老师会对课本中的主要教学内容整理到教案课件中,大家开始动笔写自己的教案课件了。是时候对自己教案课件工作做个新的规划了,这样接下来工作才会更上一层楼!你们了解多少教案课件范文呢?下面是小编精心收集整理,为您带来的《八年级上册《等腰三角形的轴对称性》2导学设计》,欢迎大家与身边的朋友分享吧!
八年级上册《等腰三角形的轴对称性》2导学设计
2.5等腰三角形的轴对称性(2)
教学目标
1.掌握等腰三角形的判定定理.
2.知道等边三角形的性质以及等边三角形的判定定理.
3.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径.
4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力.
教学重点
熟练地掌握等腰三角形的判定定理.
教学难点
正确熟练地运用定理解决问题及简洁地逻辑推理.
教学过程(教师活动)
学生活动
设计思路
前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识.
本节课我们将继续学习等腰三角形的轴对称性.
一、创设情境
如图所示△ABC是等腰三角形,AB=AC,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C.请同学们想一想,有没有办法把原来的等腰三角形ABC重新画出来?大家试试看.
1.学生观察思考,提出猜想.
2.小组交流讨论.
一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的方法,另一方面通过创设情境,自然地引入课题.
二、探索发现一
请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:
(1)在半透明纸上画一条长为6cm的线段BC.
(2)以BC为始边,分别以点B和点C为顶点,在BC的同侧用量角器画两个相等的锐角,两角终边的交点为A.
(3)用刻度尺找出BC的中点D,连接AD,然后沿AD对折.
问题1:AB与AC有什么数量关系?
问题2:请用语言叙述你的发现.
1.根据实验要求进行操作.
2.画出图形、观察猜想.
3.小组合作交流、展示学习成果.
演示折叠过程为进一步的说理和推理提供思路.
通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验.
三、分析证明
思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?
问题3:已知如图,在△ABC中,
∠B=∠C.求证:AB=AC.
引导学分析问题,综合证明.
思考:你还有不同的证明方法吗?
问题4:“等边对等角”与“等角对等边”,它们有什么区别和联系?
思考——讨论——展示.
1.学生独立完成证明过程的基础上进行小组交流.
2.班级展示:小组代表展示学习成果.
在实验的基础上获得问题解决的思路,在合情推理的基础上让学生经历演绎推理的过程,培养学生的逻辑思维能力.
通过“你有不同的证明方法吗”的问题,让学生学会质疑,学会从不同的角度思考问题,培养学生的发散性思维,激发探究问题的欲望和兴趣,通过对问题4的思考让学生加深对性质与判定的理解.
四、探索发现二
问题5:什么是等边三角形?等边三角形与等腰三角形有什么区别和联系?
问题6:等边三角形有什么性质?
问题7:一个三角形满足什么条件就是等边三角形了?为什么?
1.学生阅读教材,进行自主学习.
2.小组讨论交流.
3.展示学习成果:等边三角形的概念、等边三角形的性质、
等边三角形的判定.
培养学生阅读教材的学习习惯和自主学习能力.
引导学生经历合情推理和演绎推理的过程,感受合情推理和演绎推理都是人们认识事物的重要途径.
五、学以致用
请同学完成课本P63-64练习第1、2、3题.
学生独立思考、小组讨论、展示交流、相互评价.
引导学生学会分析问题和解决问题,理解分析和综合之间的关系,培养学生分析问题和解决问题的能力.
巩固学习成果,加强知识的理解和方法的应用,培养分析问题、解决问题的能力.
六、归纳小结
1.这节课你有怎样的收获?还有哪些困惑呢?
2.布置作业:
课本P67习题2.5第7、8、10题.
1.学生以小组为单位归纳本节课所学习的知识、方法.
2.展示交流,相互补充,建立知识体系.
3.讨论困惑问题.
4.完成作业.
引导学生进行知识归纳整理,学会学习,培养学生发现问题、提出问题的学习能力.
《等腰三角形的轴对称性》1导学设计
教学目标
1.理解等腰三角形的轴对称性及其相关性质.
2.能够证明等腰三角形的性质定理.
3.能够运用等腰三角形的性质定理解决相关问题.
4.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径.
教学重点
等腰三角形的轴对称性及其相关的性质.
教学难点
等腰三角形的性质证明及其应用.
教学过程(教师)
学生活动
设计思路
一、情境引入
1.观察图中的等腰三角形ABC,分别说出它们的腰、底边、顶角和底角.
2.把该等腰三角形沿顶角平分线对折展开,你有什么发现?
1.学生思考、回答.
2.学生动手操作、实践.
复习等腰三角形的有关概念.
通过动手操作让学生感悟到等腰三角形是轴对称图形.
二、探究活动
问题一:等腰三角形是轴对称图形吗?它的对称轴是什么?
问题二:找出等腰三角形ABC对折后重合的线段和角.
问题三:由这些重合的线段和角,你能发现等腰三角形的哪些性质呢?说一说你的猜想.
学生分组讨论,交流结果.
在前面动手操作、直观演示的基础上引导学生如何利用折痕这条辅助线,构造出两个全等的三角形,从而让学生经历演绎推理的过程,从而主动地发现证明思路,为今后学生进行探索活动积累数学活动经验.
三、归纳总结
等腰三角形的两底角相等.
等腰三角形底边上的高线、中线及顶角平分线重合.
思考:
1.你能证明上述定理吗?
2.你有不同的证明方法吗?
课堂练习:课本P61-62第1、2题.
思考:1.你能证明上述定理吗?2.你有不同的证明方法吗?
具体如下:
1.做顶角的平分线,用“SAS”.
2.作底边上的中线,用“SSS”.
3.作底边上的高,用“HL”.
文字语言
图形语言
符号语言
等边对等角
在△ABC中,
因为AB=AC,
所以∠B=∠C.
等腰三角形底边上的高线、中线及角平分线重合
在△ABC中,
因为AB=AC,AD⊥BC,
所以∠BAD=∠CAD,BD=CD.
在△ABC中,
因为AB=AC,∠BAD=∠CAD,
所以AD⊥BC,BD=CD.
在△ABC中,
因为AB=AC,BD=CD,
所以∠BAD=∠CAD,AD⊥BC.
让学生通过思考“你能证明上述定理吗?”“你有不同的证明方法吗?”的问题,不仅使学生思考证明定理,更使学生学会质疑,感受到只要多观察、多思考,就可能获得更多不同解决问题的方法,从而激发起数学探究的欲望和兴趣.
四、操作尝试
按下列作法,用直尺和圆规作等腰三角形ABC,使底边BC=a,高AD=h.
学生动手作图.
作法
图形
1.作线段BC=a.
2.作线段BC的垂直平分线MN,MN交BC于点D.
3.在MN上截取线段DA,使AD=h.
4.连接AB、AC.△ABC就是所求作的等腰三角形.
等腰三角形的性质应用.
五、例题讲解
例1课本P61例1.
思考:
1.图中有几个等腰三角形?
2.可以得到哪些相等的角?
课堂练习:课本P62第3题.
学生独立思考、小组交流.
引导学生把复杂的图形简单化是解决复杂问题的一种方法,再通过观察、思考,找出简单图形中的相等的角,最后的证明,培养学生分析问题和解决问题的能力.
六、课堂小结
本节课你的收获是什么?
共同小结.
师生互动,总结学习成果,体验成功.
七、课后作业
1.课本P66-67第1~5题.
2.(选做题)已知在△ABC中,AB=AC,O是△ABC内一点,且OB=OC.判断AO与BC的位置关系,并说明理由.
课后完成必做题,并根据自己的能力水平确定是否选做思考题.
选做题有一定的难度,学生可根据自己的能力去自主选做.这样就能实现《课程标准》中所要求的“让不同层次的学生得到不同的发展”.
八年级上册《等腰三角形》导学案
2.1等腰三角形
学习目标:
1、掌握等腰三角形的概念及等腰三角形有关边、角的名称。根据条件会作等腰三角形。
2、理解等腰三角形的轴对称性及对称轴的情况。
学习重点:等腰三角形的轴对称性。
学习难点:理解等腰三角形的轴对称性(例题)
学习过程:
一、预习准备
1、你还记得三角形的概念:
2、你学习过哪些类型的三角形:
3、你在日常生活中中看到过有两条边相等的三角形吗?请举例:
4、等腰三角形的概念:
并在下图中写出相应的边角名称
5、如图,点D在AC上,
AB=AC,AD=BD。你能
在图中找到几个等腰三角
形?说出每个等腰三角形
的腰、底边和顶角。
二、合作学习
1、等腰三角形的两边分别是2cm和5cm,则它的周长是多少?
2、知线段a,b(如图)(1)用直尺和圆规做等腰三角形ABC,使AB=AC=b,BC=a;
(2)它的周长是多少?
3、在上图的基础上,画出等腰三角形ABC的顶角平分线AD,然后沿着AD所在的直线把△ABC对折,你发现了什么?由此,你得出了什么结论?
三、应用举例:
例、如图,在△ABC中,AB=AC,D、E
分别是AB、AC上的点,且AD=AE。AP
是△ABC的角平分线。点D、E关于AP
对称吗?DE与BC平行吗?请说明理由。
四、巩固练习
1、如图,AD是等腰三角形ABC的
角平分线,E、F分别是AB,AC上的点,
请分别作出E、F关于AD的对称点。
总结:
2、等腰三角形的底边长为7cm,一腰上的中线把周长分为两部分,其差为3cm,则等腰三角形的腰长为多少?
3、等腰三角形一腰长的中线将它的周长分成15cm和16cm两部分,求等腰三角形的底边长。
思考:
在平面内,分别用3根,5根,6根火柴棒首尾顺次相接,能搭成什么形状的三角形?
通过尝试,完成下面的表格。7根火柴棒呢?8根呢?你发现了什么规律?完成书中表格(P.25)
五.作业
1.作业本(2)
2.预习2.2节内容
六、课后反思
文章来源:http://m.jab88.com/j/56910.html
更多