教案课件是每个老师工作中上课需要准备的东西,大家在细心筹备教案课件中。必须要写好了教案课件计划,新的工作才会如鱼得水!你们知道多少范文适合教案课件?为了让您在使用时更加简单方便,下面是小编整理的“8.2积的乘方(2)导学案”,希望能对您有所帮助,请收藏。
课题:8.2积的乘方(2)姓名
【学习目标】
1.了解积的乘方性质,理解用符号表示积的乘方运算性质的意义,体会模型思想,发展符号意识.
2.会正确运用积的乘方的运算性质进行运算,并知道每一步运算的依据.
【学习重点】
探索积的乘方的运算性质,会正确运用此性质进行计算
【问题导学】
1、下列各式错误的是()
A.[(a+b)]=(a+b)B.[(x+y)]=(x+y)
C.[(x+y)]=(x+y)D.[(x+y)]=[(x+y)]
2、的值是()
A.B.C.D.
3、下列计算错误的个数是()
①;②;③;④
A.2个B.3个C.4个D.5个
4、=_______________,
5、长方形的长是4.2×10cm,宽为2.5×10cm,求长方形的面积.
【问题探究】
6、计算的结果是()
A.B.C.D.
7、已知P=(-ab),那么-P的正确结果是()
A.abB.-abC.-abD.-ab
8、的结果等于()
A.B.C.D.
9、化简(a2man+1)2(-2a2)3所得的结果为____。
10、已知xn=5,yn=3,求(x2y)2n的值。
问题评价】
11、计算(-4×10)×(-2×10)的正确结果是()
A.1.08×10B.-1.28×10C.4.8×10D.-1.4×10
若2816=2,求正整数m的值.
12、若N=,那么N等于()
A.B.C.D.
13、如果单项式与是同类项,那么这两个单项式的积()
A.B.C.D.
14、计算:(1)(-a3b6)2-(-a2b4)3(2)(-2x2y)3+8(x2)2(-x2)(-y3)
15、化简求值:(-3ab)-8(a)(-b)(-ab),其中a=1,b=-1.
16、已知,求的值
17、先阅读材料:“试判断20001999+19992000的末位数字”。
解:∵20001999的末位数字是零,而19992的末位数字是1,
则19992000=(19992)1000的末位数字是1,
∴20001999+19992000的末位数字是1。
同学们,根据阅读材料,你能否立即说出“20001999+19992000的末位数字”?
有兴趣的同学,判断21999+71999的末位数字是多少?
一般给学生们上课之前,老师就早早地准备好了教案课件,大家在认真准备自己的教案课件了吧。只有规划好新的教案课件工作,新的工作才会更顺利!你们知道哪些教案课件的范文呢?下面是小编精心为您整理的“初二数学14.1.2幂的乘方导学案”,大家不妨来参考。希望您能喜欢!
$14.1.2幂的乘方导学案
备课时间201(3)年(9)月(12)日星期(三)
学习时间201()年()月()日星期()
学习目标1.掌握幂的乘方法则,会运用法则进行计算。
2.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。
3.体味科学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神.
学习重点会进行幂的乘方的运算。
学习难点幂的乘方法则的总结及运用。
学具使用多媒体课件、小黑板、彩粉笔、三角板等
学习内容
学习活动设计意图
一、创设情境独立思考(课前20分钟)
1、阅读课本P96~97页,思考下列问题:
(1)幂的乘方法则是什么?如何推导?
(2)幂的乘方和同底数幂的乘法有什么区别和联系?
2、独立思考后我还有以下疑惑:
二、答疑解惑我最棒(约8分钟)
甲:
乙:
丙:
丁:同伴互助答疑解惑
$14.1.2幂的乘方导学案
学习活动设计意图
三、合作学习探索新知(约15分钟)
1、小组合作分析问题
2、小组合作答疑解惑
3、师生合作解决问题
【1】同底数幂的乘法的法则是什么?
【2】乘方的意义是什么?
【3】练习:
64表示_________个___________相乘.
(62)4表示_________个___________相乘.
a3表示_________个___________相乘.
(a2)3表示_________个___________相乘.
在这个练习中,要引导学生观察,推测(62)4与(a2)3的底数、指数。并用乘方的概念解答问题。
【4】(62)4=________×_________×_______×________
=__________(根据anam=an+m)
=__________
(33)5=_____×_______×_______×________×_______
=__________(根据anam=an+m)
=__________
(a2)3=_______×_________×_______
$14.1.2幂的乘方导学案
学习活动设计意图
=__________(根据anam=an+m)
=__________
(am)2=________×_________
=__________(根据anam=an+m)
=__________
(am)n=________×________×…×_______×_______
=__________(根据anam=an+m)
=__________
★即(am)n=______________(其中m、n都是正整数)
通过上面的探索活动,发现了什么?
四、归纳总结巩固新知(约15分钟)
1、知识点的归纳总结:
★幂的乘方,底数__________,指数__________.
(am)n=amn
2、运用新知解决问题:(重点例习题的强化训练)
【例1】:计算
(1)(103)5(2)(a4)4
(3)(am)2(4)-(x4)3
【练习】课本P97页练习
五、课堂小测(约5分钟)
$14.1.2幂的乘方导学案
学习活动设计意图
六、独立作业我能行
1、独立思考14.1.3积的乘方工具单
2、独立作业(练习篇)
七、课后反思:
1、学习目标完成情况反思:
2、掌握重点突破难点情况反思:
3、错题记录及原因分析:
自我评价
课上1、本节课我对自己最满意的一件事是:
2、本节课我对自己最不满意的一件事是:
作业独立完成()求助后独立完成()
未及时完成()未完成()
五、课堂小测(约5分钟)
(1)(103)3(2)[()3]4
(3)[(-6)3]4(4)(x2)5
(5)-(a2)7(6)-(a5)3
(7)(x3)4x2(8)2(x2)n-(xn)2
(9)[(x2)3]7(10)(a3)5
五、独立作业(约5分钟)
1、判断题,错误的予以改正。
(1)a5+a5=2a10()(2)(s3)3=x6()
(3)(-3)2(-3)4=(-3)6=-36()
(4)x3+y3=(x+y)3()
(5)[(m-n)3]4-[(m-n)2]6=0()
2、若(x2)n=x8,则m=_____________.
3、若[(x3)m]2=x12,则m=_____________。
4、计算5(P3)4(-P2)3+2[(-P)2]4(-P5)2
5、[(-1)m]2n+1m-1+02002―(―1)1990
6、若xmx2m=2,求x9m的值。
老师职责的一部分是要弄自己的教案课件,是认真规划好自己教案课件的时候了。对教案课件的工作进行一个详细的计划,接下来的工作才会更顺利!你们到底知道多少优秀的教案课件呢?下面是小编为大家整理的“2017年八年级数学上14.1.3积的乘方学案”,希望能对您有所帮助,请收藏。
14.1.3积的乘方文章来源:http://m.jab88.com/j/59725.html
更多