88教案网

相似三角形的性质(1)教学案

教案课件是老师需要精心准备的,到写教案课件的时候了。在写好了教案课件计划后,才能够使以后的工作更有目标性!有没有好的范文是适合教案课件?以下是小编收集整理的“相似三角形的性质(1)教学案”,希望能为您提供更多的参考。

10、5相似三角形的性质(1)
教学目标:
1、探索相似三角形的性质,会运用相似三角形的性质解决有关的问题;2、发展学生合情推理,和有条理的表达能力
重点难点:相似三角形的性质,有条理的表达与推理
一预习展示:
1.如图,△ADE与△ABC有公共的顶点A,∠1=∠2,∠ABC=∠ADE,
求证:=,∠ADB=∠AEC你能从本题的证明中获得哪些结论?
2.所有的正方形都是相似形,
(1)若正方形的边长为1,则周长为4,面积为1;若正方形的边长为2,则周长为8,面积为4;若正方形的边长为3,则周长为12,面积为9;若正方形的边长为a,则周长为4a,面积为a2.这些正方形之间周长的比、面积的比与其边长的比之间有怎样的关系?
二、探索新知:
1.课本105页思考相似三角形周长的比等于相似比.
2.课本105页思考相似三角形面积的比等于相似比的平方.
例1.已知两个相似三角形的最短边分别是9cm和6cm,若它们的周长和是60cm,面积差是25cm2,则这两个三角形的周长和面积分别是多少?
2.如图,ABCD中,AB∥DC,对角线相交于O,CD=4,AB=12.
求:(1)的值;(2)的值.
3.如图,在锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别等于18和2,DE=2,求点B到直线AC的距离.

4.如图ABCD中,AD∥BC,(AD<BC)对角线相交于O,
若S△AOB=S△BOC,求△AOD和△BOC的周长之比.
5.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,△ABE和△ACF都是等边三角形,若AD∶BC=12∶25,且AB>AC
求:S△DBE∶S△DAF
三课堂作业:
1.若两个相似三角形的周长的比为4∶5,且周长之和为45,则这两个三角形的周长分别为.
2.如图,已知在△ABC中,DE∥BC,AD∶DB=2∶3,若S△ADE=4,
则S梯形DBCE=.
3.如图,点A1、A2、B1、B2、C1、C2分别是的△ABC边BC、CA、AB三等分点,若△ABC的周长为l,则六边形A1A2B1B2C1C2的周长为()
A.lB.3lC.2lD.l
4.如图,D为△ABC的BC边上一点,且∠BAD=∠C.求证:=

5.(培优)如图,在△ABC中,∠C=90°,P为AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC于E点,点E不与点C重合,
若AB=10,AC=8,设AP的长为x,四边形PECB的周长为y,
求y与x之间的函数关系式.

四、课后练习:
1.已知△ABC的三边长分别为3cm,6cm,8cm,另一个三角形和它相似,其中一边长为2cm,另一个三角形的周长为cm.
2.已知,如图D,E,F三点分别在△ABC的边AB,AC,BC上,且DE∥BC,DF∥AC,若S△ADE=9,S△BDF=16,则S四边形DFCE=.
3.有同一三角形地块的甲、乙两地图,比例尺分别为1∶200和1∶500,则甲地图和乙地图的相似比是,面积比是.
4.如图,在□ABCD中,E为DC上一点,AE交对角线BD于点F,若S△ADF=3,S△AFB=9,则S△DEF等于()A.B.1C.D.3
5.如图,在△ABC中,D为BC的中点,AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.
(1)求证:△ABC∽△FCD;
(2)若S△FCD=5,BC=10,求DE的长.
6.如图,在平面直角坐标系中,正方形AOCB的边长为6,O为坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,E是AB边上的一点,直线EC交y轴于F,且S△FAE∶S四边形AOCE=1∶3.
(1)求出点E的坐标;
(2)求直线EC的函数解析式.

相关推荐

相似三角形的性质


第二十一讲相似三角形的性质
两个相似三角形的对应角相等,对应边成比例,对应边之比称为它们的相似比,可以想到这两个相似三角形中其他一些对应元素也与相似比有一定的关系.
1.相似三角形对应高的比、对应中线的比,对应角平分线的比都等于相似比;
2.相似三角形周长之比等于相似比;
3.相似三角形面积之比等于相似比的平方.
以上诸多相似三角形的性质,丰富了与角、面积等相关的知识方法,开阔了研究角、面积等问题的视野.

例题求解
【例1】如图,梯形ABCD中,AD∥BC(ADBC),AC、BD交于点O,若S△OAB=S梯形ABCD,则△AOD与△BOC的周长之比是.
(浙江省绍兴市中考题)
思路点拨只需求的值,而题设条件与面积相关,应求出的值,注意图形中隐含的丰富的面积关系.
注相似三角形的性质及比例线段的性质,在生产、生活中有广泛的应用.
人类第一次运用相似原理进行测量,是2000多年前泰勒斯测金字塔的高度,泰勒斯是古希腊著名学者,有“科学之父”的美称.他把逻辑论证引进了数学,确保了数学命题的正确
性.使教学具有不可动摇的说明力.
【例2】如图,在平行四边形ABCD中.E为CD上一点,DE:CE=2:3,连结AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()
A.4:10:25B.4:9:25C.2:3:5D.2:5:25
(黑龙江省中考题)

思路点拨运用与面积相关知识,把面积比转化为线段比.
【例3】如图,有一批形状大小相同的不锈钢片,呈直角三角形,已知∠C=90°,AB=5cm,BC=3㎝,试设计一种方案,用这批不锈钢片裁出面积达最大的正方形不锈钢片,并求出这种正方形不锈钢片的边长.

思路点拨要在三角形内裁出面积最大的正方形,那么这正方形所有顶点应落在△ABC的边上,先画出不同方案,把每种方案中的正方形边长求出.
注本例是一道有实际应用背景的开放性题型,通过分析、推理、构思可能的方案,再通过比较、鉴别、筛选出最佳的设计方案,问题虽简单,但基本呈现了现实的生产中产生最佳设计方案的基本思路.
【例4】如图.在△ABC的内部选取一点P,过P点作3条分别与△ABC的三边平行的直线,这样所得的3个三角形、、的面积分别为4、9和49,求△ABC的面积.
(美国数学邀请赛试题)

思路点拔图中有相似三角形、平行四边形,通过相似三角形性质建立面积关系式,关键是恰当选择相似比,注意等线段的代换.追求形式上的统一.
【例5】如图,△ABC中.D、E分别是边BC、AB上的点,且∠l=∠2=∠3,如果△ABC、△EBD、△ADC的周长依次是、m1、m2,证明:.
(全国初中数学联赛试题)

思路点拨把周长的比用相应线段比表示,力求统一,得到同—线段比的代数式,通过代数变形证明.
注例4还隐舍着下列重要结论:
(1)△FDP∽△IPE∽△PHG∽△ABC;
(2);
(3).
学力训练
1.如图,已知DE∥BC,CD和BE相交于O,若S△DOE:S△COB=9:16,则AD:DB=.
2.如图,把正方形ABCD沿着对角线AC的方向移动到正方形ABCD的位置,它们的重叠部分(图中的阴影部分)的面积是正方形ABCD面积的一半,若AC=,则正方形移动的距离AA是.(江西省中考题)

3.若正方形的4个顶点分别在直角三角形的3条边上,直角三角形的两直角边的长分别为3cm和4cm,则此正方形的边长为.(武汉市中考题)
4.阅读下面的短文,并解答下列问题:
我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同.就把它们叫做相似体.
如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比:a:b,设S甲:S乙分别表示这两个正方体的表面积,则,又设V甲、V乙分别表示这两个正方体的体积,则.
(1)下列几何体中,一定属于相似体的是()
A.两个球体B.两个圆锥体C.两个圆柱体D.两个长方体
(2)请归纳出相似体的3条主要性质:
①相似体的一切对应线段(或弧)长的比等于;
②相似体表面积的比等于;
③相似体体积的比等于.(江苏省泰州市中考题)
5.如图,一张矩形报纸ABCD的长AB=acm,宽BC=b㎝,E、F分别是AB、CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a:b于()
A.:1B.1:C.:1D.1:(2004年南京市中考题)

6.如图,D为△ABC的边AC上的一点,∠DBC=∠A,已知BC=,△BCD与△ABC的面积的比是2:3,则CD的长是()
A.B.C.D.
7.如图,在正三角形ABC中,D、E分别在AC、AB上,且,AE=BE,则有()
A.△AED∽△BEDB.△AED∽△CBD
C.△AED∽△ABDD.△BAD∽△BCD
(2001年杭州市中考题)
8.如图,已知△ABC中,DE∥FG∥BC,且AD:FD:FB=1:2:3,则S△ADE:S四边形DFGE:S四边形FBCG等于()
A.1:9:36B.l:4:9C.1:8:27D.1:8:36
9.如图,已知梯形ABCD中,AD∥BC,∠ACD=∠B,求证:.

10.如图,在平行四边形ABCD中,过点B作BE⊥CD于E,连结AE,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD;
(2)若AB=4,∠BAE=30°,求AE的长;
(3)在(1)、(2)的条件下,若AD=3,求BF的长.(2003年长沙市中考题)
11.如图,在△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与点A、C不重合),Q点在BC上.
(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;
(3)试问:在AB上是否存在点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由,若存在,请求出PQ的长.(厦门市中考题)
12.如图,在△ABC中,AB=AC=,BC=2,在BC上有100个不同的点Pl、P2、…P100,过这100个点分别作△ABC的内接矩形P1E1F1G1,P2E2F2G2…P100E100F100G100,设每个内接矩形的周长分别为L1、L2,…L100,则L1+L2+…+L100=.(安徽省竞赛题)
13.如图,在△ABC中,DE∥FG∥BC,GI∥EF∥AB,若△ADE、△EFG、△GIC的面积分别为20cm2、45cm2、80cm2,则△ABC的面积为.

14.如图,一个边长为3、4、5厘米的直角三角形的一个顶点与正方形的顶点B重合,另两个顶点分别在正方形的两条边AD、DC上,那么这个正方形的面积是厘米2.
(“希望杯”邀请赛试题)
15.如图,正方形ABCD中,AE=EF=FB,BG=2CG,DE,DF分别交AG于P、Q,以下说法中,不正确的是()
A.AG⊥FDB.AQ:QG=6,7
C.EP:PD=2:11D.S四边形GCDQ:S四边形BGQF=17:9(2002年重庆市竞赛题)
16.如图,梯形ABCD中,AB∥CD,且CD=3AB,EF∥CD,EF将梯形ABCD分成面积相等的两部分,则AE:ED等于()
A.2B.C.D.

17.如图,正方形OPQR内接于△ABC,已知△AOR、△BOP和△CRQ的面积分别是S1=1,S2=3和S3=1,那么正方形OPQR的边长是()
A.B.C.2D.3
18.在一块锐角三角形的余料上,加工成正方形零件,使正方形的4个顶点都在三角形边上,若三角形的三边长分别为a、b、c,且a>b>cd,问正方形的2个顶点放在哪条边上可使加工出来的正方形零件面积最大?

19.如图,△PQR和△P′Q′R′,是两个全等的等边三角形,它们的重叠部分是一个六边形ABCDEF,设这个六边形的边长为AB=a1,BC=b1,CD=a2,DE=b2,EF=a3,FA=b3.求证:a1+a2+a3=b1+b2+b3.
20.如图,在△ABC中,AB=4,D在AB边上移动(不与A、B重合),DE∥BC交AC于E,连结CD,设S△ABC=S,S△DEC=S1.
(1)当D为AB中点时,求的值;
(2)若AD=x,,求与x之间的关系式,并指出x的取值范围;
(3)是否存在点D,使得成立?若存在,求出D点位置;若不存在,请说明理由.
(福州市中考题)
21.已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题:
(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交于点C,D.
①在图甲中,证明:PC=PD;
②在图乙中,点G是CD与OP的交点,且PG=PD,求△POD与△PDG的面积之比.
(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C、E,使以P、D、E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长.(绍兴市中考题)

相似三角形的性质(2)导学案


为了促进学生掌握上课知识点,老师需要提前准备教案,大家正在计划自己的教案课件了。只有规划好教案课件计划,这样我们接下来的工作才会更加好!有哪些好的范文适合教案课件的?急您所急,小编为朋友们了收集和编辑了“相似三角形的性质(2)导学案”,欢迎大家阅读,希望对大家有所帮助。

第十一课时相似三角形的性质(2)
教学目标:
1、运用类比的思想方法,通过实践探索得出相似三角形,对应线段(高、中线、角平分线)的比等于相似比;
2、会运用相似三角形对应高的比与相似比的性质解决有关问题;
3、经历“操作—观察—探索—说理”的数学活动过程,发展合情推理和有条理的表达能力。
教学重点:探索得出相似三角形,对应线段的比等于相似比
教学难点:利用相似三角形对应高的比与相似比的性质解决问题
教学设计:
一、情境创设
全等三角形的对应边上的高相等。相似三角形的对应边上的高又有怎样的关系呢?
二、探索活动:
1、如图,△ABC∽△A′B′C′,相比为k,AD与A′D′分别是△ABC和△A′B′C′的高,说明:AD/A′D′=k
由此引出:相似三角形对应高的比等于相似比
2、全等三角形的对应线段(中线、角平分线)有何关系?那么相似三角形的对应线段(中线、角平分线)又有怎样的关系呢?
3、小结相似三角形对应线段的关系。
三、例题教学
1、见课本P107的例题2
练习:见课本P1081、2、

2、如图:已知梯形上下底边的长分别为36和60,高为32,这个梯形两腰的延长线的交点到两底的距离分别是多少?

3、△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件EFGH,使正方形的一边HG在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是什么?

变题1:若四边形EFGH为矩形,且EF:EH=2:1,求矩形EFGH的面积。
变题2:已知:直角三角形的铁片ABC的两条直角边BC、AC的长分别为3和4,如图所示,分别采用(1)(2)两种方法,剪出一块正方形铁片,为使剪去正方形铁片后剩下的边角料较少,试比较哪种剪法较为合理,并说明理由。
4、如图,在△ABC中,AB=5,BC=4,AC=3,PQ∥AB,P点在AC上(与点A、C不重合),点Q在B、C上。
(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;
(3)在AB上是否存在点M,使得△PQM是等腰直角三角形?若存在,求出PQ的长。

相似三角形的判定1


相似三角形的判定(一)
教学目标:1.使学生在经历探究相似三角形判定方法的过程中,初步掌握相似三角形的判定定理,理解定理的证明方法,初步会运用定理来解决有关问题.
2.培养学生运用类比联想,猜想命题,再加以证明的研究问题的方法以及化归的思想.
3.通过观察、猜想、归纳、探究等数学活动,给学生创造成功机会,使他们爱学、乐学、会学,同时培养学生勇于探索、积极合作的精神.
教学重点和难点:
重点:相似三角形的判定定理的理解和初步应用;
难点:相似三角形的判定定理的证明.
教学方法:自主探究与小组合作相结合

教学过程设计
一、创设情境,提出问题
请学生出示课前按要求剪好的三角形,教师利
用已知三角形模板验证两个三角形是否全等的同时
请学生回答他裁剪方法的理论依据,借此复习全等三角形的判定方法.
1.SAS;2.ASA;3.AAS;4.SSS。
在此基础上教师要求学生动手剪一个三角形与已知三角形相似.
学生可能马上利用平行线截一个三角形,教师要求学生说出这种裁剪方法的依据——预备定理.在肯定答案的同时提出,那么如何判断三角形相似呢?目前你掌握的方法有哪些?1.相似三角形的预备定理;2.定义教师提出:判定两三角形相似时,定义的条件过多,预备定理的使用要求具有局限性,那么是否还有其它的判定方法呢?本节课我们继续研究:相似三角形的判定(二).你认为我们可以从哪儿入手研究呢?引导学生类比全等三角形的判定方法进行猜想.
学生类比联想,自主探究猜想相似三角形的判定方法:
1.利用投影展示一般三角形全等的判定定理
(1)ASA:
若∠A=∠A’,∠B=∠B’,,
则有△ABC≌△A’B’C’
(2)AAS:
若∠A=∠A’,∠B=∠B’,,则有△ABC≌△A’B’C’
3)SAS:
若,∠A=∠A’,则有△ABC≌△A’B’C’
4)SSS:
若,则有△ABC≌△A’B’C’
2.猜想相似三角形的判定方法
引导学生利用相似三角形与全等三角形的区别与联系,把上述全等三角形判定定理中比值为1改成比值为正数“k”,就可得到相似三角形的判定方法,得到猜想.
猜想一(类比角边角公理和角角边定理)
△ABC与△A’B’C’中,若∠A=∠A’,∠B=∠B’,则△ABC∽△A’B’C’.
猜想二(类比边角边公理)
△ABC与△A’B’C’中,若,∠A=∠A’,则有△ABC∽△A’B’C’.
猜想三(类比边边边公理)换元
△ABC与△A’B’C’中,若,则有△ABC∽△A’B’C’.
二、小组合作,探究新知
得到猜想后学生分组动手实践,进一步探究猜想的正确性。合作探究后,以猜想1为例分析证明思路.
猜想1.两角对应相等,两三角形相似。
已知:△ABC与△A’B’C’中,
∠A=∠A’,∠B=∠B’。
求证:△ABC∽△A’B’C’。
启发学生结合刚才的动手实践思考,若平移△A’B’C’得到△ADE,则可转化为预备定理的形式.如何实现平移是关键,在此可让学生集思广益阐述观点.
方法之一:由∠A=∠A’,∠B=∠B’,能实现上述平移.
证明法一:在AB上截取AD=A’B’,且过点D作DE∥BC交AC于E.
∴∠ADE=∠B,∵∠B=∠B’
∴∠B’=∠ADE
又∵∠A=∠A’,AD=A’B’
∴△ADE≌△A’B’C’(ASA)
又∵DE∥BC
∴△ADE∽△ABC,∴△ABC∽△A’B’C’
法二:截取AD=A’B’且作∠ADE=∠B’交AC于E.
证法:略
师生共同总结实现上述化归的思路:
(1)利用添加辅助线的方法将问题化归为相似三角形的预备定理(图中,DE∥BC则△ADE∽△ABC).
(2)利用平移变换将证明三角形相似转化为证明三角形全等(图中△ADE≌△A’B’C’).
利用上述思路,证明猜想,得到判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简记:两角对应相等,两三角形相似.
判定定理2,3的证明过程由学生仿照定理1的证明完成.请二人上黑板板演.
猜想证明完毕,让学生观察、对比三个定理的证明方法,在证明过程中是否有共性?证法的本质是什么?让学生深入思考,感受三个判定定理的证法本质是一样的,即:将相似三角形的判定利用平移的方法,化归为预备定理的形式,最终转化为判断两个三角形全等,区别就在于全等的证明方法不同.
请学生分别说出三个定理的推理形式且提出:如果不是“夹角”,结论是否仍然成立,请学生分析并举出反例.
在△ABC与△A’B’C’中,
已知∠B=∠B’,
但△ABC不相似于△A’B’C’

三、实战演练,巩固新知
例在△ABC和△DEF中,
∠A=40,∠B=80,∠E=80,∠F=60.
求证:△ABC∽△DEF.
思考题:
如图,已知,在△ADC和△ACB中,
∠A=∠A,请你添加一个条件,
使△ADC∽△ACB。

四、复习小结,归纳新知
师生共同回忆并总结:
今天你有什么收获?
新知的获得采用了什么方法?——类比、转化
你还有困难与困惑吗?
教师根据学生的回答总结类比学习方法及转化思想的重要意义.

五、作业
整理课上定理证明.

六、板书设计:

文章来源:http://m.jab88.com/j/59660.html

更多

最新更新

更多