《一元一次不等式和一元一次不等式组》期末复习提纲
第一章一元一次不等式和一元一次不等式组
一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
能使不等式成立的未知数的值,叫做不等式的解.不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.
由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组
不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。
等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.
二、不等式的基本
性质1.不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。)
性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.
性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质1、若ab,则a+cb+c;2、若ab,c0则acbc若c0,则ac
不等式的其他性质:反射性:若ab,则b传递性:若ab,且bc,则ac
三、解不等式的步骤:
1、去分母;2、去括号;3、移项合并同类项;4、系数化为1。四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。五、列一元一次不等式组解实际问题的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。
六、常考题型:
1、求4x-67x-12的非负数解.2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.
3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。
第一章一元一次不等式和一元一次不等式组
●○教学目标
知识与技能
(1)运用问题的形式帮助学生整理全章的内容,建立知识体系。
(2)在独立思考的基础上,鼓励学生开展小组和全班的交流,使学生通过交流和反思加强对所学知识的理解和掌握,并逐步建立知识体系。
教学思考
通过问题情境的设立,使学生再现已学知识,锻炼抽象、概括的能力。解决问题
通过具体问题来体会知识间的联系和学习本章所采用的主要思想方法。
情感态度与价值观
通过独立思考获取学习的成功体验,通过小组交流培养合作交流意识,通过大胆发表自己的观点,增强自信心。
●○重点和难点
重点:对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
难点:建立起相关的知识体系。
●○课前准备
多媒体及课件
●○教学设计
教师活动学生活动
交代本节课的主要任务.
多媒体显示本章的知识框架图
以问题的形式引导学生思考本章内容
结合本章的知识框架图,统观全章的知识内容,积极思考并回答问题
问题1
不等式有哪些基本性质?它与等式的性质有什么相同和不同之处?
小组交流有关不等式和等式基本性质的知识点.
问题2
解一元一次不等式和解一元一次方程有什么异同?引导学生回忆解一元一次方程的步骤.比较两者之间的不同学生举例回答.
回答解一元一次方程的步骤
比较两者之间的差异
问题3
举例说明在数轴上如何表示一元一不等式(组)的解集分组竞赛.看哪一组出的题型好,全班一起解答.
问题4
说一说运用不等式解决实际问题的基本过程
回答教师提问
问题5
举例说明不等式、函数、方程的联系.引导学生回忆函数的有关内容.举例说明三者之间的关系.小组讨论,合作回答.函数性质、图象
小组交流、讨论不等式和函数、函数和方程等之间的关系,分别举例说明.
课堂小结理解不等式的重要作用
结合本章知识框架图,让学生谈本节课的收获
布置作业开动脑筋,勇于表达自己的想法.
回顾与思考2
●○教学目标
知识与技能
(1)在运用所学知识解决具体问题的同时,加深对全章知识体系理解。
(2)发展学生抽象能力、推理能力和有条理表达自己想法的能力.
教学思考:
体会数学的应用价值,并学会在解决问题过程中与他人合作.解决问题。在独立思考的基础上,积极参与问题的讨论,从交流中学习,并敢于发表自己的观点和主张,同时尊重与理解别人的观点。
情感态度与价值观:
进一步尝试学习数学的成功体验,认识到不等式是解决实际问题的重要工具,逐渐形成对数学活动积极参与的意识。
●○重点和难点
重点:
对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一次不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
难点:建立起相关的知识体系。
●○课前准备多媒体及课件
●○教学设计
教师活动学生活动
引导学生写出本章的知识框架图不等式─→不等式基本性质
↓↓
↓↓
实际应用←──────学生回答问题
安排一组练习让学生充分充分讨论解决.
1.解下列不等式,并把解集表示在数轴上
(1)2(-3+X)>3(X+2)(2)
(3)(4)
(5)求不等式5(X-2)≤28+2X的正整数解
2.已知函数Y=2X-4
(1)当X取何值时,Y>0(2)当X取何值时,Y=0(3)当X取何值时,Y<0
3.某工人制造机器零件,如果每天比预定多做一件,那么8天所做零件超过100件;如果每天比预定少做一件,那么8天所做零件不到90件,这个工人预定每天做几个零件?
课堂小结
布置作业
9.3一元一次不等式组(1)
一、学习目标:
1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;
2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;
3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。
二、学习难点:
1、重点:一元一次不等式组的解集和解法。
2、难点:一元一次不等式组解集的理解。
三、学习过程:
问题情境:
现有两根木条a和b,a长10cm,b长3cm.如果再找一根木条。,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?
如果设木条长xcm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10-3.类似于方程组引出一元一次不等式组的概念和记法.
探究新知:
解下列不等式组
解:解不等式(1),得x>1,
解不等式(2),得x>-4.
在同一条数轴上表示不等式(1)、(2)的解集如图:
所以,原不等式组的解是x>1
巩固新知:P140,1,P141,1
归纳总结:不等式解集取值法则“同大取大,同小取小,大小取中,矛盾无解”。若ab:
①当时,则不等式的公共解集为;②当时,不等式的公共解集为;
③当时,不等式的公共解集为;④当时,不等式组。
作业:1、P141,2
2、解不等式组:(1);(2)
(3);(4)
3、若不等式组无解,求m的取值范围。
4、解不等式组,并将解集在数轴上表示出来。
5、解不等式组:(1);(2)
6、解不等式:(1);(2)
★7、若关于x的不等式组的解集是,则下列结论正确的是()
A.B.C.D.
8、若方程组的解是负数,则的取值范围是()
A.B.C.D.无解
★9、若,则x为()
A.B.C.或D.
10、已知方程组的解为负数,求m的取值范围.
11、若解方程组得到的x,y的值都不大于1,求m的取值范围.
12、解不等式:★(1)(2)
★13、若不等式组的解集为,求的值.
14、已知方程组的解满足,求m的取值范围.
15、在中,已知,试求x的取值范围.
★16、解不等式组:(1)(2)
9.3一元一次不等式组(2)
一、学习目标:
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
二、学习难点:
1、重点:建立不等式组解实际问题的数学模型。
2、难点:正确分析实际问题中的不等关系,列出不等式组。
三、学习过程:
问题情境:
阅读教科书第139页例2。
(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
巩固新知:P140,2,P141,4,5,6,9
归纳总结:应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(与列方程组解应用题进行比较)。
作业:
1、已知方程组有正整数解,则k的取值范围是_________。
2、若不等式组无解,求a的取值范围。
3、当2(m-3)时,求关于x的不等式x-m的解集。
4、某学校为学生安排宿舍,现有住房若干间,若每间5人还有14人安排不下,若每间7人,则有一间还余一些床位,问学校有几间房可以安排学生住宿?可以安排住宿的学生多少人?
5、某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.设该商场准备了m件礼品,有x名顾客获赠,请回答下列问题:
(1)用含x的代数式表示m.
(2)求出该次活动中获赠顾客人数及所准备的礼品数。
6、乘某城市的一种出租汽车起价是10元(即行驶路程在5km以内都需付10元车费),达成或超过5km后,每增加1km,加价1.2元(不足1km部分按1km计).现在某人乘这种出租汽车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程大约是多少?
不等式与不等式组测试
一、选择题(每题4分,共32分)
1.不等式的解集是,那么a的取值范围是…………………()
A.B.C.D.
2.不等式的正整数解的个数是………………………………()
A.1B.2C.3D.4
3.把不等式组的解集表示在数轴上,正确的是…………………()
4.三个连续正整数的和小于15,这样的正整数组有几组…………………()
A.1B.2C.3D.4
5.若不等式组的解集是,则a的取值范围是…………………()
A.B.C.D.
6.足球比赛的记分规则是胜一场得3分,平一场得1分,负一场得0分.一个队共进行14场比赛,得分不少于20分,那么该队至少胜了………………()
A.3场B.4场C.5场D.6场
7.如果2m、m、1-m这三个数在数轴上所对应的点从左到右依次排列,那么m的取值范围…………………………………………………………………()
A.m>0B.m>C.m<0D.0<m<
8.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打………………()
A.6折B.7折C.8折D.9折
二、填空题(每题3分,共18分)
9.用不等式表示“x与8的差是非负数”_______________.
10.若代数式的值不小于0,则x的取值范围是_____________.
11.若不等式的解集是,则a的取值范围是_________.
12.若大于,则x的取值范围是_______.
13.如果关于x的方程的解是正数,则k的取值范围是_________.
14.若的解集是,则a的取值范围是_________.
三、解下列不等式(组),并把解集在数轴上表示出来(每题8分,共32分)
15.
四、解答下列各题(每题6分,共18分)
19.某公园的票价是:每人10元;一次购票满30张,每张可少收2元.某班有26名同学
去公园游玩,当班长准备好了钱到售票处买26张票时,爱动脑筋的数学课代表喊住班长,他提议买30张票,但有的同学不明白,明明只有26人,买30张票,岂不是“浪费”吗?咱们不妨帮他算一算.
按实际人数买票26张,要付260元;买30张票付8×30=240(元),显然买30张票合算.
我们自然想到这样的问题:如果某班的同学不超过30人去公园,那么去多少人买30张票合算呢?请你帮助解决这个问题.
20.按国家的有关规定,个人发表文章、出版图书获得的稿费的纳税计算方法是:⑴稿费不
高于800元的不纳税;⑵稿费高于800元又不高于4000元的应缴纳超过800元的那一部分的稿费的14%的税;⑶稿费高于4000元应缴纳全部稿费的11%的税.今王老师获得一笔稿费,并缴纳个人所得税不超过420元,问王老师这笔稿费最多是多少元?
21.七(2)班共有50名学生,老师安排每人制作一件型或型的陶艺品,学校现有甲
种制作材料36,乙种制作材料29,制作、两种型号的陶艺品用料情况如下表:
需甲种材料需乙种材料
1件型陶艺品0.90.3
1件型陶艺品0.41
(1)设制作型陶艺品件,求的取值范围;
(2)请你根据学校现有材料,分别写出七(2)班制作型和型陶艺品的件数.
文章来源:http://m.jab88.com/j/63018.html
更多