一般给学生们上课之前,老师就早早地准备好了教案课件,到写教案课件的时候了。我们制定教案课件工作计划,才能更好地安排接下来的工作!你们清楚教案课件的范文有哪些呢?下面是小编精心为您整理的“特殊平行四边形”,仅供参考,欢迎大家阅读。
课题3.2特殊平行四边形(三)课型新授课
教学目标1.经历探索、猜想、证明的过程,进一步发展推理论证的能力。
2.能运用综合法证明正方形的性质定理和判定定理以及其他相关结论。
3.体会证明过程中所运用的归纳概括以及转化等数学思想方法。
教学重点掌握正方形的性质和判定以及证明方法。
教学难点运用综合法证明。
教学方法讲练结合法
教学后记
教学内容及过程备注
一、回顾交流
提问:1.正方形有哪些性质?
2.判定一个四边形是正方形有哪些方法?
学生回忆与交流,知识迁移。
二、小组合作
猜一猜
依次连接任意四边形各边的中点可以得到
一个平行四边形,那么,依次连接正方形各边
的中点能够得到一个怎样的图形呢?你能证明
所得出的结论吗?
学生分四人小组合作探究。
拓展:这个问题还有其他不同的证法吗?
三、合作交流
议一议
1.依次连接菱形或矩形四边的中点能得到一个什么图形?先猜一猜,再证明。
2.依次连接平行四边形四边中点呢?
3.依次连接四边形各边中点所得到的新四边形的形状与哪些线段有关系?有怎样的关系?
学生分四人小组先各自进行猜测,再进行交流,最后独立证明,上台演示。
做一做
在图中,ABCDXA表示一条环形高速
公路,X表示一座水库,B,C表示两
个大市镇,已知ABCD是一个正方形,
XAD是一个等边三角形,假设政府要
铺设两条输水管XB和XC,从水库向
B、C两个市镇供水,那么这两条水管
的夹角(即∠BXC)是多少度?
学生进行推理,发表自己的观点。
四、随堂练习
课本随堂练习1
五、课堂总结
正方形具有平行四边形、矩形、菱形的所有性质。
四边形→平行四边形→矩形→正方形
四边形→平行四边形→菱形→正方形
八年级数学下册《特殊的平行四边形》教案
教案课件是每个老师工作中上课需要准备的东西,大家正在计划自己的教案课件了。教案课件工作计划写好了之后,这样接下来工作才会更上一层楼!你们清楚教案课件的范文有哪些呢?以下是小编收集整理的“八年级数学下册《特殊的平行四边形》教案”,希望能为您提供更多的参考。
八年级数学下册《特殊的平行四边形》教案
教学目标:
1、进一步熟练运用平行四边形、矩形、菱形、正方形的性质和判定方法解决有关问题,清楚平行四边形、特殊平行四边形的特征以及彼此之间的关系。
2、能利用它们的性质和判定进行推理和计算。
3、使学生明确知识体系,提高空间想象能力,掌握基本的推理能力。
教学重点、难点:
重点:掌握特殊平行四边形性质与判定。
难点:能用特殊平行四边形的判定定理和性质定理进行几何证明和计算。
教学过程:
一、梳理知识:
1.特殊平行四边形的性质.
1)如图所示:在矩形ABCD中,对角线AC、BD相交于O点,已知AB=3cm,AC=5cm
则BC=_____cm,△BOC的周长=_____cm
2)如图所示:在菱形ABCD中,对角线AC、BD相交于O点,已知AB=5cm,AC=6cm,
则你能求出哪些线段的长度?
3)如图所示:在正方形ABCD中,对角线AC、BD相交于O点,已知OA=3cm,
则AB=_____cm,△BOC的周长=_______cm.
小结:特殊平行四边形的性质(PPT呈现)
2.特殊平行四边形的判定.
要使平行四边形ABCD成为矩形,需要增加的条件________.
要使平行四边形ABCD成为菱形,需要增加的条件________.
要使矩形ABCD成为正方形,需要增加的条件________.
要使菱形ABCD成为正方形,需要增加的条件________.
小结:特殊平行四边形的判定(PPT呈现)
二、深化提高:
1.已知:如图,在△ABC中,AB=AC,ADBC,垂足为点D,AN是△ABC外角CAM的平分线,CEAN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,
四边形ADCE是一个正方形?并给出证明.
2.如图,矩形ABCD的对角线AC、BD交于点O,
过点D作DP∥OC,过C点作CP∥DO,交DP于点P,
试判断四边形CODP的形状.
变式1:如果题目中的矩形变为菱形,(图一)结论应变为什么?
变式2:如果题目中的矩形变为正方形,(图二)结论又应变为什么?
3.如图,在中,是边的中点,分别是及其延长线上的点,.
(1)求证:.
(2)请连结,试判断四边形的形状,并说明理由.
(3)若四边形是菱形,判断的形状。
三、拓展提高
1.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、
△BCE、△ACF,
(1)四边形ADEF是什么四边形?并说明理由
(2)当△ABC满足什么条件时,四边形ADEF是菱形?
(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.
2.如图,已知⊿ABC是等腰三角形,顶角BAC=,(<60)D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.
(1)求证:BE=CD;
(2)若ADBC,试判断四边形BDFE的形状,并给出证明,
四、课堂小结
五、作业
1.如图,在正方形ABCD中,P为对角线BD上一点,
PEBC,垂足为E,PFCD,垂足为F。
求证:EF=AP
2.如图,正方形ABCD中,E是对角线BD上的点,且BE=AB,
EFBD,交CD于点F,DE=2.5cm,求CF的长。
3.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,
DHAB于H,求:DH的长。平行四边形的识别
22.2平行四边形的识别
教学目标
1.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生数学说理的习惯与能力。
2.在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的严谨性。
3.培养学生独立思考的习惯。
教学重点与难点
重点:探索平行四边形的识别方法。
难点:理解平行四边形的识别方法与应用。
教学准备方格纸、直尺、图钉、剪刀。
教学过程
一、提问。
1.平行四边形对边(),对角(),对角线()。
2.()是平行四边形。
二、探索,概括。
1.探索。
(1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的四边形。
步骤1:画一线段AB。
步骤2:平移线段AD到BC。
步骤3:连结AB、DC,得到四边形ABCD,其中AD∥BC,AD=BC。
(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。把两个四边形重合放在一起,重合的点分别记为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180°后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。
根据上述的过程,能否断定这个四边形是平行四边形?
2.概括。
我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到∠_BAC=∠ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到:
一组对边平行且相等的四边形是平行四边形。
(一步一步的引导学生得出结论,然后让学生用自己的语言叙述。)
三、应用举例。
例4如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE=CF,连结CE和AF,试说明四边形AFCE是平行四边形。
四、巩固练习。
如图,在平行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形。
五、拓展延伸。
在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?
六、看谁做的既快又正确?
七、课堂小结。
这节课你有什么收获?学到了什么?还有什么疑问吗?
八、布置作业。
补充习题 文章来源:http://m.jab88.com/j/56491.html
更多