第一章勾股定理
总课时:6课时执笔人使用人:
备课时间:开学前第一周上课时间:第三周
课题:1、1探索勾股定理(第一课时)
教学目标
1、知识与技能目标
用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.
2、过程与方法
让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.
3、情感态度与价值观
在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习.
教学重点:了结勾股定理的由来,并能用它来解决一些简单的问题。
教学难点:勾股定理的发现
教学准备:多媒体课件
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、欣赏)
内容:2002年世界数学家大会在我国北京召开,
投影显示本届世界数学家大会的会标:
会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”
的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)
第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究)
1.探究活动一:
内容:(1)投影显示如下地板砖示意图,让学生初步观察:
(2)引导学生从面积角度观察图形:
问:你能发现各图中三个正方形的面积之间有何关系吗?
学生通过观察,归纳发现:
结论1以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
2.探究活动二:
由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?
(1)观察下面两幅图:
(2)填表:
A的面积
(单位面积)B的面积
(单位面积)C的面积
(单位面积)
左图
右图
(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)
(4)分析填表的数据,你发现了什么?
学生通过分析数据,归纳出:
结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
3.议一议:
内容:(1)你能用直角三角形的边长、、来表示上图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?
勾股定理(gou-gutheorem):
如果直角三角形两直角边长分别为、,斜边长为,那么
.
即直角三角形两直角边的平方和等于斜边的平方.
数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.
(在西方称为毕达哥拉斯定理)
第三环节:勾股定理的简单应用(7分钟,学生合作探究)
内容:
例如图所示,一棵大树在一次强烈台风中于离
地面10m处折断倒下,
树顶落在离树根24m处.大树在折断之前高多少?
(教师板演解题过程)
第四环节:巩固练习(10分钟,学生先独立完成,后全班交流)
1、列图形中未知正方形的面积或未知边的长度:
2、生活中的应用:
小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?
第五环节:课堂小结(3分钟,师生对答,共同总结)
内容:教师提问:
1.这一节课我们一起学习了哪些知识和思想方法?
2.对这些内容你有什么体会?请与你的同伴交流.
在学生自由发言的基础上,师生共同总结:
1.知识:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么.
2.方法:①观察—探索—猜想—验证—归纳—应用;
②面积法;
③“割、补、拼、接”法.
3.思想:①特殊—一般—特殊;
②数形结合思想.
第六环节:布置作业(2分钟,学生分别记录)
内容:
作业:1.教科书习题1.1;
2.阅读《读一读》——勾股世界;
3.观察下图,探究图中三角形的三边长是否满足.
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
板书设计:见电子屏幕
教学反思:
第一章勾股定理
总课时:6课时使用人:
备课时间:开学前第一周上课时间:第三周
课题:1、1探索勾股定理(第三课时)
教学目标:
知识与技能目标:
1.通过对几种常见的勾股定理验证方法的分析和欣赏,理解数学知识之间的内在联系;
2.经历综合运用已有知识解决问题的过程,加深对勾股定理、整式运算、面积等的认识。
过程与方法目标:
1.经历不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值;
2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间的内在联系。
3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题的方法与经验。
情感与态度目标:
1通过丰富有趣的拼图活动增强对数学学习的兴趣;通过探究总结活动,让学生获得成功的体验和克服困难的经历,增进数学学习的信心;在合作学习活动中发展学生的合作交流的意识和能力。
教学重点:
1.通过综合运用已有知识解决问题的过程,加深对勾股定理、整式运算、面积等的认识。
2.通过拼图验证勾股定理的过程,使学习获得一些研究问题与合作交流的方法与经验。
教学难点:
1.利用“五巧板”拼出不同图形进行验证勾股定理。
2.利用数形结合的方法验证勾股定理。
教学准备:
剪刀、双面胶、硬纸板、直尺(或三角板)、铅笔、多媒体课件。
三、教学过程
第一环节复习引入(3分钟,师生问答)
问题:1、勾股定理的内容?
2、在直角三角形中,已知:∠C=900a=5,b=12求c=?
第二环节验证过程的分析与欣赏(10分钟,分组合作交流)
内容:教师引导学生对收集的验证方法进行归类整理:
验证方法一:剪切、拼接。学生利用手中的纸板、剪刀、分组分工,合作进行,全班交流
验证方法二:制作“青朱出入图”,仿造教材12页。
第三环节尝试拼图,验证定理(12分钟,动手操作,合作探究)
内容:五巧板的制作
教师介绍“五巧板”的制作方法,学生拿出准备好的硬纸板制作“五巧板”。
步骤:做一个Rt△ABC,以斜边AB为边向内做正方形ABDE,并在正方形内画图,使DF⊥BI,CG=BC,HG⊥AC,这样就把正方形ABDE分成五部分①②③④⑤。
沿这些线剪开,就得了一幅五巧板。
1.利用五巧板拼“青朱出入图”。
2.取两幅五巧板,将其中的一幅拼成一个以C为边长的正方形,将另外一幅五巧板拼成两个边长分别为a、b的正方形,你能拼出来吗?
3.用上面的两幅五巧板,还可拼出其它图形,你能验证勾股定理吗?
4.利用五巧板还能通过怎样拼图来验证勾股定理?
可能的拼图方案:
第四环节练习提升()
1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c2
2.一个直角三角形的斜边为20cm,且两直角边长度比为3:4,求两直角边的长。
第五环节课堂小结(3分钟,师生对答,共同总结)
内容:教师提问:
1.这一节课我们一起学习了哪些知识和思想方法?
2.对这些内容你有什么体会?请与你的同伴交流.
第六环节布置作业
内容:
1、教材15页问题解决1
2、创新设计
要求:A组(学优生):1、2、
B组(中等生):1、2
C组(后三分之一生):2
第一章勾股定理
总课时:6课时
备课时间:开学前第一周上课时间:第三周
课题:1、1探索勾股定理(第二课时)
教学目标
1、知识与技能目标
掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.
2、过程与方法
在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.
3、情感态度与价值观
在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.
教学重点:用面积法验证勾股定理,应用勾股定理解决简单的实际问题.
教学难点:验证勾股定理.
教学准备:多媒体课件
教学过程:
第一环节:复习设疑,激趣引入(3分钟,问答式)
内容:教师提出问题:
(1)勾股定理的内容是什么?
(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.
第二环节:小组活动,拼图验证.(15分钟,学生合作,全班交流)
内容:活动1:教师导入,小组拼图.
教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.
活动2:层层设问,完成验证一.
学生通过自主探究,小组讨论得到两个图形:
图2
在此基础上教师提问:
(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);
(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×ab+c2.并得到)
从而利用图1验证了勾股定理.
活动3:自主探究,完成验证二.
教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?
第三环节:例题讲解初步应用(7分钟,学生合作探究)
内容:例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?
(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.
第四环节:拓展练习能力提升(10分钟,学生独立完成)
内容:
(1)教材P10练习题.
(2)一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?
(3)受台风麦莎影响,一棵高18m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?
第五环节:回顾反思提炼升华(3分钟,师生问答)
内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.
第六环节:布置作业,课堂延伸(2分钟,学生分别记录)
内容:教师布置作业
1.习题1.21,2,3
2.上网或查阅有关书籍,搜集至少1种勾股定理的其它证法,至少1个勾股定理的应用问题,一周后进行展评.
A组:完成1、2
B组:完成1
C组:完成1
板书设计:见电子屏幕
教学反思:
文章来源:http://m.jab88.com/j/62945.html
更多