第一章小结
一、教学目标
1、知识与技能:(1)使学生掌握知识结构与联系,进一步巩固、深化所学知识;(2)通过对知识的梳理,提高学生的归纳知识和综合运用知识的能力。
2、过程与方法:利用框图对本章知识进行系统的小结,直观、简明再现所学知识,化抽象学习为直观学习,易于识记;同时凸现数学知识的发展和联系。
3、情态与价值:学生通过知识的整合、梳理,理会空间点、线面间的位置关系及其互相联系,进一步培养学生的空间想象能力和解决问题能力。
二、教学重点、难点
重点:各知识点间的网络关系;
难点:在空间如何实现平行关系、垂直关系、垂直与平行关系之间的转化。
三、教学设计
(一)知识回顾,整体认识
1、本章知识回顾
(1)空间点、线、面间的位置关系;
(2)直线、平面平行的判定及性质;
(3)直线、平面垂直的判定及性质。
2、本章知识结构框图
(二)整合知识,发展思维
1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。
公理1——判定直线是否在平面内的依据;
公理2——提供确定平面最基本的依据;
公理3——判定两个平面交线位置的依据;
公理4——判定空间直线之间平行的依据。
2、空间问题解决的重要思想方法:化空间问题为平面问题;
3、空间平行、垂直之间的转化与联系:
4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。
(三)应用举例,深化巩固
1、P.82A组第1题
本题主要是公理1、2知识的巩固与应用。
2、P.82A组第8题
本题主要是直线与平面垂直的判定与性质的知识巩固与应用。
(四)、课堂练习:
1.选择题
(1)如图BC是Rt⊿ABC的斜边,过A作⊿ABC所在平面垂线AP,连PB、PC,过A作AD⊥BC于D,连PD,那么图中直角三角形的个数是()
(A)4个(B)6个(C)7个(D)8个
(2)直线a与平面斜交,则在平面内与直线a垂直的直线()
(A)没有(B)有一条(C)有无数条(D)内所有直线
答案:(1)D(2)C
2.填空题
(1)边长为a的正六边形ABCDEF在平面内,PA⊥,PA=a,则P到CD的距离为,P到BC的距离为.
(2)AC是平面的斜线,且AO=a,AO与成60角,
OC,AA'⊥于A',∠A'OC=45,
则A到直线OC的距离是,∠AOC的余弦值是.
答案:(1);(2)
3.在正方体ABCD-A1B1C1D1中,求证:A1C⊥平面BC1D.
分析:A1C在上底面ABCD的射影AC⊥BD,
A1C在右侧面的射影D1C⊥C1D,
所以A1C⊥BD,A1C⊥C1D,从而有A1C⊥平面BC1D.
(五)课后作业
1、阅读本章知识内容,从中体会知识的发展过程,理会问题解决的思想方法;
2、P.83B组第2题。
五、教后反思:
§1.2.3—1。2.4空间中直线与平面、平面与平面之间的位置关系
一、教学目标:
1、知识与技能
(1)了解空间中直线与平面的位置关系;
(2)了解空间中平面与平面的位置关系;
(3)培养学生的空间想象能力。
2、过程与方法
(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;
(2)让学生利用已有的知识与经验归纳整理本节所学知识。
二、教学重点、难点
重点:空间直线与平面、平面与平面之间的位置关系。
难点:用图形表达直线与平面、平面与平面的位置关系。
三、学法与教学用具
1、学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、长方体模型
四、教学思想
(一)创设情景、导入课题
教师以生活中的实例以及课本P28的思考题为载体,提出了:空间中直线与平面有多少种位置关系?(板书课题)
(二)研探新知
1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:
(1)直线在平面内——有无数个公共点
(2)直线与平面相交——有且只有一个公共点
(3)直线在平面平行——没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示
aαa∩α=Aa∥α
例4(投影)
师生共同完成例4
例4的给出加深了学生对这几种位置关系的理解。
2、引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系:
(1)两个平面平行——没有公共点
(2)两个平面相交——有且只有一条公共直线
用类比的方法,学生很快地理解与掌握了新内容,这两种位置关系用图形表示为
α∥βα∩β=L
教师指出:画两个相互平行的平面时,要注意使表示平面的两个平行四边形的对应边平行。教材P31练习
学生独立完成后教师检查、指导
(三)归纳整理、整体认识
教师引导学生归纳,整理本节课的知识脉络,提升他们掌握知识的层次。
(四)作业
1、让学生回去整理这三节课的内容,理清脉络。
2、教材P36习题1.2第1、2题
第二课时空间中直线与直线之间的位置关系
(一)教学目标
1.知识与技能
(1)了解空间中两条直线的位置关系;
(2)理解异面直线的概念、画法,培养学生的空间想象能力;
(3)理解并掌握公理4;
(4)理解并掌握等角公理;
(5)异面直线所成角的定义、范围及应用。
2.过程与方法
让学生在学习过程中不断归纳整理所学知识.
3.情感、态度与价值
让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.
(二)教学重点、难点
重点:1、异面直线的概念;2、公理4及等角定理.
难点:异面直线所成角的计算.
(三)教学方法
师生的共同讨论与讲授法相结合;
教学过程教学内容师生互动设计意图
新课导入问题:在同一平面内,两条直线有几种位置关系?空间的两条直线还有没有其他位置关系?师投影问题,学生讨论回答
生1:在同一平面内,两条直线的位置关系有:平行与相交.
生2:空间的两条直线除平行与相交外还有其他位置关系,如教室里的电灯线与墙角线……
师(肯定):这种位置关系我们把它称为异面直线,这节课我们要讨论的是空间中直线与直线的位置关系.以旧导新培养学生知识的系统性和学生学习的积极性.
探索新知1.空间的两条直线位置关系:
共面直线
异面直线:不同在任何一个平面内,没有公共点.
师:根据刚才的分析,空间的两条直线的位置关系有以下三种:①相交直线—有且仅有一个公共点
②平行直线—在同一平面内,没有公共点.
③异面直线—不同在任何一个平面内,没有公共点.
随堂练习:
如图所示P50-16是一个正方体的展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有对.
答案:4对,分别是HG与EF,AB与CD,AB与EF,AB与HG.现在大家思考一下这三种位置关系可不可以进行分类
生:按两条直线是否共面可以将三种位置关系分成两类:一类是平行直线和相交直线,它们是共面直线.一类是异面直线,它们不同在任何一个平面内.
师(肯定)所以异面直线的特征可说成“既不平行,也不相交”那么“不同在任何一个平面内”是否可改为“不在一个平面内呢”
学生讨论发现不能去掉“任何”
师:“不同在任何一个平面内”可以理解为“不存在一个平面,使两异面直线在该平面内”培养学生分类的能力,加深学生对空间的一条直线位置关系的理解
(1)公理4,平行于同一条直线的两条直线互相平行
(2)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补
例2如图所示,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.
证明:连接BD,
因为EH是△ABD的中位线,
所以EH∥BD,且.
同理FG∥BD,且.
因为EH∥FG,且EH=FG,
所以四边形EFGH为平行四边形.师:现在请大家看一看我们的教室,找一下有无不在同一平面内的三条直线两两平行的.
师:我们把上述规律作为本章的第4个公理.
公理4:平行于同一条直线的两条直线互相平行.
师:现在请大家思考公理4是否可以推广,它有什么作用.
生:推广空间平行于一条直线的所有直线都互相平行.它可以用来证明两条直线平行.
师(肯定)下面我们来看一个例子
观察图,在长方体ABCD–A′B′C′D′中,∠ADC与∠A′D′C′,∠ADC与∠A′B′C′的两边分别对应平行,这两组角的大小关系如何?
生:从图中可以看出,
∠ADC=∠A′D′C′,
∠ADC+∠A′B′C′=180°
师:一般地,有以下定理:……这个定理可以用公理4证明,是公理4的一个推广,我们把它称为等角定理.
师打出投影片让学生尝试作图,在作图的基础上猜想平行的直线并试图证明.
师:在图中EH、FG有怎样的特点?它们有直接的联系吗?引导学生找出证明思路.
培养学生观察能力语言表达能力和探索创新的意识.
通过分析和引导,培养学生解题能力.
探索新知3.异面直线所成的角
(1)异面直线所成角的概念.
已知两条异面直线a、b,经过空间任一点O作直线a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
(2)异面直线互相垂直
如果两条异面直线所成的角是直角,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a、b,记作a⊥b.
例3如图,已知正方体ABCD–A′B′C′D′.
(1)哪些棱所在直线与直线BA′是异面直线?
(2)直线BA′和CC′的夹角是多少?
(3)哪此棱所在的直线与直线AA′垂直?
解:(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与直线BA′是异面直线.
(2)由BB′∥CC′可知,∠B′BA′为异面直线B′A与CC′的夹角,∠B′BA′=45°.
(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.师讲述异面直线所成的角的定义,然后学生共同对定义进行分析,得出如下结论.
①两条异面直线所成角的大小,是由这两条异面直线的相互位置决定的,与点O的位置选取无关;
②两条异面直线所成的角
;
③因为点O可以任意选取,这就给我们找出两条异面直线所成的角带来了方便,具体运用时,为了简便,我们可以把点O选在两条异面直线的某一条上;
④找出两条异面直线所成的角,要作平行移动(作平行线),把两条异面直线所成的角转化为两条相交直线所成的角;
⑤当两条异面直线所成的角是直线时,我们就说这两条异面直线互相垂直,异面直线a和b互相垂直,也记作a⊥b;
⑥以后我们说两条直线互相垂直,这两条直线可能是相交的,也可能是不相交的,即有共面垂直,也有异面垂直这样两种情形.
然后师生共同分析例题加深对平面直线所成角的理解,培养空间想象能图力和转化化归以能力.
随堂练习1.填空题:
(1)如图,AA′是长方体的一条棱,长方体中与AA′平行的棱共有条.
(2)如果OA∥O′A′,OB∥O′B′,那么∠AOB和∠A′O′B′.
答案:(1)3条.分别是BB′,CC′,DD′;(2)相等或互补.
2.如图,已知长方体ABCD–A′B′C′D′中,AB=,AD=,AA′=2.
(1)BC和A′C′所成的角是多少度?
(2)AA′和BC′所成的角是多少度?学生独立完成
答案:.
2.(1)因为BC∥B′C′,所以∠B′C′A′是异面直线A′C′与BC所成的角.在Rt△A′B′C′中,A′B′=,B′C′=,所以∠B′C′A′=45°.
(2)因为AA′∥BB′,所以∠B′BC′是异面直线AA′和BB′所成的角.
在Rt△BB′C′中,B′C′=AD=,BB′=AA′=2,
所以BC′=4,∠B′BC′=60°.
因此,异面直线AA′与BC′所成的角为60°.
归纳总结1.空间中两条直线的位置关系.
2.平行公理及等角定理.
3.异面直线所成的角.学生归纳,教师点评并完善培养学生归纳总结能力,加深学生对知识的掌握,完善学生知识结构.
作业2.1第二课时习案学生独立完成固化知识
提升能力
附加例题
例1“a、b为异面直线”是指:
①a∩b=,且a∥b;
②a面,b面,且a∩b=;
③a面,b面,且∩=;
④a面,b面;
⑤不存在面,使a面,b面成立.
上述结论中,正确的是()
A.①④⑤正确B.①③④正确
C.仅②④正确D.仅①⑤正确
【解析】①等价于a和b既不相交,又不平行,故a、b是异面直线;②等价于a、b不同在同一平面内,故a、b是异面直线.故选D
例2如果异面直线a与b所成角为50°,P为空间一定点,则过点P与a、b所成的角都是30°的直线有且仅有条.
【解析】如图所示,过定点P作a、b的平行线
a′、b′,因a、b成50°角,∴a′与b′也成50°角.过P作∠A′PB′的平分线,取较小的角有
∠A′PO=∠B′PO=25°.
∵∠APA′>A′PO,
∴过P作直线l与a′、b′成30°角的直线有2条.
例3空间四边形ABCD,已知AD=1,BD=,且AD⊥BC,对角线BD=,AC=,求AC和BD所成的角。
【解析】取AB、AD、DC、BD中点为E、F、G、M,连EF、FG、GM、ME、EG.
则MG
EM
∵AD⊥BC∴EM⊥MG
在Rt△EMG中,有
在RFG中,∵EF=
∴EF2+FG2=EG2
∴EF⊥FG,即AC⊥BD
∴AC和BD所成角为90°.
【点评】根据异面直线成角的定义,异面直线所成角的求法通常采用平移直线,转化为相交直线所成角,注意角的范围是.
文章来源:http://m.jab88.com/j/5619.html
更多