88教案网

一次函数的应用

教案课件是老师不可缺少的课件,大家应该在准备教案课件了。只有规划好教案课件工作计划,才能使接下来的工作更加有序!你们会写多少教案课件范文呢?为满足您的需求,小编特地编辑了“一次函数的应用”,供您参考,希望能够帮助到大家。

教学课题:§5.4.2一次函数的应用
教学时间(日期、课时):
教材分析:

学情分析:

教学目标:
1、能利用一次函数及其图象解决简单的实际问题。
2、通过解决实际问题,进一步发展学生的数学应用能力。
3、通过函数来解决实际问题,使学生初步认识数学与人类生活的密切联系及对人类历史发展的作用,从而培养学生学习数学的兴趣,使他们能积极参与数学活动,进而更好地解决实际问题。

教学准备
《数学学与练》

集体备课意见和主要参考资料
页边批注
教学过程
一.新课导入
例题1、某居民小区按照分期付款的形式福利售房,政府给予一定的贴息。小明家购得一套现价为120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和,设剩余欠款年利率为0.4%。
1)若第x(x≥2)年小明家交付房款y元,求年付房款y(元)与x(年)的函数关系式;
2)将第三、第十年应付房款填入下表中:
年份第一年第二年第三年…第十年
交房款(元)300005360…

二.新课讲授
例题2、已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获总利润为y元。
(1)求y与x的函数关系式,并求出自变量的取值范围;
(2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?
例题3、某地长途汽车客运公司规定,旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)是行李重量x(公斤)的一次函数,其图象如图所示。
求(1)y与x之间的函数关系式
(2)旅客最多可免费携带行李的公斤数。
例题4、扬州火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物往广州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5吨万元,用一节B型货厢的运费是0.8万元。
(1)设运输这批货物的总运费为y(万元),用A型货的节数为x(节),试写出y与x之间的函数关系式;
(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35吨吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。
(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?
三.巩固练习
书:P203练习
四.小结
能利用一次函数及其图象解决简单的实际问题。
板书设计
作业设计
1)一根弹簧的原长为12cm,它能挂的重量不能超过15kg并且每挂重1kg就伸长12cm写出挂重后的弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()
A、y=12x+12(0<x≤15B、y=12x+12(0≤x<15
C、y=12x+12(0≤x≤15)D、y=12x+12(0<x<15
2)如图公路上有A、B、C三站,一辆汽车在上午8时从离A站10千米的P地出发向C站匀速前进,15分钟后离A站20千米。
(1)设出发x小时后,汽车离A站y千米,写出y与x之间的函数关系式;
(2)当汽车行驶到离A站150千米的B站时,接到通知要在中午12点前赶到离B站30千米的C站。汽车若按原速能否按时到达?若能,是在几点几分到达;若不能,车速最少应提高到多少?

扩展阅读

一次函数的应用(二)导学案


4.4一次函数的应用(二)
学习目标:
1、利用一次函数图象分析、解决简单实际问题,发展几何直观。
2、初步体会函数与方程的联系。
学习过程:
一、问题引入:
1、回顾一次函数的相关知识。
2、如何解答实际情景函数图象的信息?
3、一元一次方程与一次函数有什么联系?
二、基础训练:
1、看图填空:(1)当时,;
(2)直线对应的函数表达式是________________.
2、由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间(天)与蓄水量(万米3)的关系如下图所示,根据图象回答下列问题:
(1)水库干旱前的蓄水量是_______________
(2)干旱持续10天后,蓄水量为______________,连续干旱23天后呢?
(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱__________天后将发出严重干旱警报?
(4)按照这个规律,预计持续干旱___________天水库将干涸?
3、一元一次方程的解___________,一次函数,当时,相应的自变量的值为__________。
4、假定甲乙两人在一次赛跑中,路程S与时间t的关系如图所示,那么可以知道:这是一次______米赛跑;甲、乙两人中先到达终点的是______;乙在这次赛跑中的速度为______米/秒.
三、例题展示:
例:我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(如图),下图中,分别表示两船相对于海岸的距离(海里)与追赶时间(分钟)之间的关系.根据图象回答下列问题:
(1)哪条线表示B到海岸的距离与时间之间的关系?
(2)A,B哪个速度快?
(3)15分钟内B能否追上A?
(4)如果一直追下去,那么B能否追上A?
(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?
(6)与对应的两个一次函数与中,,的实际意义各是什么?可疑船只A与快艇B的速度各是多少?
三、课堂检测:
1、某地长途客运公司规定,旅客可随身携带一定质量的行李.如果超过规定,则需购买行李票,行李票费用y(元)是行李质量x(千克)的一次函数,其图象如图所示.
(1)写出y与x之间的函数关系式,并指出自变量x的取值范围.
(2)旅客最多可免费携带多少千克行李?

2、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下图所示.
(1)分别写出用租书卡和会员卡租书的金额y(元)与租书时间x(天)之间的函数关系式.
(2)两种租书方式每天租书的收费分别是多少元?(x≤100).

一次函数的图像


教学课题:§5.3.2一次函数的图像
教学时间(日期、课时):
教材分析:

学情分析:
教学目标:
1、理解一次函数及其图象的有关性质。
2、能熟练地作出一次函数的图象。
3、进一步培养学生数形结合的意识和能力。

教学准备
《数学学与练》

集体备课意见和主要参考资料
页边批注
教学过程
一.新课导入
上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。

二.新课讲授
(1)首先我们来研究一次函数的特例——正比例函数有关性质。
请大家在同一坐标系内作出正比例函数y=x,y=x,y=3x,y=-2x的图象。
图:
3、议一议
(1)正比例函数y=kx的图象有什么特点?

(2)你作正比例函数y=kx的图象时描了几个点?

(3)直线y=x,y=x,y=3x中,哪一个与x轴正方向所成的锐角最大?哪一与x轴正方向所成的锐角最小?

4、小结:正比例函数的图象有以下特点:
(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=kx的图象时,除原点外,还需找一点,一般找(1,k)点。
(3)在正比例函数y=kx图象中,当k0时,k的值越大,函数图象与x轴正方向所成的锐角越大。
(4)在正比例函数y=kx的图象中,当k0时,y的值随x值的增大而增大;当k0时,y的值随x值的增大而减小。

5、做一做
在同一直角坐标系内作出一次函数y=2x+6,y=-x,y=-x+6,y=5x的图象。

一次函数y=kx+b的图象的特点:分析:在函数y=2x+6中,k0,y的值随x值的增大而增大;在函数y=-x+6中,y的值随x值的增大而减小。

由上可知,一次函数y=kx+b中,y的值随x的变化而变化的情况跟正比例函数的图象的性质相同。
对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两个坐标轴相交。在作一次函数的图象时,也需要描两个点。一般选取(0,b),(-,0)比较简单。
6、想一想
(1)x从0开始逐渐增大时,y=2x+6和y=5x哪一个值先达到20?这说明了什么?

(2)直线y=-x与y=-x+6的位置关系如何?

(3)直线y=2x+6与y=-x+6的位置关系如何?

7、在同一直角坐标系内作出一次函数y=2x,y=2x+3,y=2x-3的图象。探索一次函数y=kx+b中,b的值对一次函数图象的影响.

三.巩固练习
1、正比例函数y=kx的图象的特点。

2、一次函数y=kx+b的图象的特点。

3、一次函数y=kx+b的k、b的值对一次函数图象的影响。y
①的图象在一、二、三象限0x

y
②的图象在一、三、四象限0x

y
③图象在一、二、四象限0x

y
④图象在二、三、四象限0x

四.小结
板书设计

作业设计
1、下列一次函数中,y的值随x值的增大而增大的是()
A、y=-5x+3B、y=-x-7C、y=-D、y=-+4

2、下列一次函数中,y的值随x值的增大而减小的是()
A、y=x-8B、y=-x+3C、y=2x+5D、y=7x-6

3、若一次函数的图象经过一、二、三象限,则应满足的条件是:
A.B.C.D.

4、如图,两个一次函数,它们在同一直角坐标系中大致的图象是:
yyyy
y1y1y2
0x0x0x0y1x
y2y2y1y2

A.B.C.D.

4.4一次函数的应用2导学案


课题:4.4一次函数的应用(2)
学习目标:1.能熟练求出一次函数的关系式
1.直线y=kx经过点A(-3,6),求这条直线的表达式

2.如图,求这条直线的表达式

3.已知一次函数y=kx(k≠0)
x…..-3-2-10123….
y…..6420-2-4-6…..

4.直线y=kx+b经过点A(-3,0)和点B(0,2),求这条直线的表达式.

5.如图,求直线AB对应的函数表达式.

6.已知一次函数y=kx+b(a,b是常数,且a≠0).x与y的部分对应值如下表:
x…..-10123….
y…..420-2-4…..
求关系式.

7.画出函数y=2x的图像.
8.画出函数y=2-2x的图像.
9.将直线y=2x向上平移两个单位长度,所得的直线是

【总结】
(1)先观察直线是否过坐标原点,
若过原点,则为正比例函数,可设其关系式为y=kx(k≠0);
若不过原点,则为一次函数,可设其关系式为y=kx+b(k≠0);
(2)然后再观察图象上有没有明确几个点的坐标.
对于正比例函数,只要知道一个点的坐标即;对于一次函数,则需要知道两个点的坐标;最后将各
点坐标分别代入y=kx或y=kx+b中,求出其中的k,b,即可确定出其关系式.

【晚间训练】
10.一个正比例函数的图象过点(-2,3)与(a,-3),求a值。

11.如图,直线是某正比例函数的图象,点是否在该函数图象上?

12.若一次函数的图象过点(-1,1),点是否在该函数的图象上?

13.一次函数y=kx+b的图象如图所示,看图填空:
(1)当x=0时,y=_________,当x=________时,y=0;
(2)k=_______,b=_________;
(3)当x=5时,y=__________,当y=30时,x=___________.

14、油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是().
A.B.C.D.

15、已知:一次函数的图象如图所示,
①求直线l的解析式;②求函数的图象与两坐标轴的交点坐标;
③判断点(3,4)是否在此函数的图象上;

16、从地面竖直向上抛射一个物体,在落体之前,物体向上的速度是运动时间
的一次函数。经测量,该物体的初始速度为25,2s后物体的速度为5。
(1)写出,t之间的关系式。
(2)经过多长时间后,物体将达到最高点?(此时物体的速度为0)

文章来源:http://m.jab88.com/j/63262.html

更多
上一篇:神秘的数组教案(苏科版) 下一篇:渔父

最新更新

更多