88教案网

鲁教版八年级数学上册第一章知识点汇总

教案课件是老师需要精心准备的,大家应该开始写教案课件了。只有写好教案课件计划,可以更好完成工作任务!你们会写教案课件的范文吗?下面是小编帮大家编辑的《鲁教版八年级数学上册第一章知识点汇总》,欢迎阅读,希望您能阅读并收藏。

鲁教版八年级数学上册第一章知识点汇总

第一章生活中的轴对称

1.1轴对称现象

1.轴对称图形:(1)如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,这个图形叫轴对称图形。这条直线叫对称轴。(注意:对称轴是一条直线,不是线段,也不是射线)。

(2)轴对称图形至少有一条对称轴,最多可达无数条。

例:①圆的对称轴是它的直径(×)直径是线段,而对称轴是直线(应说圆的对称轴是过圆心的直线或直径所在的直线);

②角的对称轴是它的角平分线(×)角平分线是射线而不是直线(应说角的对称轴是角平分线所在的直线);

③正方形的对角线是正方形的对称轴(×)对角线也是线段而不是直线。

2.轴对称:(1)对于两个图形,如果沿一条直线折叠后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。(成轴对称的两图形本身可以不是轴对称图形)。

(2)轴对称图形与轴对称的关系:

①联系:都是沿一条直线折叠后能够互相重合;当把成轴对称的两个图形看成一个整体时,它是一个轴对称图形;

②区别:轴对称图形是一个图形,轴对称是两个图形之间的关系。

1.2简单的轴对称图形

有两边相等的三角形叫等腰三角形。

1.三线合一定理:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称为“三线合一”,它们所在的直线就是等腰三角形的对称轴)。注意:对于一般的等腰三角形,一定要说清哪边上的中线、高和哪个角的平分线;等边三角形有三组三线合一,任意一边上的中线和高及其所对的角的平分线。

2.等角对等边,等边对等角:如果一个三角形有两个角相等,那么它们所对的边也相等;如果一个三角形有两个边相等,那么它们所对的角也相等。

3.角平分线定理:角平分线上的任意一点到角的两边的距离(垂线段)相等。

4.中垂线定理(1)概念:既垂直又平分线段的直线叫垂直平分线,简称中垂线;

(2)定理:垂直平分线上的任一点到线段两端点的距离(与端点的连线)相等。

5.30°所对直角边等于斜边的一半;斜边上的中线等于斜边的一半。

1.3探索轴对称的性质

1.对应点所连的线段被对称轴垂直平分;

2.轴对称图形对应线段相等,对应角相等。

1.4利用轴对称设计图案

1.画点A关于直线L的对应点A:1、过点A作对称轴L的垂线,垂足为B

2、延长AB至A,使得BA=AB

3、点A就是点A关于直线L的对应点

2.画线段AB关于L的对应线段AB:1、过点A作对称轴L的垂线AA,使CA=CA

2、过点A作对称轴L的垂线BB,使DB=DB

3、连接AB,AB即是关于直线L的对应线段。

相关推荐

鲁教版八年级数学上册第七章知识点汇总


鲁教版八年级数学上册第七章知识点汇总

第七章二元一次方程组

7.1二元一次方程组

1.二元一次方程:含有两个未知数,并且含未知数的项都是一次的方程叫做二元一次方程。

2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫二元一次方程组。

3.二元一次方程的解:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解(二元一次方程有无数个解)。

4.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫这个二元一次方程组的解。

7.2解二元一次方程组

1.代入法:先通过一个方程用一个未知数表示另一个未知数,然后代入另一个方程从而得出一个一元一次方程,即可求到其中的一个未知数,然后代回去求另一个未知数。

2.消元法:将两个方程中其中一个未知数的系数化成相等或互为相反数,然后将化成后的式子左右分别相加或相减(系数相等就相减,系数互为相反数就相加)从而消掉了一个未知数即得到了一个一元一次方程,以此求出其中一个未知数的值,再代入求另一个未知数即可。

7.3二元一次方程组的应用

列二元一次方程组解应用题的步骤:

1.审题;2.设未知数;3.列方程组;4.解方程组;5.检验;6.答。

例:一列快车长306米,一列慢车长344米.两车相向而行,从相遇到离开需13秒.若两车同向而行,快车从追及慢车到离开慢车需65秒.求快、慢车的速度分别是多少?

2017八年级上册数学第一章主要知识点整理(鲁教版)


学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家在认真写教案课件了。将教案课件的工作计划制定好,就可以在接下来的工作有一个明确目标!适合教案课件的范文有多少呢?请您阅读小编辑为您编辑整理的《2017八年级上册数学第一章主要知识点整理(鲁教版)》,欢迎阅读,希望您能够喜欢并分享!

2017八年级上册数学第一章主要知识点整理(鲁教版)
第一章生活中的轴对称
1.1轴对称现象
1.轴对称图形:(1)如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,这个图形叫轴对称图形。这条直线叫对称轴。(注意:对称轴是一条直线,不是线段,也不是射线)。
(2)轴对称图形至少有一条对称轴,最多可达无数条。
例:①圆的对称轴是它的直径(×)直径是线段,而对称轴是直线(应说圆的对称轴是过圆心的直线或直径所在的直线);
②角的对称轴是它的角平分线(×)角平分线是射线而不是直线(应说角的对称轴是角平分线所在的直线);
③正方形的对角线是正方形的对称轴(×)对角线也是线段而不是直线。
2.轴对称:(1)对于两个图形,如果沿一条直线折叠后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。(成轴对称的两图形本身可以不是轴对称图形)。
(2)轴对称图形与轴对称的关系:
①联系:都是沿一条直线折叠后能够互相重合;当把成轴对称的两个图形看成一个整体时,它是一个轴对称图形;
②区别:轴对称图形是一个图形,轴对称是两个图形之间的关系。
1.2简单的轴对称图形
有两边相等的三角形叫等腰三角形。
1.三线合一定理:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称为“三线合一”,它们所在的直线就是等腰三角形的对称轴)。注意:对于一般的等腰三角形,一定要说清哪边上的中线、高和哪个角的平分线;等边三角形有三组三线合一,任意一边上的中线和高及其所对的角的平分线。
2.等角对等边,等边对等角:如果一个三角形有两个角相等,那么它们所对的边也相等;如果一个三角形有两个边相等,那么它们所对的角也相等。
3.角平分线定理:角平分线上的任意一点到角的两边的距离(垂线段)相等。
4.中垂线定理(1)概念:既垂直又平分线段的直线叫垂直平分线,简称中垂线;
(2)定理:垂直平分线上的任一点到线段两端点的距离(与端点的连线)相等。
5.30°所对直角边等于斜边的一半;斜边上的中线等于斜边的一半。
1.3探索轴对称的性质
1.对应点所连的线段被对称轴垂直平分;
2.轴对称图形对应线段相等,对应角相等。
1.4利用轴对称设计图案
1.画点A关于直线L的对应点A:1、过点A作对称轴L的垂线,垂足为B
2、延长AB至A,使得BA=AB
3、点A就是点A关于直线L的对应点
2.画线段AB关于L的对应线段AB:1、过点A作对称轴L的垂线AA,使CA=CA
2、过点A作对称轴L的垂线BB,使DB=DB
3、连接AB,AB即是关于直线L的对应线段。

鲁教版八年级数学上册第二章知识点汇总


老师职责的一部分是要弄自己的教案课件,到写教案课件的时候了。我们要写好教案课件计划,新的工作才会如鱼得水!有多少经典范文是适合教案课件呢?小编特地为大家精心收集和整理了“鲁教版八年级数学上册第二章知识点汇总”,但愿对您的学习工作带来帮助。

鲁教版八年级数学上册第二章知识点汇总

第二章勾股定理

2.1探索勾股定理

勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。(一个直角三角形,以它的两直角边为边长所作的两正方形面积之和等于以它的斜边为边长所作的正方形的面积)

注意:电视机有多少英寸,指的是电视屏幕对角线的长度。

2.2勾股数

1.勾股定理的逆定理:若三角形的三边长a,b,c满足a2+b2=c2,则该三角形是直角三角形。

在ABC中,a,b,c为三边长,其中c为最大边,

若a2+b2=c2,则ABC为直角三角形;

若a2+b2c2,则ABC为锐角三角形;

若a2+b2c2,则ABC为钝角三角形。

2.勾股数:满足a2+b2=c2的三个正整数(即能构成一个直角三角形三边的一组正整数),称为勾股数(勾股数是正整数)。

规律:一组能构成直角三角形的三边的数,同时扩大或缩小同一倍数(即同乘以或除以同一个正数),仍能够成直角三角形。

一组勾股数的倍数不一定是勾股数,因为其倍数可能是小数,只有整数倍数才仍是勾股数。

常用勾股数:3,4,5(三四五)9,12,15(3,4,5的三倍)5,12,13(5.12记一生)

8,15,17(八月十五在一起)6,8,10(3,4,5的两倍)7,24,25(企鹅是二百五)

勾股数须知:连续的勾股数只有3,4,5连续的偶数勾股数只有6,8,10

文章来源:http://m.jab88.com/j/52031.html

更多

最新更新

更多