相遇.问B车加速行驶的时间是多少?
图1-5甲
【解析】设B车加速行驶的时间为t,相遇时A车的位移为:sA=vAt0
B车加速阶段的位移为:
sB1=vBt+12at2
匀速阶段的速度v=vB+at,匀速阶段的位移为:
sB2=v(t0-t)
相遇时,依题意有:
sA=sB1+sB2+s
联立以上各式得:t2-2t0t-2[(vB-vA)t0+s]a=0
将题中数据vA=20m/s,vB=4m/s,a=2m/s2,t0=12s,代入上式有:t2-24t+108=0
解得:t1=6s,t2=18s(不合题意,舍去)
因此,B车加速行驶的时间为6s.
[答案]6s
【点评】①出现不符合实际的解(t2=18s)的原因是方程“sB2=v(t0-t)”并不完全描述B车的位移,还需加一定义域t≤12s.
②解析后可以作出vA-t、vB-t图象加以验证.
图1-5乙
根据v-t图象与t围成的面积等于位移可得,t=12s时,Δs=[12×(16+4)×6+4×6]m=84m.
(二)平抛运动
平抛运动在高考试题中出现的几率相当高,或出现于力学综合题中,如2008年北京、山东理综卷第24题;或出现于带电粒子在匀强电场中的偏转一类问题中,如2008年宁夏理综卷第24题、天津理综卷第23题;或出现于此知识点的单独命题中,如2009年高考福建理综卷第20题、广东物理卷第17(1)题、2008年全国理综卷Ⅰ第14题.对于这一知识点的复习,除了要熟记两垂直方向上的分速度、分位移公式外,还要特别理解和运用好速度偏转角公式、位移偏转角公式以及两偏转角的关系式(即tanθ=2tanα).
●例2图1-6甲所示,m为在水平传送带上被传送的小物体(可视为质点),A为终端皮带轮.已知皮带轮的半径为r,传送带与皮带轮间不会打滑.当m可被水平抛出时,A轮每秒的转数最少为()
图1-6甲
A.12πgrB.gr
C.grD.12πgr
【解析】解法一m到达皮带轮的顶端时,若mv2r≥mg,表示m受到的重力小于(或等于)m沿皮带轮表面做圆周运动的向心力,m将离开皮带轮的外表面而做平抛运动
又因为转数n=ω2π=v2πr
所以当v≥gr,即转数n≥12πgr时,m可被水平抛出,故选项A正确.
解法二建立如图1-6乙所示的直角坐标系.当m到达皮带轮的顶端有一速度时,若没有皮带轮在下面,m将做平抛运动,根据速度的大小可以作出平抛运动的轨迹.若轨迹在皮带轮的下方,说明m将被皮带轮挡住,先沿皮带轮下滑;若轨迹在皮带轮的上方,说明m立即离开皮带轮做平抛运动.
图1-6乙
又因为皮带轮圆弧在坐标系中的函数为:当y2+x2=r2
初速度为v的平抛运动在坐标系中的函数为:
y=r-12g(xv)2
平抛运动的轨迹在皮带轮上方的条件为:当x0时,平抛运动的轨迹上各点与O点间的距离大于r,即y2+x2r
即[r-12g(xv)2]2+x2r
解得:v≥gr
又因皮带轮的转速n与v的关系为:n=v2πr
可得:当n≥12πgr时,m可被水平抛出.
[答案]A
【点评】“解法一”应用动力学的方法分析求解;“解法二”应用运动学的方法(数学方法)求解,由于加速度的定义式为a=ΔvΔt,而决定式为a=Fm,故这两种方法殊途同归.
★同类拓展1高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性.某滑雪轨道的完整结构可以简化成如图1-7所示的示意图.其中AB段是助滑雪道,倾角α=30°,BC段是水平起跳台,CD段是着陆雪道,AB段与BC段圆滑相连,DE段是一小段圆弧(其长度可忽略),在D、E两点分别与CD、EF相切,EF是减速雪道,倾角θ=37°.轨道各部分与滑雪板间的动摩擦因数均为μ=0.25,图中轨道最高点A处的起滑台距起跳台BC的竖直高度h=10m.A点与C点的水平距离L1=20m,C点与D点的距离为32.625m.运动员连同滑雪板的总质量m=60kg.滑雪运动员从A点由静止开始起滑,通过起跳台从C点水平飞出,在落到着陆雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿着陆雪道的分速度而不弹起.除缓冲外运动员均可视为质点,设运动员在全过程中不使用雪杖助滑,忽略空气阻力的影响,取重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8.求:
图1-7
(1)运动员在C点水平飞出时的速度大小.
(2)运动员在着陆雪道CD上的着陆位置与C点的距离.
(3)运动员滑过D点时的速度大小.
【解析】(1)滑雪运动员从A到C的过程中,由动能定理得:mgh-μmgcosαhsinα-μmg(L1-hcotα)=12mv2C
解得:vC=10m/s.
(2)滑雪运动员从C点水平飞出到落到着陆雪道的过程中做平抛运动,有:
x=vCt
y=12gt2
yx=tanθ
着陆位置与C点的距离s=xcosθ
解得:s=18.75m,t=1.5s.
(3)着陆位置到D点的距离s′=13.875m,滑雪运动员在着陆雪道上做匀加速直线运动.把平抛运动沿雪道和垂直雪道分解,可得着落后的初速度v0=vCcosθ+gtsinθ
加速度为:mgsinθ-μmgcosθ=ma
运动到D点的速度为:v2D=v20+2as′
解得:vD=20m/s.
[答案](1)10m/s(2)18.75m(3)20m/s
互动辨析在斜面上的平抛问题较为常见,“位移与水平面的夹角等于倾角”为着落条件.同学们还要能总结出距斜面最远的时刻以及这一距离.

二、受力分析
要点归纳
(一)常见的五种性质的力

产生原因
或条件方向大小

力由于地球的吸引而产生总是竖直向下(铅直向下或垂直水平面向下),注意不一定指向地心,不一定垂直地面向下G重=mg=GMmR2
地球表面附近一切物体都受重力作用,与物体是否处于超重或失重状态无关

力①接触
②弹性形变①支持力的方向总是垂直于接触面而指向被支持的物体
②压力的方向总是垂直于接触面而指向被压的物体
③绳的拉力总是沿着绳而指向绳收缩的方向F=-kx
弹力的大小往往利用平衡条件和牛顿第二定律求解

力滑



力①接触,接触面粗糙
②存在正压力
③与接触面有相对运动与接触面的相对运动方向相反f=μFN
只与μ、FN有关,与接触面积、相对速度、加速度均无关



力①接触,接触面粗糙
②存在正压力
③与接触面存在相对运动的趋势与接触面相对运动的趋势相反①与产生相对运动趋势的动力的大小相等
②存在最大静摩擦力,最大静摩擦力的大小由粗糙程度、正压力决定
续表
产生原因
或条件方向大小


力点电荷间的库仑力:真空中两个点电荷之间的相互作用作用力的方向沿两点电荷的连线,同种电荷相互排斥,异种电荷相互吸引F=kq1q2r2

电场对处于其中的电荷的作用正电荷的受力方向与该处场强的方向一致,负电荷的受力方向与该处场强的方向相反F=qE

力安培力:磁场对通电导线的作用力F⊥B,F⊥I,即安培力F垂直于电流I和磁感应强度B所确定的平面.安培力的方向可用左手定则来判断F=BIL
安培力的实质是运动电荷受洛伦兹力作用的宏观表现
洛伦兹力:运动电荷在磁场中所受到的力用左手定则判断洛伦兹力的方向.特别要注意四指应指向正电荷的运动方向;若为负电荷,则四指指向运动的反方向带电粒子平行于磁场方向运动时,不受洛伦兹力的作用;带电粒子垂直于磁场方向运动时,所受洛伦兹力最大,即f洛=qvB
(二)力的运算、物体的平衡
1.力的合成与分解遵循力的平行四边形定则(或力的三角形定则).
2.平衡状态是指物体处于匀速直线运动或静止状态,物体处于平衡状态的动力学条件是:F合=0或Fx=0、Fy=0、Fz=0.
注意:静止状态是指速度和加速度都为零的状态,如做竖直上抛运动的物体到达最高点时速度为零,但加速度等于重力加速度,不为零,因此不是平衡状态.
3.平衡条件的推论
(1)物体处于平衡状态时,它所受的任何一个力与它所受的其余力的合力等大、反向.
(2)物体在同一平面上的三个不平行的力的作用下处于平衡状态时,这三个力必为共点力.
物体在三个共点力的作用下而处于平衡状态时,表示这三个力的有向线段组成一封闭的矢量三角形,如图1-8所示.
图1-8
4.共点力作用下物体的平衡分析
热点、重点、难点
(一)正交分解法、平行四边形法则的应用
1.正交分解法是分析平衡状态物体受力时最常用、最主要的方法.即当F合=0时有:
Fx合=0,Fy合=0,Fz合=0.
2.平行四边形法有时可巧妙用于定性分析物体受力的变化或确定相关几个力之比.
●例3举重运动员在抓举比赛中为了减小杠铃上升的高度和发力,抓杠铃的两手间要有较大的距离.某运动员成功抓举杠铃时,测得两手臂间的夹角为120°,运动员的质量为75kg,举起的杠铃的质量为125kg,如图1-9甲所示.求该运动员每只手臂对杠铃的作用力的大小.(取g=10m/s2)
图1-9甲
【分析】由手臂的肌肉、骨骼构造以及平时的用力习惯可知,伸直的手臂主要沿手臂方向发力.取手腕、手掌为研究对象,握杠的手掌对杠有竖直向上的弹力和沿杠向外的静摩擦力,其合力沿手臂方向,如图1-9乙所示.
图1-9乙
【解析】手臂对杠铃的作用力的方向沿手臂的方向,设该作用力的大小为F,则杠铃的受力情况如图1-9丙所示
图1-9丙
由平衡条件得:
2Fcos60°=mg
解得:F=1250N.
[答案]1250N
●例4两个可视为质点的小球a和b,用质量可忽略的刚性细杆相连放置在一个光滑的半球面内,如图1-10甲所示.已知小球a和b的质量之比为3,细杆长度是球面半径的2倍.两球处于平衡状态时,细杆与水平面的夹角θ是[2008年高考四川延考区理综卷]()
图1-10甲
A.45°B.30°C.22.5°D.15°
【解析】解法一设细杆对两球的弹力大小为T,小球a、b的受力情况如图1-10乙所示
图1-10乙
其中球面对两球的弹力方向指向圆心,即有:
cosα=22RR=22
解得:α=45°
故FNa的方向为向上偏右,即β1=π2-45°-θ=45°-θ
FNb的方向为向上偏左,即β2=π2-(45°-θ)=45°+θ
两球都受到重力、细杆的弹力和球面的弹力的作用,过O作竖直线交ab于c点,设球面的半径为R,由几何关系可得:
magOc=FNaR
mbgOc=FNbR
解得:FNa=3FNb
取a、b及细杆组成的整体为研究对象,由平衡条件得:
FNasinβ1=FNbsinβ2
即3FNbsin(45°-θ)=FNbsin(45°+θ)
解得:θ=15°.
解法二由几何关系及细杆的长度知,平衡时有:
sin∠Oab=22RR=22
故∠Oab=∠Oba=45°
再设两小球及细杆组成的整体重心位于c点,由悬挂法的原理知c点位于O点的正下方,且acbc=mamb=3
即Rsin(45°-θ)∶Rsin(45°+θ)=1∶3
解得:θ=15°.
[答案]D
【点评】①利用平行四边形(三角形)定则分析物体的受力情况在各类教辅中较常见.掌握好这种方法的关键在于深刻地理解好“在力的图示中,有向线段替代了力的矢量”.
②在理论上,本题也可用隔离法分析小球a、b的受力情况,根据正交分解法分别列平衡方程进行求解,但是求解三角函数方程组时难度很大.
③解法二较简便,但确定重心的公式acbc=mamb=3超纲.
(二)带电粒子在复合场中的平衡问题
在高考试题中,也常出现带电粒子在复合场中受力平衡的物理情境,出现概率较大的是在正交的电场和磁场中的平衡问题及在电场和重力场中的平衡问题.
在如图1-11所示的速度选择器中,选择的速度v=EB;在如图1-12所示的电磁流量计中,流速v=uBd,流量Q=πdu4B.
图1-11图1-12
●例5在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成α角的直线MN运动,如图1-13所示.由此可判断下列说法正确的是()
图1-13
A.如果油滴带正电,则油滴从M点运动到N点
B.如果油滴带正电,则油滴从N点运动到M点
C.如果电场方向水平向右,则油滴从N点运动到M点
D.如果电场方向水平向左,则油滴从N点运动到M点
【解析】油滴在运动过程中受到重力、电场力及洛伦兹力的作用,因洛伦兹力的方向始终与速度方向垂直,大小随速度的改变而改变,而电场力与重力的合力是恒力,所以物体做匀速直线运动;又因电场力一定在水平方向上,故洛伦兹力的方向是斜向上方的,因而当油滴带正电时,应该由M点向N点运动,故选项A正确、B错误.若电场方向水平向右,则油滴需带负电,此时斜向右上方与MN垂直的洛伦兹力对应粒子从N点运动到M点,即选项C正确.同理,电场方向水平向左时,油滴需带正电,油滴是从M点运动到N点的,故选项D错误.
[答案]AC
【点评】对于带电粒子在复合场中做直线运动的问题要注意受力分析.因为洛伦兹力的方向与速度的方向垂直,而且与磁场的方向、带电粒子的电性都有关,分析时更要注意.本题中重力和电场力均为恒力,要保证油滴做直线运动,两力的合力必须与洛伦兹力平衡,粒子的运动就只能是匀速直线运动.
★同类拓展2如图1-14甲所示,悬挂在O点的一根不可伸长的绝缘细线下端挂有一个带电荷量不变的小球A.在两次实验中,均缓慢移动另一带同种电荷的小球B.当B到达悬点O的正下方并与A在同一水平线上,A处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B的电荷量分别为q1和q2,θ分别为30°和45°,则q2q1为[2007年高考重庆理综卷]()
图1-14甲
A.2B.3C.23D.33
【解析】对A球进行受力分析,如图1-14乙所示,
图1-14乙
由于绳子的拉力和点电荷间的斥力的合力与A球的重力平衡,故有:F电=mgtanθ,又F电=kqQAr2.设绳子的长度为L,则A、B两球之间的距离r=Lsinθ,联立可得:q=mL2gtanθsin2θkQA,由此可见,q与tanθsin2θ成正比,即q2q1=tan45°sin245°tan30°sin230°=23,故选项C正确.
[答案]C
互动辨析本题为带电体在重力场和电场中的平衡问题,解题的关键在于:先根据小球的受力情况画出平衡状态下的受力分析示意图;然后根据平衡条件和几何关系列式,得出电荷量的通解表达式,进而分析求解.本题体现了新课标在知识考查中重视方法渗透的思想.

三、牛顿运动定律的应用
要点归纳
(一)深刻理解牛顿第一、第三定律
1.牛顿第一定律(惯性定律)
一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.
(1)理解要点
①运动是物体的一种属性,物体的运动不需要力来维持.
②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因.
③牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例.牛顿第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系.
(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性.
①惯性是物体的固有属性,与物体的受力情况及运动状态无关.
②质量是物体惯性大小的量度.
2.牛顿第三定律
(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,可用公式表示为F=-F′.
(2)作用力与反作用力一定是同种性质的力,作用效果不能抵消.
(3)牛顿第三定律的应用非常广泛,凡是涉及两个或两个以上物体的物理情境、过程的解答,往往都需要应用这一定律.
(二)牛顿第二定律
1.定律内容
物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比.
2.公式:F合=ma
理解要点
①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失.
②方向性:a与F合都是矢量,方向严格相同.
③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力.
3.应用牛顿第二定律解题的一般步骤:
(1)确定研究对象;
(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;
(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余的力或加速度分解到两坐标轴上;
(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;
(5)统一单位,计算数值.
热点、重点、难点
一、正交分解法在动力学问题中的应用
当物体受到多个方向的外力作用产生加速度时,常要用到正交分解法.
1.在适当的方向建立直角坐标系,使需要分解的矢量尽可能少.
2.Fx合=max合,Fy合=may合,Fz合=maz合.
3.正交分解法对本章各类问题,甚至对整个高中物理来说都是一重要的思想方法.
●例6如图1-15甲所示,在风洞实验室里,一根足够长的细杆与水平面成θ=37°固定,质量m=1kg的小球穿在细杆上静止于细杆底端O点.现有水平向右的风力F作用于小球上,经时间t1=2s后停止,小球沿细杆运动的部分v-t图象如图1-15乙所示.试求:(取g=10m/s2,sin37°=0.6,cos37°=0.8)
图1-15
(1)小球在0~2s内的加速度a1和2~4s内的加速度a2.
(2)风对小球的作用力F的大小.
【解析】(1)由图象可知,在0~2s内小球的加速度为:
a1=v2-v1t1=20m/s2,方向沿杆向上
在2~4s内小球的加速度为:
a2=v3-v2t2=-10m/s2,负号表示方向沿杆向下.
(2)有风力时的上升过程,小球的受力情况如图1-15丙所示
图1-15丙
在y方向,由平衡条件得:
FN1=Fsinθ+mgcosθ
在x方向,由牛顿第二定律得:
Fcosθ-mgsinθ-μFN1=ma1
停风后上升阶段,小球的受力情况如图1-15丁所示
图1-15丁
在y方向,由平衡条件得:
FN2=mgcosθ
在x方向,由牛顿第二定律得:
-mgsinθ-μFN2=ma2
联立以上各式可得:F=60N.
【点评】①斜面(或类斜面)问题是高中最常出现的物理模型.
②正交分解法是求解高中物理题最重要的思想方法之一.
二、连接体问题(整体法与隔离法)
高考卷中常出现涉及两个研究对象的动力学问题,其中又包含两种情况:一是两对象的速度相同需分析它们之间的相互作用,二是两对象的加速度不同需分析各自的运动或受力.隔离(或与整体法相结合)的思想方法是处理这类问题的重要手段.
1.整体法是指当连接体内(即系统内)各物体具有相同的加速度时,可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,运用牛顿第二定律对整体列方程求解的方法.
2.隔离法是指当研究对象涉及由多个物体组成的系统时,若要求连接体内物体间的相互作用力,则应把某个物体或某几个物体从系统中隔离出来,分析其受力情况及运动情况,再利用牛顿第二定律对隔离出来的物体列式求解的方法.
3.当连接体中各物体运动的加速度相同或要求合外力时,优先考虑整体法;当连接体中各物体运动的加速度不相同或要求物体间的作用力时,优先考虑隔离法.有时一个问题要两种方法结合起来使用才能解决.
●例7如图1-16所示,在光滑的水平地面上有两个质量相等的物体,中间用劲度系数为k的轻质弹簧相连,在外力F1、F2的作用下运动.已知F1>F2,当运动达到稳定时,弹簧的伸长量为()
图1-16
A.F1-F2kB.F1-F22k
C.F1+F22kD.F1+F2k
【解析】取A、B及弹簧整体为研究对象,由牛顿第二定律得:F1-F2=2ma
取B为研究对象:kx-F2=ma
(或取A为研究对象:F1-kx=ma)
可解得:x=F1+F22k.
[答案]C
【点评】①解析中的三个方程任取两个求解都可以.
②当地面粗糙时,只要两物体与地面的动摩擦因数相同,则A、B之间的拉力与地面光滑时相同.
★同类拓展3如图1-17所示,质量为m的小物块A放在质量为M的木板B的左端,B在水平拉力的作用下沿水平地面匀速向右滑动,且A、B相对静止.某时刻撤去水平拉力,经过一段时间,B在地面上滑行了一段距离x,A在B上相对于B向右滑行了一段距离L(设木板B足够长)后A和B都停了下来.已知A、B间的动摩擦因数为μ1,B与地面间的动摩擦因数为μ2,且μ2>μ1,则x的表达式应为()
图1-17
A.x=MmLB.x=(M+m)Lm
C.x=μ1ML(μ2-μ1)(m+M)D.x=μ1ML(μ2+μ1)(m+M)
【解析】设A、B相对静止一起向右匀速运动时的速度为v,撤去外力后至停止的过程中,A受到的滑动摩擦力为:
f1=μ1mg
其加速度大小a1=f1m=μ1g
B做减速运动的加速度大小a2=μ2(m+M)g-μ1mgM
由于μ2>μ1,所以a2>μ2g>μ1g=a1
即木板B先停止后,A在木板上继续做匀减速运动,且其加速度大小不变
对A应用动能定理得:-f1(L+x)=0-12mv2
对B应用动能定理得:
μ1mgx-μ2(m+M)gx=0-12Mv2
解得:x=μ1ML(μ2-μ1)(m+M).
[答案]C
【点评】①虽然使A产生加速度的力由B施加,但产生的加速度a1=μ1g是取大地为参照系的.加速度是相对速度而言的,所以加速度一定和速度取相同的参照系,与施力物体的速度无关.
②动能定理可由牛顿第二定律推导,特别对于匀变速直线运动,两表达式很容易相互转换.
三、临界问题
●例8如图1-18甲所示,滑块A置于光滑的水平面上,一细线的一端固定于倾角为45°、质量为M的光滑楔形滑块A的顶端P处,细线另一端拴一质量为m的小球B.现对滑块施加一水平方向的恒力F,要使小球B能相对斜面静止,恒力F应满足什么条件?
图1-18甲
【解析】
先考虑恒力背离斜面方向(水平向左)的情况:设恒力大小为F1时,B还在斜面上且对斜面的压力为零,此时A、B有共同加速度a1,B的受力情况如图1-18乙所示,有:
图1-18乙
Tsinθ=mg,Tcosθ=ma1
解得:a1=gcotθ
即F1=(M+m)a1=(M+m)gcotθ
由此可知,当水平向左的力大于(M+m)gcotθ时,小球B将离开斜面,对于水平恒力向斜面一侧方向(水平向右)的情况:设恒力大小为F2时,B相对斜面静止时对悬绳的拉力恰好为零,此时A、B的共同加速度为a2,B的受力情况如图1-18丙所示,有:
图1-18丙
FNcosθ=mg,FNsinθ=ma2
解得:a2=gtanθ
即F2=(M+m)a2=(M+m)gtanθ
由此可知,当水平向右的力大于(M+m)gtanθ,B将沿斜面上滑,综上可知,当作用在A上的恒力F向左小于(M+m)gcotθ,或向右小于(M+m)gtanθ时,B能静止在斜面上.
[答案]向左小于(M+m)gcotθ或向右小于(M+m)gtanθ
【点评】斜面上的物体、被细绳悬挂的物体这两类物理模型是高中物理中重要的物理模型,也是高考常出现的重要物理情境.
四、超重与失重问题
1.超重与失重只是物体在竖直方向上具有加速度时所受支持力不等于重力的情形.
2.要注意飞行器绕地球做圆周运动时在竖直方向上具有向心加速度,处于失重状态.
●例9为了测量某住宅大楼每层的平均高度(层高)及电梯的运行情况,甲、乙两位同学在一楼电梯内用电子体重计及秒表进行了以下实验:质量m=50kg的甲同学站在体重计上,乙同学记录电梯从地面一楼到顶层的过程中,体重计的示数随时间变化的情况,并作出了如图1-19甲所示的图象.已知t=0时,电梯静止不动,从电梯内楼层按钮上获知该大楼共19层.求:
(1)电梯启动和制动时的加速度大小.
(2)该大楼的层高.
图1-19甲
【解析】(1)对于启动状态有:F1-mg=ma1
得:a1=2m/s2
对于制动状态有:mg-F3=ma2
得:a2=2m/s2.
(2)电梯匀速运动的速度v=a1t1=2×1m/s=2m/s
从图中读得电梯匀速上升的时间t2=26s
电梯运行的总时间t=28s
电梯运行的v-t图象如图1-19乙所示,
图1-19乙
所以总位移s=12v(t2+t)=12×2×(26+28)m=54m
层高h=s18=5418=3m.
[答案](1)2m/s22m/s2(2)3m

文章来源:http://m.jab88.com/j/68566.html

更多

最新更新

更多