88教案网

《乘法运算定律》教案设计

教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,才能促进我们的工作进一步发展!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“《乘法运算定律》教案设计”,供您参考,希望能够帮助到大家。

《乘法运算定律》教案设计

教学目标
知识目标:通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。
能力目标:渗透从特殊到一般,再由一般到特殊这种认识事物的方法。
培养学生观察、比较、抽象、概括等能力。
培养学生的数感和符号感。
情感目标:让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。
教学重难点
教学重点:引导学生通过观察、比较、抽象、概括出乘法分配律。
教学难点:应用乘法分配律解决实际问题。
教学工具
课件
教学过程
(一)生活引入,感知规律
1.在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。
2.爸爸和妈妈都对我们那么好,我们可以自豪的说“爸爸和妈妈都爱我”。
3.爸爸和妈妈都爱我,这句话还可以怎样说?
4.小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。
(二)开放探究,建构规律
1.情境引入
讲本学期开学,学校要为一、二、三年级更换桌椅情况:
(课件播放),提出问题,引发学生思考:
(1)请仔细观察大屏幕:
学校为一年级更换3套桌椅共需要多少钱?
学校为二年级更换5套桌椅共需要多少钱?
学校为三年级更换6套桌椅共需要多少钱?
(2)请同桌两个同学选一个问题在练习纸上用两种方法解答?
(3)说说你的解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。
(4)谁愿意接着汇报?
2.第一次发现
(1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。
小结:每一组算式的结果相等。
(2)我把这两个算式用等号来连接,行吗?
板书:(50+60)×3=50×3+60×3
(75+68)×5=75×5+68×5
(80+65)×6=80×6+65×6
3.第二次发现
(1)再观察这三组算式,还有什么发现吗?
(2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?
(3)每人举出一个例子,写在纸上,然后请同桌帮助验证
汇报交流:像这样的例子还能举出一些吗?举的完吗?
4.归纳总结:
(1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?
(2)请看大屏幕,你们的意思是这样吗?小声读读。
(3)有什么不懂的词吗?
5.个性化理解
(1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。
根据学生回答教师板书:
(甲+乙)×丙=甲×丙+乙×丙
(a+b)×c=a×c+b×c
(2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)
(3)对于乘法分配律用字母表示感觉怎么样?
(三)激活联系、应用规律。
1.请你把相等的两个算式连线。
(8+13)×441×(3+27)
3×(21+6)7×5+8
41×3+41×273×21+3×6
7×(5+8)8×4+13×4
(1)你为什么连得这么快?是计算了吗?
(2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?
2.根据乘法分配律填空:
(83+17)×3=□×□○□×□
10×25+4×25=(□○□)×□
(1)谁愿意展示一下你填写的。有不同意见吗?
(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?
(3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。
3.联系旧知、同已有知识建立联系。
谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。
现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?
(四)课堂小结:
今天,学习了乘法分配律,你有什么想法?
(五)板书设计:
乘法分配律
(50+60)×3=50×3+60×3
(75+68)×5=75×5+68×5
(80+65)×6=80×6+65×6
……
(a+b)×c=a×c+b×c

延伸阅读

四年级数学《乘法运算定律》优秀教学设计


四年级数学《乘法运算定律》优秀教学设计

教学目标:

知识目标:通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。

能力目标:渗透从特殊到一般,再由一般到特殊这种认识事物的方法。

培养学生观察、比较、抽象、概括等能力。

培养学生的数感和符号感。

情感目标:让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。

教学重难点

教学重点:引导学生通过观察、比较、抽象、概括出乘法分配律。

教学难点:应用乘法分配律解决实际问题。

教学工具

课件

教学过程

(一)生活引入,感知规律

1.在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。

2.爸爸和妈妈都对我们那么好,我们可以自豪的说“爸爸和妈妈都爱我”。

3.爸爸和妈妈都爱我,这句话还可以怎样说?

4.小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。

(二)开放探究,建构规律

1.情境引入

讲本学期开学,学校要为一、二、三年级更换桌椅情况:(课件播放),提出问题,引发学生思考:

(1)请仔细观察大屏幕:

学校为一年级更换3套桌椅共需要多少钱?

学校为二年级更换5套桌椅共需要多少钱?

学校为三年级更换6套桌椅共需要多少钱?

(2)请同桌两个同学选一个问题在练习纸上用两种方法解答?

(3)说说你的解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。

(4)谁愿意接着汇报?

2.第一次发现

(1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。

小结:每一组算式的结果相等。

(2)我把这两个算式用等号来连接,行吗?

板书:

(50+60)×3=50×3+60×3

(75+68)×5=75×5+68×5

(80+65)×6=80×6+65×6

3.第二次发现

(1)再观察这三组算式,还有什么发现吗?

(2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?

(3)每人举出一个例子,写在纸上,然后请同桌帮助验证

汇报交流:像这样的例子还能举出一些吗?举的完吗?

4.归纳总结:

(1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?

(2)请看大屏幕,你们的意思是这样吗?小声读读。

(3)有什么不懂的词吗?

5.个性化理解

(1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。

根据学生回答教师板书:

(甲+乙)×丙=甲×丙+乙×丙

(a+b)×c=a×c+b×c

(2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)

(3)对于乘法分配律用字母表示感觉怎么样?

(三)激活联系、应用规律。

1.请你把相等的两个算式连线。

(8+13)×441×(3+27)

3×(21+6)7×5+8

41×3+41×273×21+3×6

7×(5+8)8×4+13×4

(1)你为什么连得这么快?是计算了吗?

(2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?

2.根据乘法分配律填空:

(83+17)×3=□×□○□×□

10×25+4×25=(□○□)×□

(1)谁愿意展示一下你填写的。有不同意见吗?

(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?

(3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。

3.联系旧知、同已有知识建立联系。

谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。

小学数学四年级《乘法运算定律》教学设计


老师会对课本中的主要教学内容整理到教案课件中,大家应该开始写教案课件了。我们制定教案课件工作计划,才能对工作更加有帮助!你们会写多少教案课件范文呢?为了让您在使用时更加简单方便,下面是小编整理的“小学数学四年级《乘法运算定律》教学设计”,仅供您在工作和学习中参考。

小学数学四年级《乘法运算定律》教学设计

教学内容:人教版四年级数学下册第三单元P24--P26例5、例6、例7及相应练习。

教学目的:

1、使学生经历探索乘法交换律和乘法结合律的过程,理解并掌握规律,能用字母表示规律。

2、理解乘法分配律,掌握乘法分配律的成立条件,能初步应用乘法分配律解决简单的实际问题。

3、使学生学会运用乘法运算定律进行简便计算,体验运算律的应用价值,培养学生灵活选用计算方法的意识和能力。

4、培养学生观察、比较、分析、综合和归纳、概括等思维能力。教学重点:理解并掌握乘法运算定律,并会运用运算律进行简便计算。

教学难点:理解并掌握乘法分配律的含义。

教法与学法:

本课主要采用情境创设法和启发式谈话法,并辅以练习法等,以激发学生的主观能动性,让学生在自主探索和合作交流的过程中学习新知,真正体现学生的主体地位。

教学过程:

一、复习引入

1、同学们,我们学习了加法的哪些运算定律?下列等式应用了什么定律?

80+A=A+80

(48+36)+52=(48+52)+36

321+28+79+172=(321+79)+(28+172)

2、口算抢答比赛

12×525×435×2125×845×425×8

师:同学们看一看这些积有什么特点?(引导发现:当两个数相乘等于整十、整百、整千的数时会使计算更加简便。)

师:再看这道题。57×12+43×12

你还能快速算出结果吗?要想快速算出结果需要用一样数学法宝,那就是“乘法运算定律”。板书课题:乘法运算定律

今天我们就借助于植树活动探究乘法运算定律。

【分析:一组口算看似简单,其用意则不凡。前几题学生能很快说出得数,正在学生兴奋之时,出示57×12+43×12,学生都迟迟说不出或说不准,这样由“很快”突然到“很慢”,使学生产生了急于想知道得数的心理需要,就在这时,教师又故作玄虚地说:“需要用一样数学法宝……”短短几句,又一次把学生的求知欲望激发起来。】

二、探索新知

师:观察植树活动的主题图,说说你从图中都了解到了哪些信息?(学生可以复述图中的两段说明文字,也可用自己的话进行叙述。)师:根据图中带给我们的信息,可以提出哪些数学问题?(根据学生的回答,课件出示例1、例2、例3。)

1、学习例1。

1)思考:要解答负责挖坑、种树的一共有多少人?这个问题,需要知道哪些相关的信息?

预设:一共有25个小组,每组里4人负责挖坑、种树。

2)可以怎样列式?根据学生回答,板书4×2525×4

3)引导学生进行观察、比较。

两个算式结果是多少?(100人)那可以用什么符号来表示它们之间的关系?(等号)板书:4×25=25×4

4)你能再举出几个像这样的例子吗?根据学生的举例板书。

5)归纳总结。

同学们观察一下每组等号左右两边的算式,你发现了什么?

预设1:左边和右边的算式都是两个相同的数相乘,乘的结果都相等。预设2:左边算式和右边算式的两个因数位置不一样,都交换了。师:这就是乘法交换律。(课件出示:两个数相乘,交换两个因数的位置,积不变,这叫做乘法交换律。)

6)你能用字母表示乘法交换律吗?板书:a×b=b×a

请同学说说这里的a、b可以是哪些数?

7)其实,乘法交换律早就是我们的朋友了,还记得乘法口诀吗?生说一句乘法口诀,并根据这句口诀写出两道乘法算式。这里应用了什么?

2、学习例2.

接下来我们解决第二个问题:一共有25组,每组要植树5棵,每棵树要浇水2桶。一共要浇多少桶水?

1)师:请同学们认真读题,说说你的想法,你会先求什么,再求什么?

预设1:我先求一共种了多少棵树,再求一共要浇多少桶水。

预设2:我先求每组浇多少桶水,再求一共要浇多少桶水。

师:同学们想好以后就可以根据自己的想法列出综合算式并计算。(教师巡视,请两种不同算法的同学板演)

2)师:你们计算的结果是多少?(250桶。)

师:这两种列式的结果一样,所以我们可以写作:

(25×5)×2=25×(5×2)

你还能写出类似的算式吗?(学生举例)

3)师:从上面这些式子,你发现了什么?能试着用自己的话说一说吗?

预设:先乘前两个数,或者先乘后两个数,积不变。

师:是的,这就是乘法结合律。(板书,课件出示内容)

师:你能用字母表示出来吗?

预设:(a×b)×c=a×(b×c)

4)思考:比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?

预设:交换律是两数相加、相乘的规律;结合律是三数相加、相乘的规律,既可以从左往右一次计算,也可以先把后两个数相加(乘),和(积)不变。

3、学习例3

现在我们解决第三个问题:(课件出示)

一共有25组,每组里4个人挖坑种树,2个人抬水浇树。一共有多少

名同学参加了这次植树活动?

1)师:请同学们认真读题,说说你的想法,你会先求什么,再求什么?

预设1:我先求每组的人数,再求总人数。

预设2:我先求挖坑种树的人数,再求抬水浇树的人数,最后加起来。师:好,下面请同学们根据自己的想法列出综合算式并计算。

(教师巡视,请两种不同算法的同学板演)

师:同学们,你们的结果是多少?(150人。)

师:这两种列式的结果一样,所以我们可以写作:

(4+2)×25=4×25+2×25

师:等号两边的算式有什么相同和不同?

2)探究、验证。

出示:(出示一组算式)猜一猜:它们的结果会怎样?

(3+2)×4○3×4+2×4

(5+10)×2○5×2+10×2

师:中间可以用“=”来连接吗?(通过计算验证)

师:这两道算式相等是一种巧合还是有规律呢?请同学们从左到右

观察,你能发现什么规律吗?

3)小组讨论,全班总结。

预设:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再

把两个积相加,结果不变。

师:是的,这就是乘法分配律。(板书,课件出示内容)

师:你能用字母表示出来吗?

预设:(a+b)×c=a×c+b×c或a×(b+c)=a×b+a×c

三、巩固联系,提升认识。

同学们,乘法的三个定律你觉得学得怎样?老师这儿有些练习题,你敢接受挑战吗?

1.根据乘法运算定律,在里填上适当的数。

15×16=16×()

(25×7)×4=(×)×7

3×4×8×5=(3×4)×(×)

117×13+117×7=117×(+)

167×2+167×3+167×5=167×(+)

2、下面哪些算式是正确的?正确的画“√”,错误的画“×”。说一说你的判断理由。

56×(19+28)=56×19+28()

32×(8×2)=32×8+32×2()

1+2×3=1+3×2()

3、李阿姨购进了60套这种运动服,花了多少钱?

四、总结延伸。

同学们,你有什么收获对自己说?对同学有什么温馨提示?还有什么困惑?

四年级数学下册《运算定律》教学设计


老师会对课本中的主要教学内容整理到教案课件中,到写教案课件的时候了。将教案课件的工作计划制定好,才能够使以后的工作更有目标性!你们清楚有哪些教案课件范文呢?为满足您的需求,小编特地编辑了“四年级数学下册《运算定律》教学设计”,欢迎阅读,希望您能够喜欢并分享!

四年级数学下册《运算定律》教学设计
一、单元教学内容
运算定律P17P31
二、单元教学目标
1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。
4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。
5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。
6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。
7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。三、单元教学重、难点
1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
四、单元教学安排
运算定律10课时
第1课时加法交换律和结合律
一、教学内容:加法交换律和结合律P17P18
二、教学目标:
1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点
重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备
多媒体课件
五、教学过程
(一)导入新授
1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?
师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!
2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)
3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现
第一环节探索加法交换律
1、课件继续出示:李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?
学生口头列式,教师板书出示:40+56=96(千米)56+40=96(千米)
你能用等号把这两道算式写成一个等式吗?40+56=56+40
你还能再写出几个这样的等式吗?
学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。
2、观察写出的这些算式,你有什么发现?并用自己喜欢的方式表示出来。
全班交流。从这些算式可以发现:两个数相加,交换加数的位置,和不变。
可以用符号来表示:△+☆=☆+△;
可以用文字来表示:甲数十乙数=乙数十甲数。
3、如果用字母a、b分别表示两个加数,又可以怎样来表示发现的这个规律呢?
a+b=b+a
教师指出:这就是加法交换律。
4、初步应用:在()里填上合适的数。
37+36=36+()305+49=()+305b+100=()+b
47+()=126+()m+()=n+()13+24=()+()第二环节探索加法结合律
1、课件出示教材第18页例2情境图。
师:从例2的情境图中,你获得了哪些信息?
师生交流后提出问题:要求李叔叔三天一共骑了多少千米可以怎样列式?
学生独立列式,指名汇报。
汇报预设:
方法一:先算出第一天和第二天共骑了多少千米:
(88+104)+96
=192+96
=288(千米)
方法二:先算出第二天和第三天共骑了多少千米:
88+(104+96)
=88+200
=288(千米)
把这两道算式写成一道等式:
(88+104)+96=88+(104+96)
2、算一算,下面的○里能填上等号吗?
(45+25)+13○45+(25+13)(36+18)+22○36+(18+22)
小组讨论。先比较每组的两个算式,再比较这三组算式,在小组里说说你有什么发现。
集体交流,使学生明确:三个算式加数没变,加数的位置也没变,运算的顺序变了,它们的和不变。也就是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
3、如果用字母a、b、c分别表示三个加数,可以怎样用字母来表示这个规律呢?
(a+b)+c=a+(b+c)
教师指出:这就是加法结合律。
4、初步应用。
在横线上填上合适的数。
(45+36)+64=45+(36+)
(560+)+=560+(140+70)
(360+)+108=360+(92+)
(57+c)+d=57+(+)
(三)巩固发散
1、完成教材第18页做一做。
学生独立填写,组织汇报时,让学生说说是根据什么运算律填写的。
2、下面各等式哪些符合加法交换律,哪些符合加法结合律?
(1)470+320=320+470
(2)a+55+45=55+45+a
(3)(27+65)+35=27+(65+35)
(4)70+80+40=70+40+80
(5)60+(a+50)=(60+a)+50
(6)b+900=900+b
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:学习了加法交换律和结合律,并知道了如何用符号和字母来表示发现的规律。
(五)板书设计
加法交换律和结合律
加法交换律加法结合律
例1:李叔叔今天一共骑了多少千米?例2:李叔叔三天一共骑了多少千米?
40+56=96(千米)(88+104)+9688+(104+96)
56+40=96(千米)=192+96=88+200
=288(千米)=288(千米)
40+56=56+40(88+104)+96=88+(104+96)
a+b=b+a(a+b)+c=a+(b+c)
两个数相加,交换加数的位置,和不变。三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
六、教学后记

文章来源:http://m.jab88.com/j/60102.html

更多

最新更新

更多