88教案网

对数及其运算

做好教案课件是老师上好课的前提,大家在用心的考虑自己的教案课件。在写好了教案课件计划后,才能更好的在接下来的工作轻装上阵!那么到底适合教案课件的范文有哪些?下面是小编帮大家编辑的《对数及其运算》,仅供参考,欢迎大家阅读。

课题§4对数§4.1对数及其运算
一、教材及学情分析
对数及其运算是北师大版普通高中数学课程标准实验教科书《数学1(必修)》第三章第四单元第一节,是在系统学习研究函数的一般方法、指数的概念及运算性质,基本掌握指数函数的概念及性质的基础上引入的,既是指数有关知识的承接和延续,又是后续研究对数函数、探讨函数应用的基础,本节共两课时,本课是第一课时,重点研究对数的概念及其性质,教材以2000年国民经济生产总值增幅为背景,引入对数概念,在使学生认识引进对数必要性的同时,强化学生的数学应用意识,“思考交流”旨在引导学生进一步厘清指数式与对指数式之间的关系,明确1和底数对数的特点,深化真数取值范围的理解,为对数函数学习打下伏笔。常用对数及自然对数是对数的特例,教材将其安排在对数性质之后,旨在引领学生经历“特殊——一般——特殊”的过程,进一步发展学生的理性思维。因此,本节内容无论是只是传承,还是数学思想方法的强化渗透,都具有非常重要的奠基作用。
经历了义务教育阶段学习的高一学生,思维正处于由经验型向理论型过渡与转型期,思维的发散性与聚敛性基本成型,已具有研究函数和从事简单数学活动的能力,加之指数及指数函数等知识铺垫,对于本单元学习奠定了必要的知识和经验基础。
二、教学目标
1、知识技能目标
①理解对数的概念。
②理解和掌握对数的性质。
③理解指数与对数的关系,熟练地进行指数式与对数式互换。
2、过程与方法目标:经历由指数得到对数的过程,掌握指数式与对数式互化方法;结合对数概念探究对数的性质:0和负数没有对数。(a>1,且a≠1)
3、情感态度与价值观:
①通过指数式与对数式的互化,使学生感受对数式是指数式的另一种表达形式,进一步体会运用指数式探求对数的基本思路及方法,发展学生的数学表达能力和严谨有序的思维品质。
②通过随堂提问、练习评价,激发学生的探究兴趣,增强学生的成功感体验,帮助学生认识自我、建立自信。
三、重点与难点
1、重点:对数式与指数式的互化及对数的性质。
2、难点:对数概念的理解,的推导及应用。
四、教法选择
根据教材及学情特点,本课以“尝试指导,效果回授”教学法为主,辅之于讨论法和自学辅导法。以问题为主线,活动为载体,力求创设有效的教学情境,引导学生在在观察中思考,在思考中探索,在探索中发现,在发现中收获,在收获中创新,在创新中升华,通过具有一定层次梯度的问题序列,多角度、全方位训练学生思维的聚敛性和发散性。为增大课堂容量,“注重信息技术与数学课程的整合”(课标语),可借助多媒体辅助教学,为学生的教学探究与教学思维提供支持。教具准备:PPT演示文稿;学具准备:教科书,课堂练习本。
五、教学过程
(一)创设情境,导入新课
1、庄子:一尺木垂,日取其丰,不世不竭,
问题:①取4次还有多长?怎样计算?
②取多少次还有0.125尺?
2、如果2000年我国国民生产总值a亿,如果每年增长8.2%,那么经过多少年国民生产总值是2000年的2倍?
处理:问题1①由学生口答,教师根据学生回答情况板书①,并揭示运算实质。问题1②及问题2引导学生按照解决数学问题的常规步骤尝试建构方程,并板书如下
②③?
诱导:式②③与式①有什么不同?如何求x呢?(教师结合学生对前一问题的回答,因势利导,揭示②③的本质——已知底数和幂的值,求指数,说明这就是本节课要研究的内容,接着引入并板书课题)
(二)诱导尝试,探究新知
1、引导观察,探获本质——建构对数概念
(1)诱导:中x分别等于多少?目前大家没有学过这种运算,可以定义一种新运算,(边叙述边板书:如果,那么x叫作以为底0.125的对数,记作:);你们能模仿描述定义中的x吗?试试!(学生尝试描述,教师根据学生描述板书)
问题1:你们还能举出类似例子,并模仿表述吗?(处理方法同上)
问题2:你们能结合以上实例给出一般性的结论吗?(一名学生回答,发动其他学生参与补充)
(板书)定义:一般地,如果a(a>0,a≠1)的b次幂等于N,即,那么数b叫作以a为底N的对数,记作:中a叫作对数的底数,N叫作真数。(强调书写规范要求,引导学生阅读教科书P78对数概念及P79两种特殊对数及表示方法)
2、及时分化,适时类化——揭示概念本质,探索对数性质
(1)(课件出示)问题3:先独立思考完成下表,后四人一组讨论交流:①对数运算的实质是什么?②零与负数有没有对数?③与有什么关系?④若将中的b换成,你们有什么发现?若将中的N换成呢?
a的名称a的取值范围N的名称N的取值范围b的名称b的取值范围

【处理:①学生独立探索、合作交流,教师巡回视导,重点关注学生是否从定义出发,考察相关字母名称及取值范围,因势利导;②根据学生讨论情况,运用自定义动画完善此表;③结合学生讨论板书如下:
性质:(1)零与负数没有对数
(2)或
(三)变式训练,巩固新知
(课件展示)问题1:将下列指数式写成对数式
(1)(2)
(3)(4)
(5)(6)
(7)(8)
(9)(10)
处理:(1)提两名学生板演,将其余学生按座次左右依次分为A、B两组,A组完成单号,B组完成双号,交换互查。(2)评价完毕后,强调:(1)是对数的重要性质,必须熟练掌握。(板书:性质3:)
(2)注意:指数式与对数式互化最关键是搞清N与b在指数与对数式中的位置关系。
(课件展示)问题2:将下列对数式写成指数式
(1)(2)
(3)(4)
(5)(6)
处理:学生口答,教师依据学生口答顺序,用课件展示正确答案。
问题3:求下列各式的值
(1)(2)
(3)(4)
(5)(6)
(7)(8)
处理:教师引导学生从指数式与对数式关系入手,探求(1),并示范板书(1)解题过程。其余各题由学生分组独立完成。
机动练习及课外探究:
(1)填空:①=_____,②对数式中X的取值范围是

(2)求值:①;②;③
(四)全课小结,细化新知
1、提问:通过本节学习,你们有哪些收获?
2、在学生回答的基础上,概括如下:
本节课主要学习一个概念(对数);掌握三个性质(零与负数没有对数;或;);掌握一种方法(利用指数式与对数式的关系求对数值的方法);注意个问题:(1)指数式与对数式互化的关键是搞清N与b在指数与对数式中的位置关系;(2)常用对数与自然对数是两种特殊对数,务必牢固掌握。(3)
(五)推荐作业,延展新知
1、0和负数无对数
3、
思考:大家对对数概念和一些特殊式子已知有了一定的了解,但实际科学研究和了解自然起了巨大作用,还有哪类对数?(阅读课本)
引导板书常用对数自然对数
为了方便:(e=2.71828)
原式

简记

例如:
应用示例,练习巩固
问题1、将下列指数式写成对数式。
(1)(2)(3)(4)
学生板演:解:略
变式训练:指数式写成对数式。
(1)(2)(3)
思考:指数式与对数式互化注意问题?
最关键是搞清N与b在指数与对数式中的位关系,其中对数定义是指数式
与对数式互化的根据。
问题2、将下列对数式写成指数式。(让学生阅读题目,独立解题。)
(1)(2)(3)(4)
变式训练:把对数式写成指数式。(点评)
(1)(2)(3)(4)
问题3、求值(师生点评总结)
(1)(2)(3)(4)(5)
活动:学生独立解题,回答问题依据。(利用指数式与对数式关系转化为
指数式求解)
变形训练:
求下列各项的值:(1)(2)(3)
(4)(5)(6)

点评:本题注意方根的运算,也可借助对数恒等式来解(#)
总结提炼(学生先总结,学到什么知识,后老师总结)
1、对数的含义
2、对数式中字母取值范围a0且a≠1b∈RN0
3、三个公式(问0和负数有没有对数)
4、两个特殊对数
5、应用指对数式经化及求值注意地方
课后思考题(选做)
(1)对数式中X的取值范围是。
(2)若,则X=。
(3)计算:(a0b0c0N0)
课后练习:P801、2、3P87A、1、2
课后作业:
1、P87习题3-4A3、(1)(3)(5)(7)(9)4
2、请同学们阅读课本,搜集有关对数发展材料,寻找有关换底公式材料,为下一步学习打基础。
1、板书设计:引入(1)(2)
对数定义(注意事项)指数式和对数式的互化小结
对数与指数幂间关系问题1、
提出问题(交流探究)2、作业
两种常见对数3、
谢谢大家再见!!
知能训练:
1、把下列指数式写成对数式
(1)(2)(3)(4)(5)
2、把下列对数式写成指数式
(1)(2)(3)(4)
(5)(6)(7)(8)
3、求值(x的值)
(1)(2)(3)(4)
4、(1)求的值
(2)已知:、,求
(3)计算的值

延伸阅读

对数的运算


§2.2.1对数的运算
学习目标
1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;
2.能较熟练地运用对数运算法则解决问题.
旧知提示
复习1:(1)对数定义:如果,那么数x叫做,记作.
(2)指数式与对数式的互化:.
复习2:幂的运算性质.
(1);(2);(3).
复习3:根据对数的定义及对数与指数的互化关系解答:
(1)设,,求;
(2)设,,试利用、表示.
合作探究(预习教材P64~P66,找出疑惑之处)
:探究1:由,如何探讨和、之间的关系?
根据上面的探讨,能否得出以下式子?
如果a0,a1,M0,N0,则
(1);(2);(3).

新知:对数的运算性质
试一试:2000年人口数13亿,年平均增长率1℅,多少年后可以达到18亿?
典型例题
例1用,,表示下列各式:(1);(2).

例2计算:(1);(2);(3);(4)lg.

例3化简:
①;②;

课堂小结
①对数运算性质及推导;②运用对数运算性质;③换底公式.
知识拓展
①对数的换底公式;②对数的倒数公式.
③对数的性质:,,.
学习评价
1.下列等式成立的是()
A.B.
C.D.
2.如果lgx=lga+3lgb-5lgc,那么()
A.x=a+3b-cB.C.D.x=a+b3-c3
3.若,那么()
A.B.C.D.
4.计算:(1);(2);
(3);(4);(5).
课后作业
1.如,,且,,则下列各式:
(1);(2);(3);
(4);(5);(6).
其中成立的有()
A.2个B.3个C.4个D.5个
2.若,则=()
A.B.C.D.

3已知,则=.

4.已知,,则=.
5.计算:(1);(2);

思考题:设、、为正数,且,求证:.
(运用倒数公式:)

对数与对数运算教学设计


教学设计
2.2.1对数与对数运算
第1课时
作者:林宁宁,古田一中教师.本教学设计获福建省教学设计大赛二等奖.
整体设计
教学内容分析
本节课是新课标高中数学A版必修1中第二章对数函数内容的第1课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起着十分重要的作用.通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数做好准备.同时,通过对对数概念的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.
学生学习情况分析
现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索、发现、研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.
设计思想
学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动,本节课可利用多媒体辅助教学,引导学生从实例中认识对数模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动、学生讨论的方式来加深理解,更好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.
教学目标
1.理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能.
2.通过实例使学生认识对数模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化.
3.通过学生分组进行探究活动,掌握对数的重要性质.通过做练习,使学生感受到理论与实践的统一.
4.培养学生的类比、分析、归纳能力,培养学生严谨的思维品质以及在学习过程中培养学生的探究意识.
重点难点
重点:(1)对数的概念;(2)对数式与指数式的相互转化.
难点:(1)对数概念的理解;(2)对数性质的理解.
教学过程
教学
环节教学程序及设计设计意图
创设情境,引入新课引例(3分钟)
1.一尺之锤,日取其半,万世不竭.
(1)取5次,还有多长?
(2)取多少次,还有0.125尺?
分析:(1)为同学们熟悉的指数函数模型,易得125=132,
(2)可设取x次,则有12x=0.125,
抽象出:12x=0.125x=?
2.2002年我国GDP为a亿元,如果每年平均增长8%,那么经过多少年GDP是2002年的2倍?
分析:设经过x年,则有(1+8%)x=2,抽象出:(1+8%)x=2x=?让学生根据题意,设未知数,列出方程.这两个例子都出现指数是未知数x的情况,让学生思考如何表示x,激发其对对数的学习兴趣,培养学生的探究意识.生活及科研中还有很多这样的例子,因此引入对数是必要的.
讲授新课一、对数的概念(3分钟)[
一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数.
注意:(1)底数的限制:a>0且a≠1;
(2)对数的书写格式正确理解对数定义中底数的限制,为以后对数函数定义域的确定做准备.同时注意对数的书写格式,避免因书写不规范而产生的错误.
二、对数式与指数式的互化:(5分钟)
幂底数←a→对数底数
指数←b→对数
幂←N→真数
思考:
(1)为什么对数的定义中要求底数a>0且a≠1?
(2)是否是所有的实数都有对数呢?
负数和零没有对数让学生了解对数与指数的关系,明确对数式与指数式形式的区别,a,b和N位置的不同,及它们的含义.互化体现了等价转化这个重要的数学思想.
三、两个重要对数(2分钟)
(1)常用对数:以10为底的对数log10N,简记为lgN;
(2)自然对数:以无理数e=2.71828…为底的对数logeN,简记为lnN.(在科学技术中,常常使用以e为底的对数)
注意:两个重要对数的书写这两个重要对数一定要掌握,为以后的解题以及换底公式作准备.
课堂练习(7分钟)
1.将下列指数式写成对数式:
(1)24=16;(2)3-3=127;(3)5a=20;(4)12b=0.45.
2.将下列对数式写成指数式:
(1)log5125=3;(2)=-2;(3)log10a=-1.069.
3.求下列各式的值:
(1)log264;(2)log927.本练习让学生独立阅读课本例1和例2后思考完成,从而熟悉对数式与指数式的相互转化,加深对对数概念的理解.并要求学生指出对数式与指数式互化时应注意哪些问题,培养学生严谨的思维品质.
四、对数的性质(12分钟)
探究活动1
求下列各式的值:
(1)log31=0;(2)lg1=0;
(3)log0.51=0;(4)ln1=0.
思考:你发现了什么?
“1”的对数等于零,即loga1=0(a>0且a≠1),类比:a0=1(a>0且a≠1).探究活动由学生独立完成后,通过思考,然后分小组进行讨论,最后得出结论.通过练习与讨论的方式,让学生自己得出结论,从而能更好地理解和掌握对数的性质.培养学生类比、分析、归纳的能力.
探究活动2
求下列各式的值:
(1)log33=1;(2)lg10=1;(3)log0.50.5=1;(4)lne=1.
思考:你发现了什么?
底数的对数等于“1”,即logaa=1(a>0且a≠1),类比:a1=a(a>0且a≠1).
探究活动3
求下列各式的值:
(1)=3;(2)=0.6;(3)=89.
思考:你发现了什么?
对数恒等式:=N(a>0且a≠1).
探究活动4
求下列各式的值:
(1)log334=4;(2)log0.90.95=5;(3)lne8=8.
思考:你发现了什么?
对数恒等式:logaan=n(a>0且a≠1).



课小结负数和零没有对数;
“1”的对数等于零,即loga1=0;
底数的对数等于“1”,即logaa=1;
对数恒等式:=N;
对数恒等式:logaan=n.(a>0且a≠1)将学生归纳的结论进行小结,从而得到对数的基本性质.
归纳小结,强化思想(3分钟)
1.引入对数的必要性——对数的概念
一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN.
2.指数与对数的关系
3.对数的基本性质
负数和零没有对数;loga1=0;logaa=1;
对数恒等式:=N;logaan=n.总结是一堂课内容的概括,有利于学生系统地掌握所学内容.同时,将本节内容纳入已有的知识体系中,发挥承上启下的作用.为下一课时对数的运算打下扎实的基础.

作业
布置一、课本习题2.2A组第1,2题.
二、已知loga2=x,loga3=y,求a3x+2y的值.
三、求下列各式的值:
;;
;.
作业是学生信息的反馈,教师可以在作业中发现学生在学习中存在的问题,弥补教学中的不足.

板书
设计2.2.1对数与对数运算
第1课时
引例1
引例2
一、对数的定义二、对数式与指数式的
互化练习三、对数的基本性质
四、小结
五、作业布置
教学反思
本教学设计先由引例出发,创设情境,激发学生对对数的学习兴趣;在讲授新课部分,通过结合多媒体教学以及一系列的课堂探究活动,加深学生对对数的认识;最后通过课堂练习来巩固学生对对数的掌握.
第2课时
作者:卢岩冰
整体设计
教学目标
1.知识与技能
(1)通过实例推导对数的运算性质,准确地运用对数的运算性质进行运算、求值、化简,并掌握化简求值的技能.
(2)运用对数的运算性质解决有关问题.
(3)培养学生分析、解决问题的能力.
培养学生的数学应用意识和科学分析问题的精神和态度.
2.过程与方法
(1)让学生经历并推导出对数的运算性质.
(2)让学生归纳整理本节所学的知识.
3.情感态度与价值观
让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性.
重点难点
重点:对数运算的性质与对数知识的应用.
难点:正确使用对数的运算性质.
教学过程
导入新课
思路1.上节课我们学习了以下内容:
1.对数的定义.
2.指数式与对数式的互化.
ab=NlogaN=b.
3.重要性质:
(1)负数与零没有对数;(2)loga1=0,logaa=1;(3)对数恒等式=N.
下面我们接着讲对数的运算性质〔教师板书课题:对数与对数运算(2)〕.
思路2.我们在学习指数的时候,知道指数有相应的运算法则,即指数运算法则:
aman=am+n;am÷an=am-n;(am)n=amn;man=.(a>0且a≠1)
从上节课我们还知道指数与对数都是一种运算,而且它们互为逆运算,对数是否也有和指数相类似的运算法则呢?答案是肯定的,这就是本堂课的主要内容,点出课题:对数与对数运算(2).
推进新课
新知探究
提出问题
(1)在上节课中,我们知道,对数运算可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算的性质,得出相应的对数运算的性质吗?
(2)如我们知道am=M,an=N,aman=am+n,那m+n如何表示,能用对数式运算吗?
(3)在上述(2)的条件下,类比指数运算性质能得出其他对数运算性质吗?
(4)你能否用最简练的语言描述上述结论?如果能,请描述.
(5)上述运算性质中的字母的取值有什么限制吗?
(6)上述结论能否推广呢?
(7)学习这些性质能对我们进行对数运算带来哪些方便呢?
讨论结果:(1)通过问题(2)来说明.
(2)若aman=am+n,M=am,N=an,于是MN=am+n,由对数的定义得到M=amm=logaM,N=ann=logaN,MN=am+nm+n=logaMN,logaMN=logaM+logaN.
因此m+n可以用对数式表示.
(3)令M=am,N=an,则MN=am÷an=am-n,所以m-n=logaMN.
又由M=am,N=an,所以m=logaM,n=logaN.
所以logaM-logaN=m-n=logaMN,即logaMN=logaM-logaN.
设M=am,则Mn=(am)n=amn.由对数的定义,
所以logaM=m,logaMn=mn.所以logaMn=mn=nlogaM,即logaMn=nlogaM.
这样我们得到对数的三个运算性质:
如果a>0,a≠1,M>0,N>0,则有
loga(MN)=logaM+logaN;①
logaMN=logaM-logaN;②
logaMn=nlogaM(n∈R).③
(4)以上三个性质可以归纳为:
性质①:两数积的对数,等于各数的对数的和;
性质②:两数商的对数,等于被除数的对数减去除数的对数;
性质③:幂的对数等于幂指数乘以底数的对数.
(5)利用对数运算性质进行运算,所以要求a>0,a≠1,M>0,N>0.
(6)性质①可以推广到n个数的情形:
即loga(M1M2M3…Mn)=logaM1+logaM2+logaM3+…+logaMn(其中a>0,a≠1,M1,M2,M3,…,Mn均大于0).
(7)纵观这三个性质我们知道,
性质①的等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算.
性质②的等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算.
性质③从左往右仍然是降级运算.
利用对数的性质①②可以使两正数的积、商的对数转化为两正数的各自的对数的和、差运算,方便了对数式的化简和求值.
应用示例
例1用logax,logay,logaz表示下列各式:
(1)logaxyz;(2)logax2y3z.
活动:学生思考观察,教师巡视,检查学生解题情况,发现问题及时纠正.
利用对数的运算性质,把整体分解成部分.
对(1)logaxyz,可先利用性质②,转化为两数对数的差,再利用性质①,把积的对数转化为两数对数的和.
对(2)logax2y3z,可先利用性质②,转化为两数对数的差,再利用性质①,把积的对数转化为两数对数的和,最后利用性质③,转化为幂指数与底数的对数的积.
解:(1)logaxyz=loga(xy)-logaz=logax+logay-logaz;
(2)logax2y3z=loga(x2y)-loga3z
=logax2+logay-loga3z=2logax+12logay-13logaz.
点评:对数的运算性质实质上是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.
变式训练
1.若a>0,a≠1,x>0,y>0,x>y,下列式子正确的个数为()
①logaxlogay=loga(x+y);②logax-logay=loga(x-y);
③logaxy=logax÷logay;④loga(xy)=logaxlogay.
A.0B.1C.2D.3
答案:A
2.若a>0,a≠1,x>y>0,n∈N*,下列式子正确的个数为()
①(logax)n=nlogax;②(logax)n=logaxn;③logax=-loga1x;
④logaxlogay=logaxy;⑤nlogax=1nlogax;⑥1nlogax=loganx;
⑦logaxn=nlogax;⑧logax-yx+y=-logax+yx-y.
A.3B.4C.5D.6
答案:B
例2求值:(1);(2)log3127.
解:(1)解法一:设,则(3)x=33=(3)3,所以x=3.
解法二:.
(2)解法一:令x=log3127,则3x=127,即3x=3-3,所以x=-3.
解法二:log3127=log33-3=-3.
例3计算:
(1)lg14-2lg73+lg7-lg18;(2)lg243lg9;(3)lg27+lg8-3lg10lg1.2.
解:(1)解法一:lg14-2lg73+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(32×2)=lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.
解法二:lg14-2lg73+lg7-lg18=lg14-lg732+lg7-lg18=lg14×7732×18=lg1=0.
(2)lg243lg9=lg35lg32=5lg32lg3=52.
(3)lg27+lg8-3lg10lg1.2==32(lg3+2lg2-1)lg3+2lg2-1=32.
点评:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系;(2)题要避免错用对数的运算性质.对数运算性质的灵活运用、运算性质的逆用常被学生所忽视.
例4设x=log23,求23x-2-3x2x-2-x的值.
活动:学生思考观察,教师引导,学生有困难及时提示并评价学生的思考过程.本题主要考查对数的定义及其运算性质.先利用对数的定义求2x,再求23x,从而可求,或先化简再代入求值.
解法一:由x=log23,得2x=3,2-x=13,所以23x-2-3x2x-2-x=33-1333-13=32+3×13+132=919.
解法二:由x=log23,得2x=3,2-x=13,所以23x-2-3x2x-2-x=(2x-2-x)(22x+1+2-2x)2x-2-x=22x+1+2-2x=32+1+132=919.
知能训练
课本本节练习第1,2,3题.
【补充练习】
1.用logax,logay,logaz,loga(x+y),loga(x-y)表示下列各式:
(1)loga3xy2z;(2)logax4z3y2;(3);(4)logaxyx2-y2;
(5)logax+yx-yy;(6)logayx(x-y)3.
解:(1)loga3xy2z=loga3x-logay2z=13logax-(2logay+logaz)=13logax-2logay-logaz;
(2)logax4z3y2=logax+loga4z3y2=logax+14(logaz3-logay2)
=logax-24logay+34logaz=logax-12logay+34logaz;
(3)=logax++=logax+12logay-23logaz;
(4)logaxyx2-y2=logaxy-loga(x2-y2)=logax+logay-loga(x+y)(x-y)
=logax+logay-loga(x+y)-loga(x-y);
(5)logax+yx-yy=logax+yx-y+logay=loga(x+y)-loga(x-y)+logay;
(6)logayx(x-y)3=3[logay-logax-loga(x-y)]=3logay-3logax-3loga(x-y).
2.已知f(x6)=log2x,则f(8)等于()
A.43B.8C.18D.12
解析:因为f(x6)=log2x,x>0,令x6=8,得,所以f(8)==12.
另解:因为f(x6)=log2x=16log2x6,所以f(x)=16log2x.
所以f(8)=16log28=16log223=12.
答案:D
拓展提升
已知x,y,z>0,且lgx+lgy+lgz=0,求的值.
活动:学生讨论、交流、思考,教师可以引导.大胆设想,运用对数的运算性质.由于所求的式子是三项积的形式,每一项都有指数,指数中又有对数,因此想到用对数的运算性质,如果能对所求式子取对数,那可能会好解决些,故想到用参数法,设所求式子的值为t.
解:令,则lgt=1lgy+1lgzlgx+1lgz+1lgxlgy+1lgx+1lgylgz=lgxlgy+lgxlgz+lgylgz+lgylgx+lgzlgx+lgzlgy=lgx+lgzlgy+lgx+lgylgz+lgy+lgzlgx=-lgylgy+-lgzlgz+-lgxlgx=-3,所以t=10-3=11000即为所求.
课堂小结
1.对数的运算性质.
2.对数的运算性质的综合应用,特别是性质的逆向使用.
3.对数与指数形式比较:
式子ab=NlogaN=b
名称a——幂的底数
b——幂的指数
N——幂值a——对数的底数
b——以a为底的N的对数
N——真数
运算
性质aman=am+n;
am÷an=am-n;
(am)n=amn;
(a>0,a≠1,m,n∈R)loga(MN)=logaM+logaN;
logaMN=logaM-logaN;
logaMn=nlogaM(n∈R);
(a>0,a≠1,M>0,N>0)
作业
课本习题2.2A组3,4,5.
设计感想
在前面研究了对数概念的基础上,为了运算的方便,本节课我们借助指数的运算性质,推出了对数的运算性质,引导学生自己完成推导过程,加深对公式的理解和记忆,对运算性质的认识类比指数的运算性质来理解记忆,强化性质的使用条件,注意对数式中每一个字母的取值范围,由于它是以后学习对数函数的基础,所以安排教学时,要反复练习,加大练习的量,多结合信息化的教学手段,顺利完成本堂课的任务.
第3课时
作者:刘菲
整体设计
教学目标
1.知识与技能
推导对数的换底公式,培养学生分析、解决问题的能力,培养学生的数学应用意识和科学分析问题的精神和态度.
2.过程与方法
让学生经历推导对数的换底公式的过程,归纳整理本节所学知识.
3.情感态度与价值观
通过对数的运算性质、对数换底公式的学习,培养学生的探究意识,培养学生的严谨的思维品质;感受对数的广泛应用.
重点难点
重点:对数的运算性质、换底公式及其应用.
难点:正确使用对数的运算性质和换底公式.
教学过程
导入新课
思路1.问题:你能根据对数的定义推导出下面的换底公式吗?a>0,且a≠1,c>0,且c≠1,b>0,logab=logcblogca.教师直接点出课题:对数与对数运算(3)——对数的换底公式及其应用.
思路2.前两节课我们学习了以下内容:1.对数的定义及性质;2.对数恒等式;3.对数的运算性质,用对数的运算性质我们能就同底数的对数进行运算,那么不同底数的对数集中在一起,如何解决呢?这就是本堂课的主要内容.教师板书课题:对数与对数运算(3)——对数的换底公式及其应用.
思路3.从对数的定义可以知道,任意不等于1的正数都可作为对数的底,数学史上,人们经过大量的努力,制作了常用对数表和自然对数表,只要通过查表就能求出任意正数的常用对数或自然对数,这样,如果能将其他底的对数转换为以10为底或以e为底的对数就能方便地求出任意不等于1的正数为底的对数,那么,怎么转化呢?这就需要一个公式,即对数的换底公式,从而引出课题:对数与对数运算(3)——对数的换底公式及其应用.
推进新课
新知探究
提出问题
(1)已知lg2=0.3010,lg3=0.4771,求log23的值;
(2)根据(1),如a>0,a≠1,你能用含a的对数式来表示log23吗?
(3)更一般地,我们有logab=logcblogca,如何证明?
(4)证明logab=logcblogca的依据是什么?
(5)你能用自己的话概括出换底公式吗?
(6)换底公式的意义是什么?有什么作用?
活动:学生针对提出的问题,交流讨论,回顾所学,力求转化,教师适时指导,必要时提示学生解题的思路,给学生创造一个互动的学习环境,培养学生的创造性思维能力.对(1)目前还没有学习对数的换底公式,它们又不是同底,因此可考虑对数的定义,转化成方程来解;对(2)参考(1)的思路和结果的形式,借助对数的定义可以表示;对(3)借助(1)(2)的思路,利用对数的定义来证明;对(4)根据证明的过程来说明;对(5)抓住问题的实质,用准确的语言描述出来,一般是按照从左到右的形式;对(6)换底公式的意义就在于对数的底数变了,与我们的要求接近了.
讨论结果:(1)因为lg2=0.3010,lg3=0.4771,根据对数的定义,所以100.3010=2,100.4771=3.
不妨设log23=x,则2x=3,所以(100.3010)x=100.4771,100.3010×x=100.4771,
即0.3010x=0.4771,x=0.47710.3010=lg3lg2.因此log23=lg3lg2=0.47710.3010≈1.5850.
(2)根据(1)我们看到,最后的结果是log23用lg2与lg3表示,是通过对数的定义转化的,这就给我们以启发,本来是以2为底的对数转换成了以10为底的对数,
不妨设log23=x,由对数定义知道,2x=3,
两边都取以a为底的对数,得loga2x=loga3,xloga2=loga3,x=loga3loga2,
也就是log23=loga3loga2.
这样log23就表示成了以a为底的3的对数与以a为底的2的对数的商.
(3)证明logab=logcblogca.
证明:设logab=x,由对数定义知道,ax=b;
两边取以c为底的对数,得logcax=logcbxlogca=logcb;
所以x=logcblogca,即logab=logcblogca.
一般地,logab=logcblogca(a>0,a≠1,c>0,c≠1,b>0)称为对数的换底公式.
(4)由(3)的证明过程来看,换底公式的证明要紧扣对数的定义,证明的依据是:若M>0,N>0,M=N,则logaM=logaN.
(5)一个数的对数,等于同一底数的真数的对数与底数的对数的商,这样就把一个对数变成了与原来对数的底数不同的两个对数的商.
(6)换底公式的意义就在于把对数式的底数改变,把不同底问题转化为同底问题,为使用运算性质创造条件,更方便化简求值.
说明:我们使用的计算器中,“log”通常是常用对数,因此要使用计算器计算对数,一定要先用换底公式转化为常用对数.如log23=lg3lg2,
即计算log23的值的按键顺序为:“log”→“3”→“÷”→“log”→“2”→“=”.
再如:在前面要求我国人口达到18亿的年份,就是要计算x=log1.011813,
所以x=log1.011813=lg1813lg1.01=lg18-lg13lg1.01≈1.2553-1.0390.0043=32.8837≈33(年).
可以看到运用对数换底公式,有时要方便得多.
应用示例
例1求log89log2732的值.
活动:学生观察题目,思考讨论,互相交流,教师适时提示,学生板演,利用换底公式统一底数;根据题目的特点,底数不同,所以考虑把底数统一起来,可以化成常用对数或以2为底的对数,以3为底的对数也可.
解法一:log89log2732=lg9lg8lg32lg27=2lg33lg25lg23lg3=109.
解法二:log89log2732=log29log28log232log227=2log23353log23=109.
解法三:log89log2732=log39log38log332log327=23log325log323=109.
点评:灵活运用对数的换底公式是解决问题的关键.
例2计算:(1)log52log4981log2513log734;(2)log43log92-.
活动:学生积极交流,教师引导,学生展示自己的思维过程,教师对学生的表现及时评价.先利用对数运算性质和换底公式进行化简,然后再求值;对(1)根据题目的特点,底数不同,所以考虑把底数统一起来,再利用对数的运算性质化简.对(2)利用换底公式把底数统一起来,再化简求值.
解:(1)原式=lg2lg5lg34lg72lg3-1lg52lg22lg73=12lg2lg54lg32lg7-lg32lg52lg23lg7=-3.
(2)log43log92-=log23log24log22log29-=12log2312log32+54log22
=14+54=32.
点评:在利用对数的换底公式进行化简求值时,一般情况是根据题中所给的对数式的具体特点选择恰当的底数进行换底,如果题目中所给的真数和底数互不相同,我们常选择以10为底的对数进行换底.
例3(1)证明logaxlogabx=1+logab;
(2)已知==…==λ,求证:.
活动:学生思考、讨论,教师适当提示:(1)运用对数换底公式,统一成以a为底的对数可直接得解,或利用对数的定义,分别把三个式子设出,再由定义转化成指数形式,利用指数幂的性质得解;(2)这是条件证明问题,应在现有条件下利用换底公式,转化成积的形式,从题目的结论来看,真数是积的形式,因此要创造对数的和的形式,这就想到先换底,再利用等比性质来解.
(1)证法一:设logax=p,logabx=q,logab=r,则x=ap,x=(ab)q=aqbq,b=ar.
所以ap=(ab)q=aq(1+r),从而p=q(1+r).
因为q≠0,所以pq=1+r,即logaxlogabx=1+logab.
证法二:显然x>0且x≠1,x可作为底数,左边=logaxlogabx=logxablogxa=logaab=1+logab=右边.
(2)证明:因为loga1b1=loga2b2=…=loganbn=λ,所以由换底公式得lgb1lga1=lgb2lga2=…=lgbnlgan=λ.由等比定理,所以lgb1+lgb2+…+lgbnlga1+lga2+…+lgan=λ.所以lg(b1b2…bn)lg(a1a2…an)=λ.
所以=lg(b1b2…bn)lg(a1a2…an)=λ.
点评:在解题过程中,根据题目的需要,把底数转化,换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简.
例420世纪30年代,里克特(C.F.Richter)制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M,其计算公式为M=lgA-lgA0,其中,A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).
(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);
(2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1)?
活动:学生审题,教师引导,学生交流,展示自己的思维过程,教师强调实际问题的注意事项.根据题目给出的数学模型及其含义来解决.这是实际问题,但题目给出了数学模型即关系式,关系式是以常用对数的形式给出,因此要利用对数的定义和运算性质,同时注意要使实际问题有意义.
解:(1)M=lg20-lg0.001=lg200.001=lg20000=lg2+lg104≈4.3.
因此,这是一次约为里氏4.3级的地震.
(2)由M=lgA-lgA0可得M=lgAA0,即AA0=10M,所以A=A010M.
当M=7.6时,地震的最大振幅为A1=A0107.6;
当M=5时,地震的最大振幅为A2=A0105.
所以,两次地震的最大振幅之比是A1A2=A0×107.6A0×105=107.6-5=102.6≈398.
答:7.6级地震的最大振幅大约是5级地震的最大振幅的398倍.
点评:利用所学知识解决实际问题,是教学的一个难点.
知能训练
课本本节练习4.
【补充练习】
(1)已知lg2=a,lg3=b,则lg12lg15等于()
A.2a+b1+a+bB.a+2b1+a+bC.2a+b1-a+bD.a+2b1-a+b
(2)已知2lg(x-2y)=lgx+lgy,则xy的值为()
A.1B.4C.1或4D.4或-1
(3)若3a=2,则log38-2log36=__________.
(4)lg12.5-lg58+lg0.5=__________.
答案:(1)C(2)B(3)a-2(4)1
拓展提升
探究换底公式的其他证明方法:
活动:学生讨论、交流、思考,教师可以引导,大胆设想,运用对数的定义及运算性质和指数幂的运算性质.
证法一:设logaN=x,则ax=N,两边取以c(c>0且c≠1)为底的对数,得logcax=logcN,所以xlogca=logcN,即x=logcNlogca.故logaN=logcNlogca.
证法二:由对数恒等式,得,两边取以c(c>0且c≠1)为底的对数,得logcN=logaNlogca,所以logaN=logcNlogca.
证法三:令logca=m,logaN=n,则a=cm,N=an,所以N=(cm)n=cmn.
两边取以c(c>0且c≠1)为底的对数,得mn=logcN,所以n=logcNm,即logaN=logcNlogca.
对数换底公式的应用:换底公式logaN=logcNlogca(c>0且c≠1,a>0且a≠1,N>0)的应用包括两个方面,即由左端到右端的应用和由右端到左端的应用,前者较为容易,而后者则易被学生忽视,因此,教学时应重视后者的用法,下面仅就后者举例说明:
例:化简:logaMlogaN+logbMlogbN+logcMlogcN+logdMlogdN.
解:原式=logNM+logNM+logNM+logNM=4logNM.
课堂小结
1.对数换底公式;
2.换底公式可用于对数式的化简、求值或证明.若对数式的底数和真数可转化成同底数的幂的形式,则该幂底数可被选作换底公式的底数,也可把对数式转化成以10为底的常用对数或以任意数a(a>0且a≠1)为底的对数式的形式.
作业
课本习题2.2A组6,11,12.
【补充作业】
1.已知,,求log81175的值.
解:因为=log277=13log37=a,所以log37=3a.
又因为=log35=b,
所以log81175=14log3(25×7)=14(log325+log37)=14(2log35+log37)=3a+2b4.
2.求证:(log23+log49+log827+…+)log9n32=52.
证明:左边=(log23+log49+log827+…+log2n3n)log9n32
=()1nlog932
=nlog231nlog332=log2352log32=52=右边.
设计感想
本堂课主要是学习对数的换底公式,它在以后的学习中有着非常重要的应用,由于对数的运算性质是在同底的基础上,因此利用对数换底公式把不同底数的对数转化为同底显得非常重要,有时也可以逆用对数的换底公式达到我们的目的,特别是实际问题的应用十分广泛,因此要反复训练,强化记忆,所以设计了大量的例题与练习,授课时要加快速度,激发学生学习的兴趣,多运用多媒体的教学手段.
备课资料
【备选例题】
【例1】化简:logaMlogbNlogbMlogcNlogcMlogdNlogdMlogaN.
解:原式=logaMlogaNlogbMlogbNlogcMlogcNlogdMlogdN=logNMlogNMlogNMlogNM=(logNM)4.
【例2】求证:logab=1logba(a>0,b>0且a≠1,b≠1).
证法一:logab=logbblogba=1logba.
证法二:1logba=logbblogba=logab.
【例3】试证:1log2x+1log3x+1log4x+…+1lognx=1logn!x.
证明:1log2x+1log3x+1log4x+…+1lognx=logx(2×3×4×…×n)
=logx(1×2×3×4×…×n)=logxn!=1logn!x.
【知识拓展】
对数的创立
对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是16世纪末到17世纪初的苏格兰数学家——纳皮尔(J.Napier,1550—1617)男爵.在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.
当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样.在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的.那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:
0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、…
1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、…
这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现.
比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加起来:6+8=14;第一行中的14,对应第二行中的16384,所以有64×256=16384.纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了.回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗?计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出值的反对数值,就是原先那两个复杂数的乘积了.这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?
经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点.所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣.伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡儿的坐标、纳皮尔的对数、牛顿和莱布尼茨的微积分共同称为17世纪的三大数学发明.法国著名的数学家、天文学家拉普拉斯(PierreSimonLaplace,1749—1827)曾说:“对数,可以缩短计算时间,在实效上等于把天文学家的寿命延长了许多倍”.

对数的概念与对数运算性质


作为优秀的教学工作者,在教学时能够胸有成竹,作为教师就要在上课前做好适合自己的教案。教案可以让学生更好的消化课堂内容,使教师有一个简单易懂的教学思路。关于好的教案要怎么样去写呢?以下是小编为大家收集的“对数的概念与对数运算性质”供您参考,希望能够帮助到大家。

2.2.1对数的概念与对数运算性质
一、内容与解析
(一)内容:对数的概念与对数的基本性质
(二)解析:我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.
教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.
二、教学目标及解析
(一)教学目标
1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.
2.通过与指数式的比较,引出对数的定义与性质.
3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;在学习过程中培养学生探究的意识;增加学生的成功感,增强学习的积极性.
(二)解析
1、理解对数的概念就是指:一是实际的需要;二是人为规定的一种新的表示数的符号;
2、熟练进行对数式与指数式的互化就是指:一是弄清楚对数与指数,对数式与指数式的含义;二是理解对数式与指数式的互化的实质;三是要把这种互化提升为一种方法,为我们以后解题奠定基础。3、会求一些特殊的对数式的值就是指能够熟练利用:和对数恒等式。
三、问题诊断分析
对数概念的理解中学生存在问题,所以要结合具体的实例,指出为了解决实际问题,引入对数的概念,体现了数学来源于实际的生活,并服务于实际的生活。
四、教学支持条件分析
在本节课()的教学中,准备使用(),因为使用(),有利于().

五、教学过程
1.庄子:一尺之棰,日取其半,万世不竭(1)取4次,还有多长?(2)取多少次,还有0.125尺?
2.假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?
抽象出:1.=?,=0.125x=?2.=2x=?
也是已知底数和幂的值,求指数你能看得出来吗?怎样求呢?
问题1.将上述问题进行归纳----对数的定义
一般地,如果a(a0,a≠1)的x次幂等于N,就是ax=N,那么数x叫做以a为底N的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数.
有了对数的定义,(1)前面问题中的x就可表示成什么式子?
x=log1.01,x=log1.01,x=log1.01.
(2)怎样用表格表示对数和指数幂之间的关系?
由此得到对数和指数幂之间的关系:
aNb
指数式ab=N底数幂指数
对数式logaN=b对数的底数真数对数
例如:42=162=log416;102=1002=log10100;4=2=log42;10-2=0.01-2=log100.01
探究一:指对互化
例1将下列指数式写成对数式:(课本第87页)
(1)=625(2)=(3)=27(4)=5.73
解析:直接用对数式的定义进行改写.
解:(1)625=4;(2)=-6;
(3)27=a;(4)
点评:主要考察了底真树与幂三者的位置.
变式练习1:将下列对数式写成指数式:
(1);(2)128=7;
(3)lg0.01=-2;(4)ln10=2.303
解:(1)(2)=128;
(3)=0.01;(4)=10
探究二:计算
例2计算:⑴,⑵,⑶,⑷
解析:将对数式写成指数式,再求解.
解:⑴设则,∴
⑵设则,,∴
⑶令=,
∴,∴
⑷令,∴,,∴
点评:考察了指数与对数的相互转化.
五.课堂目标检测
优化设计:随堂练习.
六.小结
本节主要学习了对数的概念,要熟练的进行指对互化.
七.配餐作业
优化设计:优化作业.

(1)求log84的值;
(2)已知loga2=m,loga3=n,求a2m+n的值.

对数的运算性质


作为杰出的教学工作者,能够保证教课的顺利开展,作为高中教师就要好好准备好一份教案课件。教案可以让学生能够听懂教师所讲的内容,帮助高中教师能够更轻松的上课教学。关于好的高中教案要怎么样去写呢?下面是小编为大家整理的“对数的运算性质”,仅供参考,希望能为您提供参考!

总课题对数函数分课时第2课时总课时总第30课时
分课题对数的运算性质课型新授课
教学目标掌握对数的运算性质;知道对数运算性质成立的条件,能灵活地运用对数的性质进行化简和求值
重点对数运算性质的运用
难点对数运算性质的正确运用
一、复习引入
1、对数的概念

2、常用对数与自然对数

3、对数式与指数式的互化

4、对数的运算性质
其中

二、例题分析
例1、求下列各式的值
(1)

例2、求的值

例3、已知,求下列各式的值(结果保留4位小数)
(1)(2)
例4、设,求证:。

三、随堂练习
1、下列等式中,正确的是___________________________。
(1)(2)(3)(4)

2、设,下列等式中,正确的是________________________。
(1)
(2)
(3)
(4)

四、回顾小结
1、对数运算性质及其用于计算和证明
课后作业
班级:高一()班姓名__________
一、基础题
1、下列等式中,错误的是______________
(1)(2)(3)(4)

2、的值为_____________

3、已知,则_________

4、化简____________

5、已知,求(结果保留4位小数)。

二、提高题
6、已知,试用表示下列各对数。
(1)

7、计算:

三、能力题
8、设,求的值。

文章来源:http://m.jab88.com/j/5621.html

更多

最新更新

更多