一般给学生们上课之前,老师就早早地准备好了教案课件,大家应该要写教案课件了。用心制定好教案课件的工作计划,才能更好的在接下来的工作轻装上阵!有哪些好的范文适合教案课件的?下面是小编为大家整理的“作轴对称图形导学案”,欢迎您阅读和收藏,并分享给身边的朋友!
12.2.1作轴对称图形
一、学习目标:
1、能作轴对称图形,能应用轴对称进行简单的图案设计,能用轴对称的知识解决相应的数学问题。
2、通过独立思考、交流讨论、展示质疑,发展学生的观察、归纳、想象及推理能力。
3、极度热情、享受成功、感受数学就在身边。
二、重点难点
重点:作轴对称图形
难点:用轴对称知识解决相应的数学问题。
三、合作探究(同学合作,教师引导)
1、复习回顾:线段公理;垂直平分线的性质。
2、自己动手在一张半透明的纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置并重复几次,你又得到了什么?
归纳:
(1)由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的、________完全相同;
(2)新图形上的任意一点,都是原图形上某一点关于直线l的__________;
(3)连接任意一对对应点的线段被对称轴__________。
3、把图1补成关于直线l对称的图形
四、精讲精练
例1、如图2,如何在直线l上找一点P,使线段PA与PB的和最小?
练习:1、把下列各图补成以a为对称轴的轴对称图形。
2、把图中实线部分补成以虚线l为对称轴的轴对称图形,你会得到一只美丽的图案。
例2、要在河边修建一个水泵站,分别向张村、李庄送水(如图)。修在河边什么地方,可使所用水管最短?试在图中确定水泵站的位置,并说明你的理由。
练习1.城北中学八⑵班举行文艺晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,站在C处的学生小明先到AO桌面上拿桔子,再到OB桌面上拿糖果,然后回到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短。
2.开展你的想象,从一个或几个图形出发,利用轴对称或与平移进行组合,设计出一个图案,并与同学进行交流。
五、课堂小结:
归纳:
几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。
六、作业:P451
教学反思:
13.2.1作轴对称图形(2)
一、学习目标
1、能够按要求作出简单平面图形经过轴对称后的图形;
2、能够用轴对称的知识解决生活中的实际问题。
二、温故知新
1、把下列图形补成关于对称的图形。
2、仔细观察第三个图形,你能尽可能多的从图中找出一些线段之间的关系吗?
三、自主探究合作展示
探究(一)
1、如图(1).要在燃气管道上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?
2、请同学们任意取点探究,并完成下列表格。
3、通过以上探究,你发现什么规律吗?
4、根据你发现的规律,在图(2)中完成本题。
探究(二)
问题
为什么在P点的位置修建泵站,就能使所用的输气管线最短呢?
四、双基检测
1、如图(3),在铁路的同侧有两个工厂A、B,要在路边建一个货场C,使A、B两厂到货场C的距离的和最小.问点C的位置如何选择?
2、如图(4),如果我们把台球桌做成等边三角形的形状,那么从AC的中点D处发出的球,能否依次经BC,AB两边反射后回到D处?如果认为不能,请说明理由;如果认为能,请作出球的运动路线。
3、如图(5),A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线。
五、学习反思
学习目标:
1.认识轴对称和轴对称图形,并能找出对称轴;
2.知道轴对称和轴对称图形的区别和联系;
3.欣赏生活中的轴对称图形,体会轴对称在生活中的应用和丰文化价值.
重点、难点:正确辨认轴对称图形,画出它们的对称轴.
学习过程
一.【预学提纲】初步感知、激发兴趣
1.小明是一位不错的足球运动员,他衣服上的号码在镜子里如下图,他是号运动员.
2.你能将下列图形沿一直线折叠,使两边完全重合吗?
3.什么叫成轴对称;什么是轴对称图形?
二.【预学练习】初步运用、生成问题
1.右图是从镜中看到的一串数字,这串数字应为..
2.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个与其他三个不同?请指出这个图形,并说明理由.
三.【新知探究】师生互动、揭示通法
活动一:折纸印墨迹
在纸的一侧滴一滴墨水后,对折,压平.
问题1:你发现折痕两边的墨迹形状一样吗?为什么?
问题2:两边墨迹的位置与折痕有什么关系?
活动二:剪飞鸟图案
把一张长方形纸片对折,按课本图1-6剪出一个图案,然后再打开.
问题1:按课本所示的方法剪纸,你得到了什么图案?对折线两边部分什么关系?
问题2:另取一张纸,对折两次,再仿照上面的过程画线、剪纸.
你又得到什么图案?
问题3:联系实际,你能举出一个轴对称图形的实例吗?
交流展示:
建筑
脸谱
剪纸
四.【解疑助学】生生互动、突出重点
1.探究:轴对称图形的对称轴的条数.
下列图形是否是轴对称图形,找出轴对称图形的所有对称轴.
思考:正三角形有条对称轴;正四边形有条对称轴
正五边形有条对称轴;正六边形有条对称轴
正n边形有条对称轴
当n越来越大时,正多边形接近于什么图形?它有多少条对称轴?
五.【变式拓展】能力提升、突破难点
(1)问题生活中有许多轴对称图形,你能举例吗?
(2)推理游戏下面一个应该是什么形状?
六.【回扣目标】学有所成、悟出方法
1.什么叫成轴对称;什么是轴对称图形?
2.轴对称与轴对称图形的区别与联系.
3.很多图形有多条对称轴,你能举例说明吗?
文章来源:http://m.jab88.com/j/59644.html
更多