88教案网

八年级数学上册知识点归纳:多项式

教案课件是老师工作中的一部分,大家在着手准备教案课件了。将教案课件的工作计划制定好,这样我们接下来的工作才会更加好!你们知道适合教案课件的范文有哪些呢?下面的内容是小编为大家整理的八年级数学上册知识点归纳:多项式,欢迎阅读,希望您能够喜欢并分享!

八年级数学上册知识点归纳:多项式

多项式的概念:几个单项式的和叫做多项式。
多项式的项:在多项式中,每个单项式叫做多项式的项。其中不含字母的项叫做常数项。
多项式的次数:多项式中,次数最高的项的次数,叫做这个多项式的次数。
多项式注意:多项式中的符号,看作各项的性质符号。
多项式的排列:
1、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
在做多项式的排列的题时注意:
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a、先确认按照哪个字母的指数来排列。
b、确定按这个字母向里排列,还是向外排列。

1..多项式(x+3)a^y·b+1/2ab—5关于a、b的四次三项式,且最高次项的系数为-2,则x=__-5_y=_3___
2..多项式2/3xy+2xy—y^4—12x是_4__次_4__项式,它的最高次项是_2/3xy,—y^4__.
3..x的5倍与y的差的一半可表示为_5x+(1/2)y__;比x的四分之三大5的数是__(3/4)x+5__.
4..鸡兔同笼,鸡a只,兔b只,则头有__a+b_个,脚_2a+4b__只.
5..多项式2ab—0.25b—ab/2+a^4.
按a的降幂排列__a^4-a^3b^2+2a^2b-0.25b^3___按B的降幂排列_-0.25b^3-a^3b^2+2a^2b+a^4_____
6..若3x^ay^2a+1z—3/2x^4y^3+xy^5—8是八次四项式,求a的值.
a+2a=8a=8/3
7.某种商品每件进价p元,提高进价的30%定出价格,没件售价多少?后来商品库存积压,按定价的80%出售,每件还能盈利多少元?
售价(1+30%)P=1.3P
0.8*1.3p-p=0.04p
每件还能盈利0.04p元
8..某校修建一所多功能会议室,为了获得较佳的观看效果,第一排设计m个座位,后面每排比前一排多2个座位,已知此教室设计座位20排.
(1)用式子表示最后一排的座位数;
(2)若最后一排座位数为60个,请你设计第一排的座位数.
(1)最后一排的座位数为:m+(20-1)*2=m+38
(2)m+38=60
得m=11
所以第一排的座位数是11
9..多项式x^10—x^9y+x^8y—x^7y+…按此规律写出第八项和最后一项,并指出这个多项式是几次几项式.
第八项x^3y^7最后一项是y^10
这个多项式是10次11项式
10.求证2x-3y-1是多项式4x^2-4xy-3y^2+4x-10y-3的一个因式(关于因式分解的题)
A:4x^2-4xy-3y^2+4x-10y-3
=(2x+y)(2x-3y)-2x-y+6x-9y-3
=(2x+y)(2x-3y)-(2x+y)+3(2x-3y-1)
=(2x+y)(2x-3y-1)+3(2x-3y-1)
=(2x+3y+3)(2x-3y-1)
故……
11.要使多项式mx的立方+3nxy平方+2x立方-x平方y平方+y不含三次项,求2m+3n的值(转换合并问题)
A原式=mx^3+3nxy^2+2x^3-x^2y^2+y
合并同类项得
=(mx^3+2x^3)+3nxy^2-x^2y^2+y
=(m+2)x^3+3nxy^2-x^2y^2+y
其中三次项为(m+2)x^3,3nxy^2
要使原式不含有三次项,需让三次项的系数为0

m+2=0
m=-2
3n=0
n=0
那么2m+3n
=2×(-2)+3×0
=-4
12.概念题,(X+Y)Z是多项式吗?
13.已知关于x的多项式2x^3+x^2-12x+k因式分解后有一个因式为(2x+1).(1)求k的值;(2)将此多项式因式分解.
A(1)因为关于x的多项式2x^3+x^2-12x+k因式分解后有一个因式为(2x+1)
所以当2x+1=0即x=-1/2时,原式=0
将x=-1/2代入,原式=-1/4+1/4+6+k=0
6+k=0
k=-6
(2)当k=-6时,原式=2x^3+x^2-12x-6
=x^2(2x+1)-6(2x+1)
=(2x+1)(x^2-6)
14.x^4+7x^3+23x^2+27x-16=0怎么解?(多项式的乘除概念)[正能量句子 277433.cOm]

精选阅读

2017年八年级数学上14.1.4整式的乘法第3课时多项式乘以多项式学案


一般给学生们上课之前,老师就早早地准备好了教案课件,大家应该要写教案课件了。用心制定好教案课件的工作计划,才能更好的在接下来的工作轻装上阵!有哪些好的范文适合教案课件的?下面是小编为大家整理的“2017年八年级数学上14.1.4整式的乘法第3课时多项式乘以多项式学案”,欢迎您阅读和收藏,并分享给身边的朋友!

第3课时多项式乘以多项式
1.了解多项式与多项式相乘的法则.
2.运用多项式与多项式的乘法法则进行计算.
阅读教材P100~101“问题3和例6”,完成预习内容.

知识探究
1.(1)(-3ab)(-4b2)=________;
(2)-6x(x-3y)=________;
(3)(2x2y)3(-4xy2)=________;
(4)-5x(2x2-3x+1)=________.
2.(1)看图填空:大长方形的长是________,宽是________,面积等于________.
图中四个小长方形的面积分别是____________,由上述可得(a+b)(m+n)=____________.
(2)总结法则:多项式与多项式相乘,先用一个多项式的________乘另一个多项式的________,再把所得的________相加.
以数形结合的方法解决数学问题更直观.
自学反馈
计算:(1)(a-4)(a+10)=a______+a______+______a+______10=________;
(2)(3x-1)(2x+1);
(3)(x-3y)(x+7y);
(4)-3x+122x-13.
一般用第一个多项式的项去和另一个多项式的每一项相乘,以免漏乘或重复.
活动1小组讨论
例1(1)(x+1)(x2-x+1);
(2)(a-b)(a2+ab+b2).
解:(1)原式=x3-x2+x+x2-x+1=x3+1;
(2)原式=a3+a2b+ab2-a2b-ab2-b3=a3-b3.
项数太多,就必须按照一定顺序坚定不移地进行下去.
例2计算下列各式,然后回答问题:
(1)(a+2)(a+3)=a2+5a+6;
(2)(a+2)(a-3)=a2-a-6;
(3)(a-2)(a+3)=a2+a-6;
(4)(a-2)(a-3)=a2-5a+6.
从上面的计算中,你能总结出什么规律?
解:(x+m)(x+n)=x2+(m+n)x+mn.
这种找规律的问题要依照整体到部分的顺序,看哪些没变,哪些变了,是如何变的,从而找出规律.
活动2跟踪训练
1.先化简,再求值:(x-2y)(x+3y)-(2x-y)(x-4y),其中x=-1,y=2.
第二个多项式乘以多项式的结果先用括号括起来,再去括号,这样避免出现符号问题,乘完要合并同类项.
2.计算:
(1)(x-1)(x-2);(2)(m-3)(m+5);(3)(x+2)(x-2).
3.若(x+4)(x-6)=x2+ax+b,求a2+ab的值.
应先将等式两边计算出来,再对比各项,得出结果.
活动3课堂小结
在多项式的乘法运算中,必须做到不重不漏,并注意合并同类项.
【预习导学】
知识探究
1.(1)12ab3(2)-6x2+18xy(3)-32x7y5(4)-10x3+15x2-5x2.(1)a+bm+n(a+b)(m+n)am,bm,an,bnam+bm+an+bn(2)每一项每一项积
自学反馈
(1)a10-4-4a2+6a-40(2)6x2+x-1.(3)x2+4xy-21y2.(4)-6x2+2x-16.
【合作探究】
活动2跟踪训练
1.-61.2.(1)x2-3x+2.(2)m2+2m-15.(3)x2-4.
3.52.

八年级数学下册《多项式的四则运算》知识点分析


八年级数学下册《多项式的四则运算》知识点分析

单项式与多项式
仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式
单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数
当一个单项式的系数是1或-1时,“1”通常省略不写
一个单项式中,所有字母的指数的和叫做这个单项式的次数
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项
1多项式
有有限个单项式的代数和组成的式子,叫做多项式
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中最高次项的次数,就称为这个多项式的次数
2多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子
3多项式的恒等
对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)
性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)
性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等
4一元多项式的根
一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根
多项式的加、减法,乘法
1多项式的加、减法
2多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式
3多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加
常用乘法公式
公式I平方差公式
(a+b)(a-b)=a^2-b^2
两个数的和与这两个数的差的积等于这两个数的平方差
公式II完全平方公式
(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
两数(或两式)和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍
单项式的除法
两个单项式相除,就是它们的系数、同底数的幂分别相除,而对于那些只在被除式里出现的字母,连同它们的指数一起作为商的因式,对于只在除式里出现的字母,连同它们的指数的相反数一起作为商的因式
一个多项式处以一个单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

七年级数学《多项式乘多项式》教案分析


教案课件是老师工作中的一部分,大家在着手准备教案课件了。将教案课件的工作计划制定好,这样我们接下来的工作才会更加好!你们知道适合教案课件的范文有哪些呢?下面的内容是小编为大家整理的七年级数学《多项式乘多项式》教案分析,欢迎阅读,希望您能够喜欢并分享!

七年级数学《多项式乘多项式》教案分析

教学目标:1.掌握多项式乘多项式的运算法则
2.了解多项式乘多项式法则与单项式乘多项式法则的联系
3.能够活用多项式乘多项式法则进行化简运算
教学重点:熟悉掌握多项式乘多项式的运算法则
教学难点:能够活用多项式乘多项式法则进行化简运算
教学用具:几何画板课件
教学过程:
一、回顾旧识,导入新知
(1)完成讲义第一大题第一小题,让学生回忆上节课的内容单项式乘多项式的运算规律,同时投出同步课件
(2)完成讲义第一大题第二小题,让学生阅读问题后得出不同的解决办法,小组内讨论,同时投出同步课件。学生回答问题时,依照学生回答内容演示不同的解法
提出问题:几种解法的答案是否一致?(引导学生指出三种解法化简后答案一致)
学生自行阅读书本,结合例题,得出多项式乘多项式的运算法则,并且知道多项式乘多项式法则与单项式乘多项式法则的联系。
二、小试身手,热身练习
完成讲义例(1)(2)(3)。考虑到是新学的内容,题目难度有梯度,所以每完成一题就评讲一题,并在黑板上演示做法全过程
三、巩固练习,分层拔高
布置学生完成讲义第五大题1,2,3小题,并鼓励优生思考完成有难度的4、5小题。
四、评讲习题,课堂小结
评讲讲义第五大题1,2,3小题,小结本节课所学内容:1.学习了多项式乘多项式的运算法则2.知道多项式乘多项式法则与单项式乘多项式法则的联系。

文章来源://m.jab88.com/j/59663.html

更多

猜你喜欢

更多

最新更新

更多