88教案网

八年级下册《二次根式》第2课时教案设计

作为老师的任务写教案课件是少不了的,大家在认真写教案课件了。我们制定教案课件工作计划,就可以在接下来的工作有一个明确目标!有多少经典范文是适合教案课件呢?以下是小编收集整理的“八年级下册《二次根式》第2课时教案设计”,但愿对您的学习工作带来帮助。

八年级下册《二次根式》第2课时教案设计M.jaB88.COM

一、内容和内容解析
1.内容
二次根式的性质。
2.内容解析
本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.
对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.
二、目标和目标解析
1.教学目标
(1)经历探索二次根式的性质的过程,并理解其意义;
(2)会运用二次根式的性质进行二次根式的化简;
(3)了解代数式的概念.
2.目标解析
(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;
(2)学生能灵活运用二次根式的性质进行二次根式的化简;
(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.
三、教学问题诊断分析
二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.
本节课的教学难点为:二次根式性质的灵活运用.
四、教学过程设计
1.探究性质1
问题1你能解释下列式子的含义吗?
,,,.
师生活动:教师引导学生说出每一个式子的含义.
【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.
问题2根据算术平方根的意义填空,并说出得到结论的依据.
;;;.
师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.
问题3从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的性质:(≥0).
【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.
例2计算
(1);(2).
师生活动:学生独立完成,集体订正.
【设计意图】巩固二次根式的性质1,学会灵活运用.
2.探究性质2
问题4你能解释下列式子的含义吗?
,,,.
师生活动:教师引导学生说出每一个式子的含义.
【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.
问题5根据算术平方根的意义填空,并说出得到结论的依据.
=,=,=,=.
师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.
问题6从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的性质:(≥0)
【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.
例3计算
(1);(2).
师生活动:学生独立完成,集体订正.
【设计意图】巩固二次根式的性质2,学会灵活运用.
3.归纳代数式的概念
问题7回顾我们学过的式子,如,,,,,,,(≥0),这些式子有哪些共同特征?
师生活动:学生概括式子的共同特征,得出代数式的概念.
【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.
4.综合运用
(1)算一算:
;;;.
【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.
(2)想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?
【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.
(3)谈一谈你对与的认识.
【设计意图】加深学生对二次根式性质的理解.
5.总结反思
(1)你知道了二次根式的哪些性质?
(2)运用二次根式性质进行化简需要注意什么?
(3)请谈谈发现二次根式性质的思考过程?
(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.
6.布置作业:教科书习题16.1第2,4题.
五、目标检测设计
1.;;.
【设计意图】考查对二次根式性质的理解.
2.下列运算正确的是()
A.B.C.D.
【设计意图】考查学生运用二次根式的性质进行化简的能力.
3.若,则的取值范围是.
【设计意图】考查学生对一个数非负数的算术平方根的理解.
4.计算:.
【设计意图】考查二次根式性质的灵活运用.

延伸阅读

八年级数学下册《二次根式的乘除(第2课时)》教学设计


八年级数学下册《二次根式的乘除(第2课时)》教学设计

一、内容和内容解析

1.内容

二次根式的除法法则及其逆用,最简二次根式的概念。

2.内容解析

二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.

基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.

二、目标和目标解析

1.教学目标

(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

(2)会进行简单的二次根式的除法运算;

(3)理解最简二次根式的概念.

2.目标解析

(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;

(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.

(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.

三、教学问题诊断分析

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.

本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.

四、教学过程设计

1.复习提问,探究规律

问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.

2.观察思考,理解法则

问题2教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:

.

问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了.

【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误.

问题4对例题的运算你有什么看法?是如何进行的?

师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数.

【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算.

问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即.利用该性质可以进行二次根式的化简.

3.例题示范,学会应用

例1计算:(1);(2);(3).

师生活动提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?

再提问:第(2)用什么方法计算更简捷?第(3)题根号下含字母在移出根号时应注意什么?

【设计意图】通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,

问题5你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?

师生活动学生总结,师生共同补充、完善。要总结出:

(1)这些根式的被开方数都不含分母;

(2)被开方数中不含能开得尽方的因数或因式;

(3)分母中不含根号;

【设计意图】引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式.

问题6课件展示一组二次根式的计算、化简题.

【设计意图】让学生用总结出的结论进行二次根式的运算.

4.巩固概念,学以致用

例2教材第9页例7.

师生活动提问本题是以长方形面积为背景的数学问题,二次根式的除法运算在此发挥什么作用?

再提问章引言中的问题现在能解决了吗?

【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。

5.归纳小结,反思提高

师生共同回顾本节课所学内容,并请学生回答以下问题:

(1)除法运算的法则如何?对等式中字母的取值范围有何要求?

(2)你能说明最简二次根式需要满足的条件吗?

6.布置作业:教科书第10页练习第1,2,3题;

教科书习题16.2第10,11题.

五、目标检测设计

1.在、、中,最简二次根式为.

【设计意图】考查对最简二次根式的概念的理解.

2.化简下列各式为最简二次根式:;.

【设计意图】复习二次根式的运算法则和运算性质.鼓励学生用不同方法进行计算.对于分母含二次根式的处理,要结合整式的乘法公式进行计算.

3.化简:(1);(2).

【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算.

人教版八年级数学下册16.1二次根式第2课时教学设计


每个老师为了上好课需要写教案课件,大家在认真写教案课件了。我们要写好教案课件计划,这对我们接下来发展有着重要的意义!你们会写多少教案课件范文呢?以下是小编收集整理的“人教版八年级数学下册16.1二次根式第2课时教学设计”,欢迎您阅读和收藏,并分享给身边的朋友!

一、内容和内容解析

1.内容

二次根式的性质。

2.内容解析

本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.

对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.

二、目标和目标解析

1.教学目标

(1)经历探索二次根式的性质的过程,并理解其意义;

(2)会运用二次根式的性质进行二次根式的化简;

(3)了解代数式的概念.

2.目标解析

(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;

(2)学生能灵活运用二次根式的性质进行二次根式的化简;

(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.

三、教学问题诊断分析

二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.

本节课的教学难点为:二次根式性质的灵活运用.

四、教学过程设计

1.探究性质1

问题1你能解释下列式子的含义吗?

,,,.

师生活动:教师引导学生说出每一个式子的含义.

【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.

问题2根据算术平方根的意义填空,并说出得到结论的依据.

;;;.

师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.

问题3从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

师生活动:引导学生归纳得出二次根式的性质:(≥0).

【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.

例2计算

(1);(2).

师生活动:学生独立完成,集体订正.

【设计意图】巩固二次根式的性质1,学会灵活运用.

2.探究性质2

问题4你能解释下列式子的含义吗?

,,,.

师生活动:教师引导学生说出每一个式子的含义.

【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.

问题5根据算术平方根的意义填空,并说出得到结论的依据.

=,=,=,=.

师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.

问题6从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

师生活动:引导学生归纳得出二次根式的性质:(≥0)

【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.

例3计算

(1);(2).

师生活动:学生独立完成,集体订正.

【设计意图】巩固二次根式的性质2,学会灵活运用.

3.归纳代数式的概念

问题7回顾我们学过的式子,如,,,,,,,(≥0),这些式子有哪些共同特征?

师生活动:学生概括式子的共同特征,得出代数式的概念.

【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.

4.综合运用

(1)算一算:

;;;.

【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.

(2)想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?

【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.

(3)谈一谈你对与的认识.

【设计意图】加深学生对二次根式性质的理解.

5.总结反思

(1)你知道了二次根式的哪些性质?

(2)运用二次根式性质进行化简需要注意什么?

(3)请谈谈发现二次根式性质的思考过程?

(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.

6.布置作业:教科书习题16.1第2,4题.

五、目标检测设计

1.;;.

【设计意图】考查对二次根式性质的理解.

2.下列运算正确的是()

A.B.C.D.

【设计意图】考查学生运用二次根式的性质进行化简的能力.

3.若,则的取值范围是.

【设计意图】考查学生对一个数非负数的算术平方根的理解.

4.计算:.

【设计意图】考查二次根式性质的灵活运用.

人教版八年级数学下册16.2二次根式的乘除第2课时教学设计


一、内容和内容解析

1.内容

二次根式的除法法则及其逆用,最简二次根式的概念。

2.内容解析

二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.

基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.

二、目标和目标解析

1.教学目标

(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

(2)会进行简单的二次根式的除法运算;

(3)理解最简二次根式的概念.

2.目标解析

(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;

(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.

(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.

三、教学问题诊断分析

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.

本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.

四、教学过程设计

1.复习提问,探究规律

问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.

2.观察思考,理解法则

问题2教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:

问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了.

【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误.

问题4对例题的运算你有什么看法?是如何进行的?

师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数.

【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算.

问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即.利用该性质可以进行二次根式的化简.

3.例题示范,学会应用

例1计算:(1);(2);(3).

师生活动提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?

再提问:第(2)用什么方法计算更简捷?第(3)题根号下含字母在移出根号时应注意什么?

【设计意图】通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,

问题5你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?

师生活动学生总结,师生共同补充、完善。要总结出:

(1)这些根式的被开方数都不含分母;

(2)被开方数中不含能开得尽方的因数或因式;

(3)分母中不含根号;

【设计意图】引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式.

问题6课件展示一组二次根式的计算、化简题.

【设计意图】让学生用总结出的结论进行二次根式的运算.

4.巩固概念,学以致用

例2教材第9页例7.

师生活动提问本题是以长方形面积为背景的数学问题,二次根式的除法运算在此发挥什么作用?

再提问章引言中的问题现在能解决了吗?

【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。

5.归纳小结,反思提高

师生共同回顾本节课所学内容,并请学生回答以下问题:

(1)除法运算的法则如何?对等式中字母的取值范围有何要求?

(2)你能说明最简二次根式需要满足的条件吗?

6.布置作业:教科书第10页练习第1,2,3题;

教科书习题16.2第10,11题.

五、目标检测设计

1.在、、中,最简二次根式为.

【设计意图】考查对最简二次根式的概念的理解.

2.化简下列各式为最简二次根式:;.

【设计意图】复习二次根式的运算法则和运算性质.鼓励学生用不同方法进行计算.对于分母含二次根式的处理,要结合整式的乘法公式进行计算.

3.化简:(1);(2).

【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算.

文章来源:http://m.jab88.com/j/59651.html

更多

猜你喜欢

更多

最新更新

更多