88教案网

2012届高考理科数学第二轮复习三角函数教案

经验告诉我们,成功是留给有准备的人。作为高中教师就要早早地准备好适合的教案课件。教案可以保证学生们在上课时能够更好的听课,帮助高中教师能够井然有序的进行教学。优秀有创意的高中教案要怎样写呢?下面是小编精心为您整理的“2012届高考理科数学第二轮复习三角函数教案”,欢迎阅读,希望您能阅读并收藏。

2012届高考数学二轮复习
专题四三角函数
【重点知识回顾】
三角函数是传统知识内容中变化最大的一部分,新教材处理这一部分内容时有明显的降调倾向,突出正、余弦函数的主体地位,加强了对三角函数的图象与性质的考查,因此三角函数的性质是本章复习的重点。第一轮复习的重点应放在课本知识的重现上,要注重抓基本知识点的落实、基本方法的再认识和基本技能的掌握,力求系统化、条理化和网络化,使之形成比较完整的知识体系;第二、三轮复习以基本综合检测题为载体,综合试题在形式上要贴近高考试题,但不能上难度。当然,这一部分知识最可能出现的是“结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用)来考查三角函数性质”的命题,因此,建议三角函数的复习应控制在课本知识的范围和难度上,这样就能够适应未来高考命题趋势。总之,三角函数的复习应立足基础、加强训练、综合应用、提高能力
方法技巧:
1.八大基本关系依据它们的结构分为倒数关系、商数关系、平方关系,用三角函数的定义反复证明强化记忆,这是最有效的记忆方法。诱导公式用角度制和弧度制表示都成立,记忆方法可概括为“奇变偶不变,符号看象限”,变与不变是相对于对偶关系的函数而言的
2.三角函数值的符号在求角的三角函数值和三角恒等变换中,显得十分重要,根据三角函数的,可简记为“一全正,二正弦,三两切,四余弦”,其含义是:在第一象限各三角函数值皆为正;在第二象限正弦值为正;在第三象限正余切值为正;在第四象限余弦值为正
3.在利用同角三角函数的基本关系式化简、求值和证明恒等关系时,要注意用是否“同角”来区分和选用公式,注意切化弦、“1”的妙用、方程思想等数学思想方法的运用,在利用诱导公式进行三角式的化简、求值时,要注意正负号的选取
4.求三角函数值域的常用方法:
求三角函数值域除了判别式、重要不等式、单调性等方法之外,结合三角函数的特点,还有如下方法:
(1)将所给三角函数转化为二次函数,通过配方法求值域;
(2)利用的有界性求值域;
(3)换元法,利用换元法求三角函数的值域,要注意前后的等价性,不能只注意换元,不注意等价性
5.三角函数的图象与性质
(一)列表综合三个三角函数,,的图象与性质,并挖掘:
⑴最值的情况;
⑵了解周期函数和最小正周期的意义.会求的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,了解加了绝对值后的周期情况;
⑶会从图象归纳对称轴和对称中心;
的对称轴是,对称中心是;
的对称轴是,对称中心是
的对称中心是
注意加了绝对值后的情况变化.
⑷写单调区间注意.
(二)了解正弦、余弦、正切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数的简图,并能由图象写出解析式.
⑴“五点法”作图的列表方式;
⑵求解析式时处相的确定方法:代(最高、低)点法、公式.
(三)正弦型函数的图象变换方法如下:
先平移后伸缩
的图象
得的图象
得的图象
得的图象
得的图象.
先伸缩后平移
的图象
得的图象
得的图象
得的图象得的图象.
【典型例题】
例1.已知,求(1);(2)的值.
解:(1);
(2)
.
说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化
例2.已知向量
,且,
(1)求函数的表达式;
(2)若,求的最大值与最小值
解:(1),,,又,
所以,
所以,即;
(2)由(1)可得,令导数,解得,列表如下:

t-1(-1,1)1(1,3)
导数0-0+
极大值递减极小值递增
而所以
说明:本题将三角函数与平面向量、导数等综合考察,体现了知识之间的融会贯通。
例3.平面直角坐标系有点
(1)求向量和的夹角的余弦用表示的函数;
(2)求的最值.
解:(1),

(2),又,
,,.
说明:三角函数与向量之间的联系很紧密,解题时要时刻注意
例4.设q[0,],且cos2q+2msinq-2m-20恒成立,求m的取值范围.
解法1由已知0≤sinq≤1且1-sin2q+2msinq-2m-20恒成立.
令t=sinq,则0≤t≤1且1-t2+2mt-2m-20恒成立.
即f(t)=t2-2mt+2m+1=(t-m)2-m2+2m+10对t[0,1]恒成立.
故可讨论如下:
(1)若m0,则f(0)0.即2m+10.解得m,∴m0;
(2)若0≤m≤1,则f(m)0.即-m2+2m+10.亦即m2-2m-10.解得:1m1+,∴0≤m≤1;
(3)若m1,则f(1)0.即0×m+20.∴mR,∴m1.
综上所述m.即m的取值范围是(,+∞).
解法2题中不等式即为2(1-sinq)m-1-sin2q.∵q[0,],∴0≤sinq≤1.
当sinq=1时,不等式显然恒成立,此时mR;
当0≤sinq1时,恒成立.
令t=1-sinq,则t(0,1],且恒成立.
易证g(t)=1-在(0,1]上单调递增,有最大值-,
∴m.即m的取值范围是(,+∞).
说明:三角函数与不等式综合,注意“恒成立”问题的解决方式

【模拟演练】
一、选择
1.点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
2.函数在区间(,)内的图象大致是()
A.B.C.D.
6.已知∠A.∠B.∠C为三角形的三个内角,且,则△ABC是()
A.等边三角形B.等腰三角形C.直角三角形D.无法确定
7.关于函数的图象,有以下四个说法:
①关于点对称;②关于点对称;
③关于直线对称;④关于直线对称
则正确的是()
A.①③B.②③C.①④D.②④
9.如图,某走私船在航行中被我军发现,我海军舰艇在处获悉后,测出该走私船在方位角为,距离为的处,并测得走私船正沿方位角为的方向,以的速度向小岛靠拢,我海军舰艇立即以的速度沿直线方向前去追击.舰艇并在B处靠近走私船所需的时间为()
A.20B.C.30D.50
11.在中,分别为三个内角的对边,设向量,若向量,则的值为()
A.B.C.D.
二、填空
13.已知向量且,则与方向相反的单位向量的坐标为_________。

原专题三的平面向量与三角函数的第15题
16.已知函数(,,)的一段图象如图所示,则这个函数的单调递增区间为。

18.(12分)已知,
(1)求的最大值和最小值;
(2)若不等式在上恒成立,求m的取值范围。
19.(12分)已知向量,且分别为的三边所对的角。
(1)求角C的大小;
(2)若成等差数列,且,求c的边长。
21.(12)已知:向量,,函数
(1)若且,求的值;
(2)求函数的单调增区间以及函数取得最大值时,向量与的夹角.
专题训练答案
1.D解析:,易知角终边在第三象限,从而有为正,为负,所以点位于第四象限。
2.A.解:y=,所以,选A.。
6.B.解:因为,所以
即:,有
即=,即
则,又因为为三角形的内角,则,所以为等腰三角形。
7.B.解:当时,=1,当x=时,=0,所以,②③正确。
9.B解:设舰艇收到信号后在处靠拢走私船,则,,又nmile,.
由余弦定理,得


.
化简,得

解得(负值舍去).
答案:B
11.B解析:由,得,又,所以,所以。
13.解:因为,所以,解得:,所以,所以,所以与方向相反的单位向量的坐标为。
16.解:由图象可知:;A==3。所以,y=3sin(2x+),
将代入上式,得:=1,=2k+,即=2k+,
由||<,可得:所以,所求函数解析式为:。
∵当时,单调递增

18.解:(1)
。4分
所以当=1时。
所以当=-1时。6分
(2)在上恒成立,
即在上恒成立,
只需,。8分
令,,

所以当时,有最小值,,
故。12分
19.解:(1),

。2分
又,,
。4分
,。6分
(2)成等差数列,。
。8分
又,。
,。10分
,,
,。12分
21.解:∵=。2分
(1)由得即,
∵∴或
∴或。4分
(2)∵

。8分
由得,
∴的单调增区间.10分
由上可得,当时,由得
,,∴。12分
(M.YJS21.cOm 幼儿教师教育网)

相关推荐

2012届高三理科数学三角函数总复习教学案


一名优秀的教师在教学时都会提前最好准备,作为教师准备好教案是必不可少的一步。教案可以让学生能够在教学期间跟着互动起来,使教师有一个简单易懂的教学思路。教案的内容要写些什么更好呢?小编为此仔细地整理了以下内容《2012届高三理科数学三角函数总复习教学案》,欢迎您参考,希望对您有所助益!

2012届高三理科数学三角函数总复习教学案

高考导航

考试要求重难点击命题展望
1.了解任意角的概念和弧度制的概念,能进行弧度与角度的互化.
2.理解任意角三角函数(正弦、余弦、正切)的定义.
3.能利用单位圆中的三角函数线推导出,π±α的正弦、余弦、正切的诱导公式,能画出y=sinx,y=cosx,y=tanx的图象,了解三角函数的周期性.
4.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在(-,)上的单调性.
5.理解同角三角函数的基本关系式:sin2x+cos2x=1,=tanx.
6.了解函数y=Asin(ωx+φ)的物理意义,能画出函数y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响.
7.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.
8.会用向量的数量积推导出两角差的余弦公式,会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系,能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆).
9.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题,能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.本章重点:1.角的推广,三角函数的定义,诱导公式的运用;2.三角函数的图象与性质,y=Asin(ωx+)
(ω>0)的性质、图象及变换;3.用三角函数模型解决实际问题;4.以和、差、倍角公式为依据,提高推理、运算能力;5.正、余弦定理及应用.
本章难点:1.任意角的三角函数的几何表示,图象变换与函数解析式变换的内在联系;2.灵活运用三角公式化简、求值、证明;3.三角函数的奇偶性、单调性的判断,最值的求法;4.探索两角差的余弦公式;5.把实际问题转化为三角函数问题.三角函数是基本初等函数,是描述周期现象的重要数学模型.三角函数的概念、图象和性质是高考数学必考的基础知识之一.在高考中主要考查对三角函数概念的理解;运用函数公式进行恒等变形、化简、求值、证明三角函数的图象和性质以及图象变换、作图、识图等.解三角形的问题往往与其他知识(如立体几何、解析几何、向量等)相联系,考查考生的数学应用意识,体现以能力立意的高考命题原则.

知识网络

5.1任意角的三角函数的概念

典例精析
题型一象限角与终边相同的角
【例1】若α是第二象限角,试分别确定2α、的终边所在的象限.
【解析】因为α是第二象限角,
所以k360°+90°<α<k360°+180°(k∈Z).
因为2k360°+180°<2α<2k360°+360°(k∈Z),故2α是第三或第四象限角,或角的终边在y轴的负半轴上.
因为k180°+45°<α2<k180°+90°(k∈Z),
当k=2n(n∈Z)时,n360°+45°<α2<n360°+90°,
当k=2n+1(n∈Z)时,n360°+225°<α2<n360°+270°.
所以α2是第一或第三象限角.
【点拨】已知角α所在象限,应熟练地确定α2所在象限.
如果用α1、α2、α3、α4分别表示第一、二、三、四象限角,则α12、α22、α32、α42分布如图,即第一象限角的半角是第一或第三象限角(其余略),熟记右图,解有关问题就方便多了.
【变式训练1】若角2α的终边在x轴上方,那么角α是()
A.第一象限角B.第一或第二象限角
C.第一或第三象限角D.第一或第四象限角
【解析】由题意2kπ<2α<2kπ+π,k∈Z,
得kπ<α<kπ+π2,k∈Z.
当k是奇数时,α是第三象限角.
当k是偶数时,α是第一象限角.故选C.
题型二弧长公式,面积公式的应用
【例2】已知一扇形的中心角是α,所在圆的半径是R.
(1)若α=60°,R=10cm,求扇形的弧长及该弧所在的弓形的面积;
(2)若扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形的面积有最大值?并求出这个最大值.
【解析】(1)设弧长为l,弓形面积为S弓,
因为α=60°=π3,R=10cm,所以l=10π3cm,
S弓=S扇-SΔ=12×10×10π3-12×102×sin60°=50(π3-32)cm2.
(2)因为C=2R+l=2R+αR,所以R=C2+α,
S扇=12αR2=12α(C2+α)2=C22αα2+4α+4=C221α+4α+4≤C216,
当且仅当α=4α时,即α=2(α=-2舍去)时,扇形的面积有最大值为C216.
【点拨】用弧长公式l=|α|R与扇形面积公式S=12lR=12R2|α|时,α的单位必须是弧度.
【变式训练2】已知一扇形的面积为定值S,当圆心角α为多少弧度时,该扇形的周长C有最小值?并求出最小值.
【解析】因为S=12Rl,所以Rl=2S,
所以周长C=l+2R≥22Rl=24S=4S,
当且仅当l=2R时,C=4S,
所以当α=lR=2时,周长C有最小值4S.

题型三三角函数的定义,三角函数线的应用
【例3】(1)已知角α的终边与函数y=2x的图象重合,求sinα;(2)求满足sinx≤32的角x的集合.
【解析】(1)由交点为(-55,-255)或(55,255),
所以sinα=±255.
(2)①找终边:在y轴正半轴上找出点(0,32),过该点作平行于x轴的平行线与单位圆分别交于P1、P2两点,连接OP1、OP2,则为角x的终边,并写出对应的角.
②画区域:画出角x的终边所在位置的阴影部分.
③写集合:所求角x的集合是{x|2kπ-4π3≤x≤2kπ+π3,k∈Z}.
【点拨】三角函数是用角α的终边与单位圆交点的坐标来定义的,因此,用定义求值,转化为求交点的问题.利用三角函数线证某些不等式或解某些三角不等式更简洁、直观.
【变式训练3】函数y=lgsinx+cosx-12的定义域为.
【解析】
2kπ<x≤2kπ+π3,k∈Z.
所以函数的定义域为{x|2kπ<x≤2kπ+π3,k∈Z}.
总结提高
1.确定一个角的象限位置,不仅要看角的三角函数值的符号,还要考虑它的函数值的大小.
2.在同一个式子中所采用的量角制度必须相一致,防止出现诸如k360°+π3的错误书写.
3.三角函数线具有较好的几何直观性,是研究和理解三角函数的一把钥匙.

5.2同角三角函数的关系、诱导公式

典例精析
题型一三角函数式的化简问题
【点拨】运用诱导公式的关键是符号,前提是将α视为锐角后,再判断所求角的象限.
【变式训练1】已知f(x)=1-x,θ∈(3π4,π),则f(sin2θ)+f(-sin2θ)=.
【解析】f(sin2θ)+f(-sin2θ)=1-sin2θ+1+sin2θ=(sinθ-cosθ)2+(sinθ+cosθ)2=|sinθ-cosθ|+|sinθ+cosθ|.
因为θ∈(3π4,π),所以sinθ-cosθ>0,sinθ+cosθ<0.
所以|sinθ-cosθ|+|sinθ+cosθ|=sinθ-cosθ-sinθ-cosθ=-2cosθ.
题型二三角函数式的求值问题
【例2】已知向量a=(sinθ,cosθ-2sinθ),b=(1,2).
(1)若a∥b,求tanθ的值;
(2)若|a|=|b|,0<θ<π,求θ的值.
【解析】(1)因为a∥b,所以2sinθ=cosθ-2sinθ,
于是4sinθ=cosθ,故tanθ=14.
(2)由|a|=|b|知,sin2θ+(cosθ-2sinθ)2=5,
所以1-2sin2θ+4sin2θ=5.
从而-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,
于是sin(2θ+π4)=-22.
又由0<θ<π知,π4<2θ+π4<9π4,
所以2θ+π4=5π4或2θ+π4=7π4.
因此θ=π2或θ=3π4.
【变式训练2】已知tanα=12,则2sinαcosα+cos2α等于()
A.45B.85C.65D.2
【解析】原式=2sinαcosα+cos2αsin2α+cos2α=2tanα+11+tan2α=85.故选B.
题型三三角函数式的简单应用问题
【例3】已知-π2<x<0且sinx+cosx=15,求:
(1)sinx-cosx的值;
(2)sin3(π2-x)+cos3(π2+x)的值.
【解析】(1)由已知得2sinxcosx=-2425,且sinx<0<cosx,
所以sinx-cosx=-(sinx-cosx)2=-1-2sinxcosx=-1+2425=-75.
(2)sin3(π2-x)+cos3(π2+x)=cos3x-sin3x=(cosx-sinx)(cos2x+cosxsinx+sin2x)
=75×(1-1225)=91125.
【点拨】求形如sinx±cosx的值,一般先平方后利用基本关系式,再求sinx±cosx取值符号.
【变式训练3】化简1-cos4α-sin4α1-cos6α-sin6α.
【解析】原式=1-[(cos2α+sin2α)2-2sin2αcos2α]1-[(cos2α+sin2α)(cos4α+sin4α-sin2αcos2α)]
=2sin2αcos2α1-[(cos2α+sin2α)2-3sin2αcos2α]=23.
总结提高
1.对于同角三角函数基本关系式中“同角”的含义,只要是“同一个角”,那么基本关系式就成立,如:sin2(-2α)+cos2(-2α)=1是恒成立的.
2.诱导公式的重要作用在于:它揭示了终边在不同象限且具有一定对称关系的角的三角函数间的内在联系,从而可化负为正,化复杂为简单.

5.3两角和与差、二倍角的三角函数

典例精析
题型一三角函数式的化简
【例1】化简(0<θ<π).
【解析】因为0<θ<π,所以0<θ2<π2,
所以原式=
==-cosθ.
【点拨】先从角度统一入手,将θ化成θ2,然后再观察结构特征,如此题中sin2θ2-cos2θ2=-cosθ.
【变式训练1】化简2cos4x-2cos2x+122tan(π4-x)sin2(π4+x).
【解析】原式=12(2cos2x-1)22tan(π4-x)cos2(π4-x)=cos22x4cos(π4-x)sin(π4-x)=cos22x2sin(π2-2x)=12cos2x.
题型二三角函数式的求值
【例2】已知sinx2-2cosx2=0.
(1)求tanx的值;
(2)求cos2x2cos(π4+x)sinx的值.
【解析】(1)由sinx2-2cosx2=0tanx2=2,所以tanx==2×21-22=-43.
(2)原式=cos2x-sin2x2(22cosx-22sinx)sinx
=(cosx-sinx)(cosx+sinx)(cosx-sinx)sinx=cosx+sinxsinx=1tanx+1=(-34)+1=14.
【变式训练2】2cos5°-sin25°sin65°=.
【解析】原式=2cos(30°-25°)-sin25°cos25°=3cos25°cos25°=3.
题型三已知三角函数值求解
【例3】已知tan(α-β)=12,tanβ=-17,且α,β∈(0,π),求2α-β的值.
【解析】因为tan2(α-β)=2tan(α-β)1-tan2(α-β)=43,
所以tan(2α-β)=tan[2(α-β)+β]=tan2(α-β)+tanβ1-tan2(α-β)tanβ=1,
又tanα=tan[(α-β)+β]=tan(α-β)+tanβ1-tan(α-β)tanβ=13,
因为α∈(0,π),所以0<α<π4,
又π2<β<π,所以-π<2α-β<0,所以2α-β=-3π4.
【点拨】由三角函数值求角时,要注意角度范围,有时要根据三角函数值的符号和大小将角的范围适当缩小.
【变式训练3】若α与β是两锐角,且sin(α+β)=2sinα,则α与β的大小关系是()
A.α=βB.α<β
C.α>βD.以上都有可能
【解析】方法一:因为2sinα=sin(α+β)≤1,所以sinα≤12,又α是锐角,所以α≤30°.
又当α=30°,β=60°时符合题意,故选B.
方法二:因为2sinα=sin(α+β)=sinαcosβ+cosαsinβ<sinα+sinβ,
所以sinα<sinβ.
又因为α、β是锐角,所以α<β,故选B.
总结提高
1.两角和与差的三角函数公式以及倍角公式等是三角函数恒等变形的主要工具.
(1)它能够解答三类基本题型:求值题,化简题,证明题;
(2)对公式会“正用”、“逆用”、“变形使用”;
(3)掌握角的演变规律,如“2α=(α+β)+(α-β)”等.
2.通过运用公式,实现对函数式中角的形式、升幂、降幂、和与差、函数名称的转化,以达到求解的目的,在运用公式时,注意公式成立的条件.

5.4三角恒等变换

典例精析
题型一三角函数的求值
【例1】已知0<α<π4,0<β<π4,3sinβ=sin(2α+β),4tanα2=1-tan2α2,求α+β的值.
【解析】由4tanα2=1-tan2α2,得tanα==12.
由3sinβ=sin(2α+β)得3sin[(α+β)-α]=sin[(α+β)+α],
所以3sin(α+β)cosα-3cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα,
即2sin(α+β)cosα=4cos(α+β)sinα,所以tan(α+β)=2tanα=1.
又因为α、β∈(0,π4),所以α+β=π4.
【点拨】三角函数式的化简与求值的主要过程是三角变换,要善于抓住已知条件与目标之间的结构联系,找到解题的突破口与方向.
【变式训练1】如果tan(α+β)=35,tan(β-π4)=14,那么tan(α+π4)等于()
A.1318B.1322C.723D.318
【解析】因为α+π4=(α+β)-(β-π4),
所以tan(α+π4)=tan[(α+β)-(β-π4)]=tan(α+β)-tan(β-π4)1+tan(α+β)tan(β-π4)=723.
故选C.

题型二等式的证明
【例2】求证:sinβsinα=sin(2α+β)sinα-2cos(α+β).
【证明】证法一:
右边=sin[(α+β)+α]-2cos(α+β)sinαsinα=sin(α+β)cosα-cos(α+β)sinαsinα
=sin[(α+β)-α]sinα=sinβsinα=左边.
证法二:sin(2α+β)sinα-sinβsinα=sin(2α+β)-sinβsinα=2cos(α+β)sinαsinα=2cos(α+β),
所以sin(2α+β)sinα-2cos(α+β)=sinβsinα.
【点拨】证法一将2α+β写成(α+β)+α,使右端的角形式上一致,易于共同运算;证法二把握结构特征,用“变更问题法”证明,简捷而新颖.
【变式训练2】已知5sinα=3sin(α-2β),求证:tan(α-β)+4tanβ=0.
【证明】因为5sinα=3sin(α-2β),所以5sin[(α-β)+β]=3sin[(α-β)-β],
所以5sin(α-β)cosβ+5cos(α-β)sinβ=3sin(α-β)cosβ-3cos(α-β)sinβ,
所以2sin(α-β)cosβ+8cos(α-β)sinβ=0.
即tan(α-β)+4tanβ=0.
题型三三角恒等变换的应用
【例3】已知△ABC是非直角三角形.
(1)求证:tanA+tanB+tanC=tanAtanBtanC;
(2)若A>B且tanA=-2tanB,求证:tanC=sin2B3-cos2B;
(3)在(2)的条件下,求tanC的最大值.
【解析】(1)因为C=π-(A+B),
所以tanC=-tan(A+B)=-(tanA+tanB)1-tanAtanB,
所以tanC-tanAtanBtanC=-tanA-tanB,
即tanA+tanB+tanC=tanAtanBtanC.
(2)由(1)知tanC=-(tanA+tanB)1-tanAtanB=tanB1+2tan2B=sinBcosBcos2B+2sin2B=
=sin2B2(2-1+cos2B2)=sin2B3-cos2B.
(3)由(2)知tanC=tanB1+2tan2B=12tanB+1tanB≤122=24,
当且仅当2tanB=1tanB,即tanB=22时,等号成立.
所以tanC的最大值为24.
【点拨】熟练掌握三角变换公式并灵活地运用来解决与三角形有关的问题,要有较明确的目标意识.
【变式训练3】在△ABC中,tanB+tanC+3tanBtanC=3,3tanA+3tanB+1=tanAtanB,试判断△ABC的形状.
【解析】由已知得tanB+tanC=3(1-tanBtanC),
3(tanA+tanB)=-(1-tanAtanB),
即tanB+tanC1-tanBtanC=3,tanA+tanB1-tanAtanB=-33.
所以tan(B+C)=3,tan(A+B)=-33.
因为0<B+C<π,0<A+B<π,所以B+C=π3,A+B=5π6.
又A+B+C=π,故A=2π3,B=C=π6.
所以△ABC是顶角为2π3的等腰三角形.
总结提高
三角恒等式的证明,一般考虑三个“统一”:①统一角度,即化为同一个角的三角函数;②统一名称,即化为同一种三角函数;③统一结构形式.

5.5三角函数的图象和性质

典例精析
题型一三角函数的周期性与奇偶性
【例1】已知函数f(x)=2sinx4cosx4+3cosx2.
(1)求函数f(x)的最小正周期;
(2)令g(x)=f(x+π3),判断g(x)的奇偶性.
【解析】(1)f(x)=2sinx4cosx4+3cosx2=sinx2+3cosx2=2sin(x2+π3),
所以f(x)的最小正周期T=2π12=4π.
(2)g(x)=f(x+π3)=2sin[12(x+π3)+π3]=2sin(x2+π2)=2cosx2.
所以g(x)为偶函数.
【点拨】解决三角函数的有关性质问题,常常要化简三角函数.
【变式训练1】函数y=sin2x+sinxcosx的最小正周期T等于()
A.2πB.πC.π2D.π3
【解析】y=1-cos2x2+12sin2x=22(22sin2x-22cos2x)+12
=22sin(2x-π4)+12,所以T=2π2=π.故选B.
题型二求函数的值域
【例2】求下列函数的值域:
(1)f(x)=sin2xsinx1-cosx;
(2)f(x)=2cos(π3+x)+2cosx.
【解析】(1)f(x)=2sinxcosxsinx1-cosx=2cosx(1-cos2x)1-cosx=2cos2x+2cosx
=2(cosx+12)2-12,
当cosx=1时,f(x)max=4,但cosx≠1,所以f(x)<4,
当cosx=-12时,f(x)min=-12,所以函数的值域为[-12,4).
(2)f(x)=2(cosπ3cosx-sinπ3sinx)+2cosx
=3cosx-3sinx=23cos(x+π6),
所以函数的值域为[-23,23].
【点拨】求函数的值域是一个难点,分析函数式的特点,具体问题具体分析,是突破这一难点的关键.
【变式训练2】求y=sinx+cosx+sinxcosx的值域.
【解析】令t=sinx+cosx,则有t2=1+2sinxcosx,即sinxcosx=t2-12.
所以y=f(t)=t+t2-12=12(t+1)2-1.
又t=sinx+cosx=2sin(x+π4),所以-2≤t≤2.
故y=f(t)=12(t+1)2-1(-2≤t≤2),
从而f(-1)≤y≤f(2),即-1≤y≤2+12.
所以函数的值域为[-1,2+12].
题型三三角函数的单调性
【例3】已知函数f(x)=sin(ωx+φ)(φ>0,|φ|<π)的部分图象如图所示.
(1)求ω,φ的值;
(2)设g(x)=f(x)f(x-π4),求函数g(x)的单调递增区间.
【解析】(1)由图可知,T=4(π2-π4)=π,ω=2πT=2.
又由f(π2)=1知,sin(π+φ)=1,又f(0)=-1,所以sinφ=-1.
因为|φ|<π,所以φ=-π2.
(2)f(x)=sin(2x-π2)=-cos2x.
所以g(x)=(-cos2x)[-cos(2x-π2)]=cos2xsin2x=12sin4x.
所以当2kπ-π2≤4x≤2kπ+π2,即kπ2-π8≤x≤kπ2+π8(k∈Z)时g(x)单调递增.
故函数g(x)的单调增区间为[kπ2-π8,kπ2+π8](k∈Z).
【点拨】观察图象,获得T的值,然后再确定φ的值,体现了数形结合的思想与方法.
【变式训练3】使函数y=sin(π6-2x)(x∈[0,π])为增函数的区间是()
A.[0,π3]B.[π12,7π12]
C.[π3,5π6]D.[5π6,π]
【解析】利用复合函数单调性“同增异减”的原则判定,选C.
总结提高
1.求三角函数的定义域和值域应注意利用三角函数图象.
2.三角函数的最值都是在给定区间上得到的,因而特别要注意题设中所给的区间.
3.求三角函数的最小正周期时,要尽可能地化为三角函数的一般形式,要注意绝对值、定义域对周期的影响.
4.判断三角函数的奇偶性,应先判定函数定义域的对称性.

5.6函数y=Asin(ωx+)的图象和性质

典例精析
题型一“五点法”作函数图象
【例1】设函数f(x)=sinωx+3cosωx(ω>0)的周期为π.
(1)求它的振幅、初相;
(2)用五点法作出它在长度为一个周期的闭区间上的图象;
(3)说明函数f(x)的图象可由y=sinx的图象经过怎样的变换得到.
【解析】(1)f(x)=sinωx+3cosωx=2(12sinωx+32cosωx)=2sin(ωx+π3),
又因为T=π,所以2πω=π,即ω=2,所以f(x)=2sin(2x+π3),
所以函数f(x)=sinωx+3cosωx(ω>0)的振幅为2,初相为π3.
(2)列出下表,并描点画出图象如图所示.
(3)把y=sinx图象上的所有点向左平移π3个单位,得到y=sin(x+π3)的图象,再把
y=sin(x+π3)的图象上的所有点的横坐标缩短到原来的12(纵坐标不变),得到y=sin(2x+π3)的图象,然后把y=sin(2x+π3)的图象上的所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y=2sin(2x+π3)的图象.
【点拨】用“五点法”作图,先将原函数化为y=Asin(ωx+φ)(A>0,ω>0)形式,再令ωx+φ=0,π2,π,3π2,2π求出相应的x值及相应的y值,就可以得到函数图象上一个周期内的五个点,用平滑的曲线连接五个点,再向两端延伸即可得到函数在整个定义域上的图象.

【变式训练1】函数

的图象如图所示,则()
A.k=12,ω=12,φ=π6
B.k=12,ω=12,φ=π3
C.k=12,ω=2,φ=π6
D.k=-2,ω=12,φ=π3
【解析】本题的函数是一个分段函数,其中一个是一次函数,其图象是一条直线,由图象可判断该直线的斜率k=12.另一个函数是三角函数,三角函数解析式中的参数ω由三角函数的周期决定,由图象可知函数的周期为T=4×(8π3-5π3)=4π,故ω=12.将点(5π3,0)代入解析式y=2sin(12x+φ),得12×5π3+φ=kπ,k∈Z,所以φ=kπ-5π6,k∈Z.结合各选项可知,选项A正确.
题型二三角函数的单调性与值域
【例2】已知函数f(x)=sin2ωx+3sinωxsin(ωx+π2)+2cos2ωx,x∈R(ω>0)在y轴右侧的第一个最高点的横坐标为π6.
(1)求ω的值;
(2)若将函数f(x)的图象向右平移π6个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间.
【解析】(1)f(x)=32sin2ωx+12cos2ωx+32=sin(2ωx+π6)+32.
令2ωx+π6=π2,将x=π6代入可得ω=1.
(2)由(1)得f(x)=sin(2x+π6)+32,经过题设的变化得到函数g(x)=sin(12x-π6)+32,
当x=4kπ+43π,k∈Z时,函数g(x)取得最大值52.
令2kπ+π2≤12x-π6≤2kπ+32π,
即[4kπ+4π3,4kπ+103π](k∈Z)为函数的单调递减区间.
【点拨】本题考查三角函数恒等变换公式的应用、三角函数图象性质及变换.
【变式训练2】若将函数y=2sin(3x+φ)的图象向右平移π4个单位后得到的图象关于点(π3,0)对称,则|φ|的最小值是()
A.π4B.π3C.π2D.3π4
【解析】将函数y=2sin(3x+φ)的图象向右平移π4个单位后得到y=2sin[3(x-π4)+φ]=2sin(3x-3π4+φ)的图象.
因为该函数的图象关于点(π3,0)对称,所以2sin(3×π3-3π4+φ)=2sin(π4+φ)=0,
故有π4+φ=kπ(k∈Z),解得φ=kπ-π4(k∈Z).
当k=0时,|φ|取得最小值π4,故选A.
题型三三角函数的综合应用
【例3】已知函数y=f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<π2)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).
(1)求φ的值;
(2)求f(1)+f(2)+…+f(2008).
【解析】(1)y=Asin2(ωx+φ)=A2-A2cos(2ωx+2φ),
因为y=f(x)的最大值为2,又A>0,
所以A2+A2=2,所以A=2,
又因为其图象相邻两对称轴间的距离为2,ω>0,
所以12×2π2ω=2,所以ω=π4.
所以f(x)=22-22cos(π2x+2φ)=1-cos(π2x+2φ),
因为y=f(x)过点(1,2),所以cos(π2+2φ)=-1.
所以π2+2φ=2kπ+π(k∈Z),
解得φ=kπ+π4(k∈Z),
又因为0<φ<π2,所以φ=π4.
(2)方法一:因为φ=π4,
所以y=1-cos(π2x+π2)=1+sinπ2x,
所以f(1)+f(2)+f(3)+f(4)=2+1+0+1=4,
又因为y=f(x)的周期为4,2008=4×502.
所以f(1)+f(2)+…+f(2008)=4×502=2008.
方法二:因为f(x)=2sin2(π4x+φ),
所以f(1)+f(3)=2sin2(π4+φ)+2sin2(3π4+φ)=2,
f(2)+f(4)=2sin2(π2+φ)+2sin2(π+φ)=2,
所以f(1)+f(2)+f(3)+f(4)=4,
又因为y=f(x)的周期为4,2008=4×502.
所以f(1)+f(2)+…+f(2008)=4×502=2008.
【点拨】函数y=Acos(ωx+φ)的对称轴由ωx+φ=kπ,可得x=kπ-φω,两相邻对称轴间的距离为周期的一半,解决该类问题可画出相应的三角函数的图象,借助数形结合的思想解决.
【变式训练3】已知函数f(x)=Acos2ωx+2(A>0,ω>0)的最大值为6,其相邻两条对称轴间的距离为4,则f(2)+f(4)+f(6)+…+f(20)=.
【解析】f(x)=Acos2ωx+2=A×1+cos2ωx2+2=Acos2ωx2+A2+2,则由题意知A+2=6,2π2ω=8,所以A=4,ω=π8,所以f(x)=2cosπ4x+4,所以f(2)=4,f(4)=2,f(6)=4,f(8)=6,f(10)=4,…观察周期性规律可知f(2)+f(4)+…+f(20)=2×(4+2+4+6)+4+2=38.
总结提高
1.用“五点法”作y=Asin(ωx+φ)的图象,关键是五个点的选取,一般令ωx+φ=0,π2,π,3π2,2π,即可得到作图所需的五个点的坐标,同时,若要求画出给定区间上的函数图象时,应适当调整ωx+φ的取值,以便列表时能使x在给定的区间内取值.
2.在图象变换时,要注意相位变换与周期变换的先后顺序改变后,图象平移的长度单位是不同的,这是因为变换总是对字母x本身而言的,无论沿x轴平移还是伸缩,变化的总是x.
3.在解决y=Asin(ωx+φ)的有关性质时,应将ωx+φ视为一个整体x后再与基本函数
y=sinx的性质对应求解.

5.7正弦定理和余弦定理

典例精析
题型一利用正、余弦定理解三角形
【例1】在△ABC中,AB=2,BC=1,cosC=34.
(1)求sinA的值;(2)求的值.
【解析】(1)由cosC=34得sinC=74.
所以sinA=BCsinCAB=1×742=148.
(2)由(1)知,cosA=528.
所以cosB=-cos(A+C)=-cosAcosC+sinAsinC
=-15232+7232=-24.
所以=(+)=+
=-1+1×2×cosB=-1-12=-32.
【点拨】在解三角形时,要注意灵活应用三角函数公式及正弦定理、余弦定理等有关知识.
【变式训练1】在△ABC中,已知a、b、c为它的三边,且三角形的面积为a2+b2-c24,则∠C=.
【解析】S=a2+b2-c24=12absinC.
所以sinC=a2+b2-c22ab=cosC.所以tanC=1,
又∠C∈(0,π),所以∠C=π4.
题型二利用正、余弦定理解三角形中的三角函数问题
【例2】设△ABC是锐角三角形,a、b、c分别是内角A、B、C所对的边长,并且sin2A=sin(π3+B)sin(π3-B)+sin2B.
(1)求角A的值;
(2)若=12,a=27,求b,c(其中b<c).
【解析】(1)因为sin2A=(32cosB+12sinB)(32cosB-12sinB)+sin2B=34cos2B-14sin2B+sin2B=34,所以sinA=±32.又A为锐角,所以A=π3.
(2)由=12可得cbcosA=12.①
由(1)知A=π3,所以cb=24.②
由余弦定理知a2=c2+b2-2cbcosA,将a=27及①代入得c2+b2=52.③
③+②×2,得(c+b)2=100,所以c+b=10.
因此,c,b是一元二次方程t2-10t+24=0的两个根.
又b<c,所以b=4,c=6.
【点拨】本小题考查两角和与差的正弦公式,同角三角函数的基本关系,特殊角的三角函数值,向量的数量积,利用余弦定理解三角形等有关知识,考查综合运算求解能力.
【变式训练2】在△ABC中,a、b、c分别是A、B、C的对边,且满足(2a-c)cosB=
bcosC.
(1)求角B的大小;
(2)若b=7,a+c=4,求△ABC的面积.
【解析】(1)在△ABC中,由正弦定理得
a=2RsinA,b=2RsinB,c=2RsinC,
代入(2a-c)cosB=bcosC,
整理得2sinAcosB=sinBcosC+sinCcosB,
即2sinAcosB=sin(B+C)=sinA,
在△ABC中,sinA>0,2cosB=1,
因为∠B是三角形的内角,所以B=60°.
(2)在△ABC中,由余弦定理得b2=a2+c2-2accosB
=(a+c)2-2ac-2accosB,
将b=7,a+c=4代入整理,得ac=3.
故S△ABC=12acsinB=32sin60°=334.
题型三正、余弦定理在实际问题中的应用
【例3】(2010陕西)如图所示,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,则该救援船到达D点需要多长时间?
【解析】由题意知AB=5(3+3)(海里),∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,所以∠ADB=180°-(45°+30°)=105°.
在△DAB中,由正弦定理得DBsin∠DAB=ABsin∠ADB,
所以DB==
==53(3+1)3+12=103(海里).
又∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,BC=203海里,
在△DBC中,由余弦定理得
CD2=BD2+BC2-2BDBCcos∠DBC=300+1200-2×103×203×12=900,
所以CD=30(海里),则需要的时间t=3030=1(小时).
所以,救援船到达D点需要1小时.
【点拨】应用解三角形知识解决实际问题的基本步骤是:
(1)根据题意,抽象地构造出三角形;
(2)确定实际问题所涉及的数据以及要求解的结论与所构造的三角形的边与角的对应关系;
(3)选用正弦定理或余弦定理或者二者相结合求解;
(4)给出结论.
【变式训练3】如图,一船在海上由西向东航行,在A处测得某岛M的方位角为北偏东α角,前进mkm后在B处测得该岛的方位角为北偏东β角,已知该岛周围nkm范围内(包括边界)有暗礁,现该船继续东行,当α与β满足条件时,该船没有触礁危险.
【解析】由题可知,在△ABM中,根据正弦定理得BMsin(90°-α)=msin(α-β),解得BM=mcosαsin(α-β),要使船没有触礁危险需要BMsin(90°-β)=mcosαcosβsin(α-β)>n.所以α与β的关系满足mcosαcosβ>nsin(α-β)时,船没有触礁危险.
总结提高
1.正弦定理、余弦定理体现了三角形中角与边存在的一种内在联系,如证明两内角A>B与sinA>sinB是一种等价关系.
2.在判断三角形的形状时,一般将已知条件中的边角关系转化,统一转化为边的关系或统一转化为角的关系,再用恒等变形(如因式分解、配方)求解,注意等式两边的公因式不要随意约掉,否则会漏解.
3.用正弦定理求角的大小一定要根据题中所给的条件判断角的范围,以免增解或漏解.

5.8三角函数的综合应用

典例精析
题型一利用三角函数的性质解应用题
【例1】如图,ABCD是一块边长为100m的正方形地皮,其中AST是一半径为90m的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在上,相邻两边CQ、CR分别落在正方形的边BC、CD上,求矩形停车场PQCR面积的最大值和最小值.
【解析】如图,连接AP,过P作PM⊥AB于M.
设∠PAM=α,0≤α≤π2,
则PM=90sinα,AM=90cosα,
所以PQ=100-90cosα,PR=100-90sinα,
于是S四边形PQCR=PQPR
=(100-90cosα)(100-90sinα)
=8100sinαcosα-9000(sinα+cosα)+10000.
设t=sinα+cosα,则1≤t≤2,sinαcosα=t2-12.
S四边形PQCR=8100t2-12-9000t+10000
=4050(t-109)2+950(1≤t≤2).
当t=2时,(S四边形PQCR)max=14050-90002m2;
当t=109时,(S四边形PQCR)min=950m2.
【点拨】同时含有sinθcosθ,sinθ±cosθ的函数求最值时,可设sinθ±cosθ=t,把sinθcosθ用t表示,从而把问题转化成关于t的二次函数的最值问题.注意t的取值范围.
【变式训练1】若0<x<π2,则4x与sin3x的大小关系是()
A.4x>sin3xB.4x<sin3x
C.4x≥sin3xD.与x的值有关
【解析】令f(x)=4x-sin3x,则f′(x)=4-3cos3x.因为f′(x)=4-3cos3x>0,所以f(x)为增函数.又0<x<π2,所以f(x)>f(0)=0,即得4x-sin3x>0.所以4x>sin3x.故选A.
题型二函数y=Asin(ωx+φ)模型的应用
【例2】已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t).下表是某日各时的浪花高度数据.
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放.请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供冲浪者进行运动?
【解析】(1)由表中数据知,周期T=12,所以ω=2πT=2π12=π6.
由t=0,y=1.5,得A+b=1.5,由t=3,y=1.0,得b=1.0,
所以A=0.5,b=1,所以振幅为12.所以y=12cosπ6t+1.
(2)由题知,当y>1时才可对冲浪者开放,
所以12cosπ6t+1>1,所以cosπ6t>0,
所以2kπ-π2<π6t<2kπ+π2,即12k-3<t<12k+3.①
因为0≤t≤24,故可令①中k分别为0,1,2,得0≤t<3或9<t<15或21<t≤24.
故在规定时间上午8:00至晚上20:00之间,有6个小时时间可供冲浪者运动,即上午9:00至下午15:00.
【点拨】用y=Asin(ωx+φ)模型解实际问题,关键在于根据题目所给数据准确求出函数解析式.
【变式训练2】如图,一个半径为10m的水轮按逆时针方向每分钟转4圈,记水轮上的点P到水面的距离为dm(P在水面下则d为负数),则d(m)与时间t(s)之间满足关系式:d=Asin(ωt+φ)+k(A>0,ω>0,-π2<φ<π2),且当点P从水面上浮现时开始计算时间,有以下四个结论:①A=10;②ω=2π15;③φ=π6;④k=5.其中正确结论的序号是.
【解析】①②④.
题型三正、余弦定理的应用
【例3】为了测量两山顶M、N间的距离,飞机沿水平方向在A、B两点进行测量,A、B、M、N在同一个铅垂平面内(如图所示),飞机能测量的数据有俯角和A、B之间的距离,请设计一个方案,包括:(1)指出需测量的数据(用字母表示,并在图中标示);(2)用文字和公式写出计算M、N间距离的步骤.
【解析】(1)如图所示:①测AB间的距离a;②测俯角∠MAB=φ,∠NAB=θ,∠MBA=β,∠NBA=γ.(2)在△ABM中,∠AMB=π-φ-β,由正弦定理得
BM=ABsinφsin∠AMB=asinφsin(φ+β),
同理在△BAN中,BN=ABsinθsin∠ANB=asinθsin(θ+γ),
所以在△BMN中,由余弦定理得
MN=
=a2sin2φsin2(φ+β)+a2sin2θsin2(θ+γ)-2a2sinθsinφcos(γ-β)sin(φ+β)sin(θ+γ).
【变式训练3】一船向正北方向匀速行驶,看见正西方向两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西60°方向上,另一灯塔在南偏西75°方向上,则该船的速度是海里/小时.
【解析】本题考查实际模型中的解三角形问题.依题意作出简图,易知AB=10,∠OCB=60°,∠OCA=75°.我们只需计算出OC的长,即可得出船速.在直角三角形OCA和OCB中,显然有OBOC=tan∠OCB=tan60°且OAOC=tan∠OCA=tan75°,
因此易得AB=OA-OB=OC(tan75°-tan60°),即有
OC=ABtan75°-tan60°=10tan75°-tan60°
=10tan(30°+45°)-tan60°
=10tan30°+tan45°1-tan30°tan45°-tan60°=1013+11-13-3=5.
由此可得船的速度为5海里÷0.5小时=10海里/小时.
总结提高
1.解三角形的应用题时应注意:
(1)生活中的常用名词,如仰角,俯角,方位角,坡比等;
(2)将所有已知条件化入同一个三角形中求解;
(3)方程思想在解题中的运用.
2.解三角函数的综合题时应注意:
(1)与已知基本函数对应求解,即将ωx+φ视为一个整体X;
(2)将已知三角函数化为同一个角的一种三角函数,如y=Asin(ωx+φ)+B或y=asin2x+bsinx+c;
(3)换元方法在解题中的运用.

2012届高考历史第二轮专题复习教案


一名优秀的教师在教学时都会提前最好准备,作为教师就要好好准备好一份教案课件。教案可以让讲的知识能够轻松被学生吸收,帮助教师有计划有步骤有质量的完成教学任务。那么怎么才能写出优秀的教案呢?小编特地为大家精心收集和整理了“2012届高考历史第二轮专题复习教案”,但愿对您的学习工作带来帮助。

2012届高考历史第二轮专题复习教案
专题十 中国近(现)代化
资本主义世界市场的形成、经济全球化和区域化
一、中国的近代化:
1、概述:近代化也称现代化,在经济领域主要是指手工操作向机器大生产的转变。近代中国的工业化主要涉及洋务运动、中国资本主义的产生与发展、戊戌变法等(清末新政、国民经济建设运动)
2、中国近代工业化的发展历程及阶段特征:①、起步阶段(1861年—1895年):地主阶级领导的洋务运动(阶段特征:政治体制近代化尚未提上议事日程;以军事工业为主体的工业化有所发展,并经历了由重工业到加工业,由军需到民用,由国营到民营的发展过程;投资形式也由官办、官督商办到商办,经历了从一元到多元的转变;由于洋务运动的需要,近代化开始由经济领域逐渐向科技文化和人才教育领域渗透);②、整体发展阶段(1895年—1927年)(最重要阶段):主要是甲午战争后,民族工业的初步发展,棉纺织的发展最为突出;辛亥革命后、一战期间,民族工业的短暂春天,纺织业、面粉业发展最快;(阶段特征:学习西方先进的科技文化与变革社会制度有机结合在一起)。③、曲折前进阶段(1927年—1949年)国民政府前期,是中国近代工业化事业有所发展的十年;抗战期间,中国近代工业化的进程被打断,原有工业在日本军国主义的侵略下严重摧残;抗战胜利后,美国垄断资本与四大家族官僚资本相结合,又把中国近代工业化事业推进绝境;(阶段特征:在阶级矛盾和民族矛盾极为尖锐复杂的环境下艰难发展)。
3、中国近代工业化与欧美各国工业化相比:①、中国近代工业化不仅受到内部封建保守势力的顽强抵抗,还不断遭到外部资本主义列强的倾轧、排斥和武力摧残,发展缓慢,经历曲折;②、资产阶级始终没有掌握中国近代工业化的领导权;③、中国近代工业化缺少必要的资本原始积累;④、发展畸形,中国近代工业的产业结构不协调、不配套;工业在国民经济中的比重很小,地区分布不平衡;
4、影响中国近代工业化的不利因素:①、先天的不利条件(资金少、规模小、技术力量薄弱、人才不足、思想准备不足——中国传统的重农抑商、重陆轻海、重义轻利等都是发展近代工业的思想障碍);②、面临三大政治障碍(外国资本主义的阻挠和破坏、封建专制统治的阻碍、官僚资本主义的压制);③、缺乏正确的道路、科学的决策和安定的环境(欧美各国的工业化一般是从轻工业开始而后延伸到重工业,而中国则反之;缺乏现代知识的推动;战争和革命不断使中国政局长期动荡)。
二、中国现代的工业化:
1、中共第一代领导集体对中国现代化道路的探索:①、结合中国国情学习苏联建设经验阶段;②、毛泽东发表《论十大关系》标志着中共开始探索有中国特色的现代化道路。(成功探索:中共八大的经济建设方针、1960年—1966年的国民经济调整、“文革”中周恩来、邓小平的整顿;失误的探索:社会主义建设总路线、“大跃进”、人民公社化运动、三年严重经济困难、“文革”中左倾错误导致的国民经济严重动荡并遭到破坏)。
2、以邓小平为代表的中共第二代领导集体对中国现代化道路的探索:①、邓小平提出工业、农业、国防。科技的现代化中,重点是科技现代化;②、提出了党在社会主义初级阶段的基本路线的核心,设计了我国改革开放的蓝图;③、1992年初,邓小平“南巡谈话”:在谈话中,邓小平科学地总结了党的十一届三中全会以来的基本实践和基本经验,从理论上回答了长期以来困扰和束缚人们思想的许多重大认识问题,对整个社会主义现代化建设事业具有重大而深远的意义;④、指出社会主义的本质是解放和发展社会生产力,消灭剥削,消除两极分化,达到共同富裕;⑤、提出了现代化建设的三步走战略。
3、第三代领导集体对中国现代化建设的探索:①、“三个代表”;②、中国式的现代化应该是社会主义的、先进的现代化,符合时代潮流的现代化,是经济、资源、人口、科技、环保、文化等方面全面协调发展的现代化。
三、资本主义世界市场的形成
1、16—18世纪的萌芽时期:(1)、背景:①、16—18世纪西方资本主义经济的发展和资本主义制度开始在少数国家确立;②、16世纪新航路开辟及西班牙、葡萄牙的早期殖民扩张;(2)、表现:①、欧洲和非洲、亚洲之间的贸易扩大,同美洲开始形成紧密的经济联系;②、市场上商品种类明显增多,世界各地的商品逐渐在欧洲市场上出现;③、欧洲和贸易中心从地中海沿岸转移到大西洋沿岸;(3)影响:①、推动了西欧封建制度的衰落和资本主义经济的发展,扩大了资本的原始积累;②、给亚、非、拉美人民带来深重的灾难;③、各大洲的孤立状态打破坏,世界各地逐渐成为一个密不可分的整体。
2、19世纪中期初步形成:(1)、背景:①、欧美资产阶级革命和改革推动各国工业资本主义经济的进一步发展;②、欧美列强加紧殖民扩张,在世界各地建立一系列殖民地和半殖民地;③、先进的交通运输工具的出现;(2)、表现:①、欧美列强向殖民地输出工业品,掠夺工业原料,甚至直接输出资本,资本主义世界市场初步形成;(3)影响:①、工业资产阶级获取了更为广阔的商品市场和廉价原料,进一步促进了资本主义经济的发展;②、给殖民地人民带来深重灾难,同时也传播了新兴的资本主义生产方式和思想观念;③、进一步加强了世界各国各地区的相互联系。
3、19世纪末20世纪初最终形成:(1)、背景:①、第二次工业革命推动各国垄断资本主义经济的发展;②、列强已经奴役和控制了世界上绝大部分土地和人口,殖民体系最终形成;(2)、表现:殖民地半殖民地国家成为西方国家的原料产地、商品市场和资本输出场所,资本主义世界市场最终形成;(3)影响:①、推动了欧美各国垄断资本主义经济进一步发展;②、殖民地国家遭到残酷的经济剥削,民族危机更加严峻;③、资本主义世界体系形成,世界成为一个密不可分的整体。
四、经济全球化和区域化
1、经济全球化:(1)、含义:经济全球化是指这样一个历史过程,即在不断发展的科技革命和生产国际化的推动下,各国经济相互依赖、相互渗透日益加深,阻碍生产要素(包括商品、劳务、资本等)在全球自由流通的各种壁垒正在不断被削弱;(2)、原因:市场经济制度在全球范围内得到普遍认可和接受,新科技革命为经济全球化提供了物质条件,国际金融的发展是全球化深入发展的催化剂,跨国公司是推动经济全球化的主要力量;(3)影响:①、从根本上讲,经济全球化是发达资本主义国家主导的,其本质是资本主义在全球范围内的新一轮扩张,因此,全球化带来的利益和风险必然是不均衡的,大部份发展中国家处于更为不利的地位;②、在经济全球化的过程中,贸易自由化体系逐渐建立。
2、经济区域化:(1)、原因:①、两极政治格局的解体,加速了世界经济的多极化的进程,促进了世界经济区域化的趋势;②、由于生产和分工的发展,国际经济交流日益扩大,各国经济相互依赖程度进一步加深,这就促使一些国家之间建立起较为稳定的经济联系,组成区域性的经济集团;(2)、主要区域集团:欧盟、北美自由贸易区、亚洲太平洋经济合作组织(APEC)等。
3、经济全球化和经济区域化之间的关系:两者既有联系又有区别,在发展中相互促进,又相互制约,共同形成对世界经济、政治及国际关系的影响,区域经济集团化是世界经济全球化在当前条件下的具体表现,对经济全球化有促进和阻碍的双重作用。

2012届高考文科数学第二轮概率统计复习教案


一名优秀的教师就要对每一课堂负责,高中教师要准备好教案,这是高中教师的任务之一。教案可以让上课时的教学氛围非常活跃,让高中教师能够快速的解决各种教学问题。那么怎么才能写出优秀的高中教案呢?下面是小编精心为您整理的“2012届高考文科数学第二轮概率统计复习教案”,仅供参考,欢迎大家阅读。

2012届高考数学二轮复习
专题八概率统计

【重点知识回顾】

二、重点知识回顾
概率
(1)事件与基本事件:
基本事件:试验中不能再分的最简单的“单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的;试验中的任意事件都可以用基本事件或其和的形式来表示.
(2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件的概率是一个常数,不随具体的实验次数的变化而变化.
(3)互斥事件与对立事件:
事件定义集合角度理解关系
互斥事件事件与不可能同时发生两事件交集为空事件与对立,则与必为互斥事件;
事件与互斥,但不一是对立事件
对立事件事件与不可能同时发生,且必有一个发生两事件互补
(4)古典概型与几何概型:
古典概型:具有“等可能发生的有限个基本事件”的概率模型.
几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.
两种概型中每个基本事件出现的可能性都是相等的,但古典概型问题中所有可能出现的基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.
(5)古典概型与几何概型的概率计算公式:
古典概型的概率计算公式:.
几何概型的概率计算公式:.
两种概型概率的求法都是“求比例”,但具体公式中的分子、分母不同.
(6)概率基本性质与公式
①事件的概率的范围为:.
②互斥事件与的概率加法公式:.
③对立事件与的概率加法公式:.
(7)如果事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率是pn(k)=Cpk(1―p)n―k.实际上,它就是二项式[(1―p)+p]n的展开式的第k+1项.
(8)独立重复试验与二项分布
①.一般地,在相同条件下重复做的n次试验称为n次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;
②.二项分布的概念:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为.此时称随机变量服从二项分布,记作,并称为成功概率.
统计
(1)三种抽样方法
①简单随机抽样
简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.
简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.
实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.
②系统抽样
系统抽样适用于总体中的个体数较多的情况.
系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.
系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔,当(N为总体中的个体数,n为样本容量)是整数时,;当不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n整除,这时;第三步,在第一段用简单随机抽样确定起始个体编号,再按事先确定的规则抽取样本.通常是将加上间隔k得到第2个编号,将加上k,得到第3个编号,这样继续下去,直到获取整个样本.
③分层抽样
当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.
分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.
(2)用样本估计总体
样本分布反映了样本在各个范围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.
①用样本频率分布估计总体频率分布时,通常要对给定一组数据进行列表、作图处理.作频率分布表与频率分布直方图时要注意方法步骤.画样本频率分布直方图的步骤:求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.
②茎叶图刻画数据有两个优点:一是所有的信息都可以从图中得到;二是茎叶图便于记录和表示,但数据位数较多时不够方便.
③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程度,其计算公式为.有时也用标准差的平方———方差来代替标准差,两者实质上是一样的.
(3)两个变量之间的关系
变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值,获得对这两个变量之间的整体关系的了解.分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系:如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,其对应的方程叫做回归直线方程.在本节要经常与数据打交道,计算量大,因此同学们要学会应用科学计算器.
(4)求回归直线方程的步骤:
第一步:先把数据制成表,从表中计算出;
第二步:计算回归系数的a,b,公式为
第三步:写出回归直线方程.
(4)独立性检验
①列联表:列出的两个分类变量和,它们的取值分别为和的样本频数表称为列联表1
分类1
2
总计
1

总计

构造随机变量(其中)
得到的观察值常与以下几个临界值加以比较:
如果,就有的把握因为两分类变量和是有关系;
如果就有的把握因为两分类变量和是有关系;
如果就有的把握因为两分类变量和是有关系;
如果低于,就认为没有充分的证据说明变量和是有关系.
②三维柱形图:如果列联表1的三维柱形图如下图
由各小柱形表示的频数可见,对角线上的频数的积的差的绝对值
较大,说明两分类变量和是有关的,否则的话是无关的.
重点:一方面考察对角线频数之差,更重要的一方面是提供了构造随机变量进行独立性检验的思路方法。
③二维条形图(相应于上面的三维柱形图而画)
由深、浅染色的高可见两种情况下所占比例,由数据可知要比小得多,由于差距较大,因此,说明两分类变量和有关系的可能性较大,两个比值相差越大两分类变量和有关的可能性也越的.否则是无关系的.

重点:通过图形以及所占比例直观地粗略地观察是否有关,更重要的一方面是提供了构造随机变量进行独立性检验的思想方法。

④等高条形图(相应于上面的条形图而画)
由深、浅染色的高可见两种情况下的百分比;另一方面,数据
要比小得多,因此,说明两分类变量和有关系的可能性较大,
否则是无关系的.

重点:直观地看出在两类分类变量频数相等的情况下,各部分所占的比例情况,是在图2的基础上换一个角度来理解。
【典型例题】
考点:概率
【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n次独立重复试验中恰发生k次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。掌握古典概型和几何概型的概率求法。
【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。
(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。
例1、在平面直角坐标系中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随意投一点,则落入E中的概率为。
解:如图:区域D表示边长为4的正方形ABCD的内部(含边界),区域E表示单位圆及其内部,因此。
答案
点评:本题考查几何概型,利用面积相比求概率。
例2某公交公司对某线路客源情况统计显示,公交车从每个停靠点出发后,车上的乘客人数及频率如下表:
人数0~67~1213~1819~2425~3031人以上
频率0.10.150.250.200.200.1
(I)从每个停靠点出发后,乘客人数不超过24人的概率约是多少?
(II)全线途经10个停靠点,若有2个以上(含2个)停靠点出发后,车上乘客人数超过18人的概率大于0.9,公交公司就要考虑在该线路增加一个班次,请问该线路需要增加班次吗?
解:(Ⅰ)每个停靠点出发后,乘客人数不超过24人的概率约为
0.1+0.15+0.25+0.2=0.7
0.(Ⅱ)从每个停靠点出发后,乘客人数超过18人的概率为0.20+0.20+0.1=0.5
1.途经10个停靠点,没有一个停靠点出发后,乘客人数超过18人的概率为
途经10个停靠点,只有一个停靠点出发后,乘客人数超过18人的概率
所以,途经10个停靠点,有2个以上(含2个)停靠点出发后,乘客人数超过18人的概率
P=1--C()(1-)9=1-=
∴该线路需要增加班次。
答:(Ⅰ)每个停靠点出发后,乘客人数不超过24人的概率约为0.7
(Ⅱ)该线路需要增加班次
考点四:统计
【内容解读】理解简单随机抽样、系统抽样、分层抽样的概念,了解它们各自的特点及步骤.会用三种抽样方法从总体中抽取样本.会用样本频率分布估计总体分布.会用样本数字特征估计总体数字特征.会利用散点图和线性回归方程,分析变量间的相关关系;掌握独立性检验的步骤与方法。
【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。
(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。
例3(1)(2009湖南卷文)一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为.
答案120
解析设总体中的个体数为,则
(2)(2009四川卷文)设矩形的长为,宽为,其比满足∶=,这种矩形给人以美感,称为黄金矩形。黄金矩形常应用于工艺品设计中。下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:
甲批次:0.5980.6250.6280.5950.639
乙批次:0.6180.6130.5920.6220.620
根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是
A.甲批次的总体平均数与标准值更接近
B.乙批次的总体平均数与标准值更接近
C.两个批次总体平均数与标准值接近程度相同
D.两个批次总体平均数与标准值接近程度不能确定
答案A
解析甲批次的平均数为0.617,乙批次的平均数为0.613

例4下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生
产能耗Y(吨标准煤)的几组对照数据
3456
y2.5344.5
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,崩最小二乘法求出Y关于x的线性回归方程Y=bx+a;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:32.5+43+54+64.5=66.5)
解:(1)散点图略.
(2),,,
由所提供的公式可得,故所求线性回归方程为10分
(3)吨.
例5、为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列的前四项,后6组的频数从左到右依次是等差数列的前六项.
(Ⅰ)求等比数列的通项公式;
(Ⅱ)求等差数列的通项公式;
(Ⅲ)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率的大小.
解:由题意知:,
∵数列是等比数列,∴公比
∴.
∵=13,
∴,
∵数列是等差数列,∴设数列公差为,则得,
∴=87,
,,
=,
(或=)
答:估计该校新生近视率为91%.
例6、某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期1月10日2月10日3月10日4月10日5月10日6月10日
昼夜温差x(°C)1011131286
就诊人数y(个)222529261612
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;(5分)
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;(6分)
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(3分)
(参考公式:)
解:(Ⅰ)设抽到相邻两个月的数据为事件A.因为从6组数据中选
取2组数据共有15种情况,每种情况都是等可能出现的
其中,抽到相邻两个月的数据的情况有5种
所以
(Ⅱ)由数据求得
由公式求得
再由
所以关于的线性回归方程为
(Ⅲ)当时,,;
同样,当时,,
所以,该小组所得线性回归方程是理想的.
模拟演练
3.已知事件“三位中国选手均进入亚运会体操决赛”,事件“三位中国选手均未进入亚运会体操决赛”,那么事件和是()
A.等可能性事件B.不互斥事件
C.互斥但不是对立事件D.对立事件
3.C提示:根据两事件不能同时发生,且当一个不发生时不一定发生另一个,因此两事件
是互斥但不是对立事件.
4.若对于变量与的组统计数据的回归模型中,相关指数,又知残差平方和为,那么的值为()。
A.B.C.D.
4.A提示:根据表示总偏差平方和,得.
5.①既然抛掷硬币出现正面的概率为0.5,那么连续两次
抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上;②如果某种彩票的中奖概
率为,那么买1000张这种彩票一定能中奖;③在乒乓球、排球等比赛中,裁判通过让运
动员猜上抛均匀塑料圆板着地是正面还是反面来决定哪一方先发球,这样做不公平;④一个
骰子掷一次得到2的概率是,这说明一个骰子掷6次会出现一次2.其中不正确的说法是
()
A①②③④B①②④C③④D③
5.A提示:概率是一个随即性的规律,具有不确定性,因此①②④错误,而③抛掷均匀塑料
圆板出现正面与方面的概率相等,是公平的.因此均为不正确的说法.
6.若,则方程有实根的概率为()
A.B.C.D.
6.C提示:若方程有实根,则有.因为,根据几何概型“有实根的”概率为.
7.(专题七文科第7题)
8.下图是2010年渥太华冬奥会上,七位评委为某冰舞
运动员打出的分数的茎叶统计图,去掉一个最低分和一
个最高分后,所剩数据的平均数和方差分别为()
A.,B.,
C.,D.,
8.D提示:根据茎叶图,所剩数据为,因此,
.
9.某高校调查询问了56名男女大学生,在课余时间是否参加运动,得到下表所示的数据.
从表中数据分析,①有以上的把握认为性别与是否参加运动有关;
②在100个参加运动的大学生中有95个男生;
③认为性别与是否参加运动有关出错的可能性小于;
④在100个参加运动的大学生中有5个女生;其中正确命题的个数为().
A.1B.2C.3D.4
9.B提示:根据,因此有95%以上的把握认为二者有关系,出错的可能性小于5%.①③正确.
10.((专题七文科第10题))
11.2010年3月“十一届全国人大三次会议及十一届全国政协三次会议”在北京隆重召开,
针对中国的中学教育现状,现场的2500名人大代表对其进行了综合评分,得到如下“频率
分布直方图”(如图),试根据频率分布直方图,估计平均分为().
ABCD
11.B提示:找到每个矩形的中点和频率,从而利用平均数公式求解.要注意频率分布直方图中每个小矩形面积表示该段的频率.
12.(专题七文科第12题)
13.半径为10cm的圆周上有两只蚂蚁,它们分别从两个不同的点A、B出发,沿劣弧相向而行,速度分别为10mm/s与8mm/s,则这两只蚂蚁在5s内相遇的概率为.
13.提示:5s内两只蚂蚁相遇时所行走的最大距离为mm,而两只蚂蚁初始时的最大距离为半个圆周,即mm,所以这两只蚂蚁在5s内相遇的概率为.
14.((专题七文科第14题))
15.已知现有编号为①②③④⑤的5个图形,它们分别是两个直角边长为3、3的直角三角形;两个边长为3的正方形;一个半径为3的圆.则以这些图形中的三个图形为一个立体图形的三视图的概率为.
15.提示:①②③;②③④;③④⑤可构成一个立体图形的三视图,而从这5个图形选取3个共有个基本事件,因此概率为.
16.随着经济的发展,电脑进入了越来越多的家庭,为了解电脑对生活的影响,就平均每天看电脑的时间,一个社会调查机构对某地居民调查了10000人,并根据所得数据画出样本的频率分布直方图(如图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10000人中再用分层柚样方法抽出100人做进一步调查,则在(小时)时间段内应抽出的人数是.
16.提示:根据频率分布直方图可得,在之间的人数为,根据分层抽样特点得在之间抽取的人数为.
17.输血是重要的抢救生命的措施之一,但是要注意同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.
黄种人群中各种血型的人所占的比如下表所示:
血型ABABO
该血型的人所占比/%2829835
2010年4月14日玉树地震,小王不幸被建筑物压在下面,失血过多,需要输血,已知小王是B型血,问:
(1)任找一个人,其血可以输给小王的概率是多少?
(2)任找一个人,其血不能输给小王的概率是多少?
17.提示:(1)对任一人,其血型为A,B,AB,O型血的事件分别记为它们是互斥的.
由已知,有.…………3分
因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件.
根据互斥事件的加法公式,有……6分.
(2)由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件
,且.…………10分
答:任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36.
………12分
18.某研究机构为了研究人的体重与身高之间的关系,随机抽测了20人,得到如下数据:
序号12345678910
身高x(厘米)182164170176177159171166182166
体重y(公斤)76606176775862607857
序号11121314151617181920
身高x(厘米)169178167174168179165170162170
体重y(公斤)76746877637859756473
(1)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“体重大于75(公斤)”的为“胖子”,“体重小于等于75(公斤)”的为“非胖子”.请根据上表数据完成下面的联列表:
高个非高个合计
胖子
非胖子12
合计20
(2)根据题(1)中表格的数据,若按99%的可靠性要求,能否认为体重与身高之间有关系?
18.解:(1)
高个非高个合计
胖子527
非胖子11213
合计61420
………4分
(2)假设两变量没有关系,依题题意
………8分
由表知:认为体重与身高之间有关的可能性为………10分
所以有理由认为体重与身高之间有关系.………12分
19.为从甲乙两运动员中选拔一人,参加2010年广州亚运会体操项目,对甲、乙两运动员进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出茎叶图如下:
(1)现要从中选拔一人参加亚运会,从平均成绩及发挥稳定性的角度考虑,你认为选派哪位学生参加合适?
(2)从甲运动员预赛成绩中任取一次记为,从乙运动员预赛成绩中任取一次记为,求
的概率.
解:根据茎叶图,可得甲乙成绩如下:
甲817978959384
乙929580758385
…………1分
(1)派甲参赛比较合适.理由如下:…………2分

,…………3分

…………5分
∵,,∴甲的成绩较稳定,派甲参赛比较合适.…………6分
(2)记“甲运动员预赛成绩,大于乙运动员预赛成绩”为事件A,…………7分
列表:
甲乙929580758385
8181,9281,9581,8081,7581,8381,85
7979,9279,9579,8079,7579,8379,85
7878,9278,9578,8078,7578,8378,85
9595,9295,9595,8095,7595,8395,85
9393,9293,9593,8093,7593,8393,85
8484,9284,9584,8084,7584,8384,85
因此基本事件共有36个,其中发生事件A的有17个,…………9分
根据古典概型,.…………10分
答:选择甲参加比赛更合适,的概率为.………………………………………12分
20.设,在线段上任取两点(端点除外),将线段分成了三条线段,
(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率;
(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率.
解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能为:
共3种情况,其中只有三条线段为时能构成三角形,则构成三角形的概率.………6分
(2)设其中两条线段长度分别为,则第三条线段长度为,则全部结果所构成的区域为:
,,,
即:,,
所表示的平面区域为三角形;………8分
若三条线段能构成三角形,则还要满足,即为,所表示的平面区域为三角形………10分
由几何概型知,所求的概率为.………12分
21.下表抄录了2010年1至4月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期1月10日2月10日3月10日4月10日
昼夜温差x(°C)1113128
就诊人数y(个)25292616
(1)已知两变量、具有线性相关关系,求出关于的线性回归方程;
(2)通过相关指数判断回归方程拟合效果.
解:(1)制表如下
1234合计
111312844
2529261696
2753773121281092
12116914464498
6258416762562398
;;

………4分
根据两变量、具有线性相关关系
由公式求得………6分
再由
所以关于的线性回归方程为………8分
(2)∵
………10分
∴因此拟合效果比较好.
………12分
22.为选拔学生做亚运会志愿者,对某班50名学生进行了一次体育测试,成绩全部介于50与100之间,将测试结果按如下方式分成五组:每一组,第二组,……,第五组.下图是按上述分组方法得到的频率分布直方图.
(I)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;
(II)从测试成绩在内的所有学生中随机抽取两名同学,设其测试成绩分别为、,求事件“”的概率.
解:(I)由直方图知,成绩在内的人数为:
.
所以该班在这次数学测试中成绩合格的有29人.………4分
(II)由直方图知,成绩在的人数为,设为、,
成绩在的人数为,设为………6分
若时,只有1种情况,………7分
若时,有3种情况,………8分
若分别在和内时,有

xx
x
x

yy
y
y

共有6种情况.所以基本事件总数为10种,………12分
事件“”所包含的基本事件个数有6种
∴P()………14分

2012届高考数学第二轮数列备考复习教案


俗话说,凡事预则立,不预则废。教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更容易听懂所讲的内容,使教师有一个简单易懂的教学思路。教案的内容具体要怎样写呢?小编为此仔细地整理了以下内容《2012届高考数学第二轮数列备考复习教案》,相信能对大家有所帮助。

2012届高考数学二轮复习资料
专题三数列(教师版)
【考纲解读】
1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.
2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.
3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.
【考点预测】
1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.
2.数列中an与Sn之间的互化关系也是高考的一个热点.
3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.
4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.
因此复习中应注意:
1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.
2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.
3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.
4.等价转化是数学复习中常常运用的,数列也不例外.如an与Sn的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.
5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.
6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.
7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用.
【要点梳理】
1.证明数列是等差数列的两种基本方法:(1)定义法:为常数;(2)等差中项法:.
2.证明数列是等比数列的两种基本方法:(1)定义法:(非零常数);(2)等差中项法:.
3.常用性质:(1)等差数列中,若,则;
(2)等比数列中,若,则.
4.求和:
(1)等差等比数列,用其前n项和求出;
(2)掌握几种常见的求和方法:错位相减法、裂项相消法、分组求和法、倒序相加法;
(3)掌握等差等比数列前n项和的常用性质.
【考点在线】
考点1等差等比数列的概念及性质
在等差、等比数列中,已知五个元素或,中的任意三个,运用方程的思想,便可求出其余两个,即“知三求二”。本着化多为少的原则,解题时需抓住首项和公差(或公比)。另外注意等差、等比数列的性质的运用.例如
(1)等差数列中,若,则;等比数列中,若,则.
(2)等差数列中,成等差数列。其中是等差数列的前n项和;等比数列中(),成等比数列。其中是等比数列的前n项和;
(3)在等差数列中,项数n成等差的项也称等差数列.
(4)在等差数列中,;.
在复习时,要注意深刻理解等差数列与等比数列的定义及其等价形式.注意方程思想、整体思想、分类讨论思想、数形结合思想的运用.
例1.(2011年高考重庆卷理科11)在等差数列中,,则
.
【答案】74
【解析】,故
【名师点睛】本题考查等差数列的性质.
【备考提示】:熟练掌握等差等比数列的概念与性质是解答好本类题的关键.
考点2数列的递推关系式的理解与应用
在解答给出的递推关系式的数列问题时,要对其关系式进行适当的变形,转化为常见的类型进行解题。如“逐差法”若且;我们可把各个差列出来进行求和,可得到数列的通项.
再看“逐商法”即且,可把各个商列出来求积。
另外可以变形转化为等差数列与等比数列,利用等差数列与等比数列的性质解决问题.
例2.(2011年高考四川卷文科9)数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则a6=()
(A)3×44(B)3×44+1
(C)44(D)44+1
【答案】A
【解析】由题意,得a2=3a1=3.当n≥1时,an+1=3Sn(n≥1)①,所以an+2=3Sn+1②,
②-①得an+2=4an+1,故从第二项起数列等比数列,则a6=3×44.
【名师点睛】本小题主要考查与的关系:,数列前n项和和通项是数列中两个重要的量,在运用它们的关系式时,一定要注意条件,求通项时一定要验证是否适合。解决含与的式子问题时,通常转化为只含或者转化为只的式子.
【备考提示】:递推数列也是高考的内容之一,要熟练此类题的解法,这是高考的热点.
练习2.(2011年高考辽宁卷文科5)若等比数列{an}满足anan+1=16n,则公比为()[Z
(A)2(B)4(C)8(D)16
【答案】B
【解析】设公比是q,根据题意a1a2=16①,a2a3=162②,②÷①,得q2=16.因为a12q=160,a120,则q0,q=4.
考点3数列的通项公式与前n项和公式的应用
等差、等比数列的前n项和公式要深刻理解,等差数列的前n项和公式是关于n的二次函数.等比数列的前n项和公式(),因此可以改写为是关于n的指数函数,当时,.
例3.(2011年高考江苏卷13)设,其中成公比为q的等比数列,成公差为1的等差数列,则q的最小值是.
【答案】
【解析】由题意:,
【答案】A
【解析】通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选A,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式.
考点4.数列求和
例4.(山东省济南市2011年2月高三教学质量调研理科20题)
已知为等比数列,;为等差数列的前n项和,.
(1)求和的通项公式;
(2)设,求.
【解析】(1)设的公比为,由,得所以
设的公差为,由得,
所以
(2)


②-①得:
所以
【名师点睛】本小题主要考查等比等差数列的通项公式及前n项和公式、数列求和等基础知识,考查运算能力、综合分析和解决问题的能力.
【备考提示】:熟练数列的求和方法等基础知识是解答好本类题目的关键.
练习4.(2010年高考山东卷文科18)
已知等差数列满足:,.的前n项和为.
(Ⅰ)求及;(Ⅱ)令(),求数列的前n项和.
【解析】(Ⅰ)设等差数列的公差为d,因为,,所以有
考点5等差、等比数列的综合应用
解综合题要总揽全局,尤其要注意上一问的结论可作为下面论证的已知条件,在后面求解的过程中适时应用.
例5.(2011年高考浙江卷理科19)已知公差不为0的等差数列的首项(),设数列的前n项和为,且,,成等比数列(Ⅰ)求数列的通项公式及(Ⅱ)记,,当时,试比较与的大小.[
当时,即;
所以当时,;当时,.
【名师点睛】本小题主要考查等差等比数列的通项与前n项和等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.
【备考提示】:熟练掌握等差等比数列的基础知识是解决本类问题的关键.
练习5.(2011年高考天津卷文科20)
已知数列与满足,,且.
(Ⅰ)求的值;
(Ⅱ)设,,证明是等比数列;
(Ⅲ)设为的前n项和,证明.
【解析】(Ⅰ)由,可得
,,
当n=1时,由,得;
当n=2时,可得.
(Ⅱ)证明:对任意,--------①
---------------②
②-①得:,即,于是,所以是等比数列.
(Ⅲ)证明:,由(Ⅱ)知,当且时,
=2+3(2+)=2+,故对任意,,
由①得所以,,
因此,,于是,
故=,
所以.
【易错专区】
问题:已知,求时,易忽视的情况
例.(2010年高考上海卷文科21)
已知数列的前项和为,且,
(1)证明:是等比数列;
(2)求数列的通项公式,并求出使得成立的最小正整数.
【考题回放】
1.(2011年高考安徽卷文科7)若数列的通项公式是,则()
(A)15(B)12(C)(D)
【答案】A
【解析】法一:分别求出前10项相加即可得出结论;
法二:,故.故选A.
2.(2011年高考江西卷文科5)设{}为等差数列,公差d=-2,为其前n项和.若,则=()
A.18B.20C.22D.24
【答案】B
【解析】.
3.(2011年高考江西卷理科5)已知数列{}的前n项和满足:,且=1.那么=()
A.1B.9C.10D.55
【答案】A
【解析】因为,所以令,可得;令,可得;同理可得,,,
,所以=,故选A.
4.(2011年高考四川卷理科8)数列的首项为,为等差数列且.若则,,则()
(A)0(B)3(C)8(D)11
【答案】B
【解析】由已知知由叠加法.
5.(2010年高考全国Ⅰ卷文科4)已知各项均为正数的等比数列{},=5,=10,则=()
(A)(B)7(C)6(D)
【答案】A
【解析】由等比数列的性质知,10,所以,所以.
6.(2010年高考全国卷Ⅱ文科6)如果等差数列中,++=12,那么++…+=()
(A)14(B)21(C)28(D)35
【答案】C
【解析】∵,∴
7.(2009年高考安徽卷理科第5题)已知为等差数列,++=105,=99,以表示的前项和,则使得达到最大值的是高.()
【解析】设公比为,由已知得,即,因为等比数列的公比为正数,所以,故,选B
9.(2009年高考湖南卷文科第3题)设是等差数列的前n项和,已知,,则等于()
A.13B.35C.49D.63
【答案】C
【解析】故选C.
或由,
所以故选C.
10.(2009年高考福建卷理科第3题)等差数列的前n项和为,且=6,=4,则公差d等于()
A.1BC.-2D3
【答案】C
【解析】∵且.故选C
11.(2009年高考江西卷理科第8题)数列的通项,其前项和为,则为()
A.B.C.D.
【答案】A
【解析】由于以3为周期,故
故选A
12.(2011年高考湖北卷文科9)《九章算术》“竹九节”问题:现有一根9节的竹子,自下而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为()
A.1升B.升C.升D.升
【答案】D
【解析】设9节竹子的容积从上往下依次为a1,a2,……a9,公差为d,则有a1+a2+a3+a4=3,a7+a8+a9=4,即4a5-10d=3,3a5+9d=4,联立解得:,所以选B.
13.(2011年高考湖南卷理科12)设是等差数列的前项和,且,,则.
【答案】25
【解析】因为,,所以,则.故填25
14.(2011年高考广东卷理科11)等差数列前9项的和等于前4项的和.若,则.
【答案】10
【解析】由题得.
【解析】则
于是令得,则,时递增,令得,则,时递减,故是最大项,即.
17.(2011年高考江西卷文科21)(本小题满分14分)
(1)已知两个等比数列,满足,
若数列唯一,求的值;
(2)是否存在两个等比数列,使得成公差为
的等差数列?若存在,求的通项公式;若存在,说明理由.
【解析】(1)要唯一,当公比时,由且,
,最少有一个根(有两个根时,保证仅有一个正根)
,此时满足条件的a有无数多个,不符合。
当公比时,等比数列首项为a,其余各项均为常数0,唯一,此时由,可推得符合
综上:。
(2)假设存在这样的等比数列,则由等差数列的性质可得:,整理得:
要使该式成立,则=或此时数列,公差为0与题意不符,所以不存在这样的等比数列.
18.(2011年高考福建卷文科17)(本小题满分12分)
已知等差数列{an}中,a1=1,a3=-3.
(I)求数列{an}的通项公式;
(II)若数列{an}的前k项和Sk=-35,求k的值.
【解析】(I)设等差数列{an}的公差为,则,由,可得,解得
,从而.
(II)由(I)可知,所以,由Sk=-35,可得,
即,解得或,又,故.
19.(2011年高考湖南卷文科20)(本题满分13分)
某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少,从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.
(I)求第n年初M的价值的表达式;
(II)设若大于80万元,则M继续使用,否则须在第n年初对M更新,证明:须在第9年初对M更新.
【解析】(I)当时,数列是首项为120,公差为的等差数列.
因为是递减数列,所以是递减数列,又
所以须在第9年初对M更新.
20.(2011年高考四川卷文科20)(本小题共12分)
已知﹛﹜是以为首项,q为公比的等比数列,为它的前项和.
(Ⅰ)当成等差数列时,求q的值;
(Ⅱ)当,,成等差数列时,求证:对任意自然数也成等差数列.
【解析】(Ⅰ)当时,,因为成等差数列,所以,解得,因为,故;
当时,,由成等差数列得,得,即,.
21.(2010年高考天津卷文科22)(本小题满分14分)
在数列中,=0,且对任意k,成等差数列,其公差为2k.
(Ⅰ)证明成等比数列;(Ⅱ)求数列的通项公式;
(Ⅲ)记,证明.
【解析】(I)证明:由题设可知,,,,,.从而,所以,,成等比数列.
(II)解:由题设可得
所以
.
由,得,从而.
所以数列的通项公式为或写为,。
(III)证明:由(II)可知,,
以下分两种情况进行讨论:
(1)当n为偶数时,设n=2m
若,则,
若,则
.
所以,从而
(2)当n为奇数时,设。
所以,从而
综合(1)和(2)可知,对任意有
22.(2010年高考北京卷文科16)(本小题共13分)
已知为等差数列,且,。
(Ⅰ)求的通项公式;
(Ⅱ)若等差数列满足,,求的前n项和公式
【解析】(Ⅰ)设等差数列的公差。
23.(2010年高考江西卷文科22)(本小题满分14分)
正实数数列中,,,且成等差数列.
(1)证明数列中有无穷多项为无理数;
(2)当为何值时,为整数,并求出使的所有整数项的和.
【解析】证明:(1)由已知有:,从而,
方法一:取,则.
用反证法证明这些都是无理数.
假设为有理数,则必为正整数,且,
故.,与矛盾,
所以都是无理数,即数列中有无穷多项为无理数;
方法二:因为,当得末位数字是3,4,8,9时,的末位数字是3和7,它不是整数的平方,也不是既约分数的平方,故此时不是有理数,因这种有无穷多,故这种无理项也有无穷多.
(2)要使为整数,由可知:同为偶数,且其中一个必为3的倍数,所以有或当时,有又必为偶数,所以满足
即时,为整数;同理有
也满足
即时,为整数;显然和是数列中的不同项;所以当和时,为整数;由有,
由有.
设中满足的所有整数项的和为,则

24.(2010年高考浙江卷文科19)(本题满分14分)设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足+15=0.
(Ⅰ)若=5,求及a1;(Ⅱ)求d的取值范围.
【解析】(Ⅰ)解:由题意知S6==-3,
A6=S6-S5=-8所以解得a1=7,所以S6=-3,a1=7
(Ⅱ)解:因为S5S6+15=0,所以(5a1+10d)(6a1+15d)+15=0,即2a12+9da1+10d2+1=0.
【解析】通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选A,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式
2.(2010年高考安徽卷文科5)设数列的前n项和,则的值为()
(A)15(B)16(C)49(D)64
【答案】A
【解析】.
3.(2010年高考山东卷文科7)设是首项大于零的等比数列,则“”是“数列是递增数列”的()
(A)充分而不必要条件(B)必要而不充分条件
(C)充分必要条件(D)既不充分也不必要条件
【答案】C
【解析】若已知,则设数列的公比为,因为,所以有,解得又,所以数列是递增数列;反之,若数列是递增数列,则公比且,所以,即,所以是数列是递增数列的充分必要条件。
4.(2010年高考江西卷文科7)等比数列中,,,,则
A.B.C.D.
5.(2010年高考辽宁卷文科3)设为等比数列的前项和,已知,,则公比()
(A)3(B)4(C)5(D)6
【答案】B
【解析】两式相减得,,.

6.(2010年高考广东卷文科4)已知数列{}为等比数列,是它的前n项和,若,
且与的等差中项为,则S5=w()
A.35B.33C.31D.29
7.(2010年高考重庆卷文科2)在等差数列中,,则的值为()
(A)5(B)6
(C)8(D)10
【答案】A
【解析】由角标性质得,所以=5.
8.(2010年高考湖北卷文科7)已知等比数列{}中,各项都是正数,且,成等差数列,则()
A.B.C.D
【答案】C
二.填空题:
13.(2009年高考北京卷文科第10题)若数列满足:,则
;前8项的和.(用数字作答)
【答案】255
【解析】,
易知.
14.(2010年高考辽宁卷文科14)设为等差数列的前项和,若,则。
【答案】15
【解析】由,解得,
15.(浙江省温州市2011年高三第一次适应性测试理科)已知数列是公比为的等比数列,集合,从中选出4个不同的数,使这4个数成等比数列,这样得到4个数的不同的等比数列共有.
【答案】
【解析】以公比为的等比数列有…共组;
以公比为的等比数列有…共组;
以公比为的等比数列有共组.
再考虑公比分别为的情形,可得得到4个数的不同的等比数列共有个.
三.解答题:
17.(2009年高考山东卷理科第20题)(本小题满分12分)
等比数列{}的前n项和为,已知对任意的,点,均在函数的图像上.
(Ⅰ)求r的值;
(文科)(Ⅱ)当b=2时,记,求数列的前n项和.
(理科)(Ⅱ)当b=2时,记,证明:对任意的,不等式成立
【解析】(Ⅰ)由题意知:,
当时,,
由于且所以当时,{}是以为公比的等比数列,
又,,即解得.
(理科)(Ⅱ)∵,∴当时,,
又当时,,适合上式,∴,,
∴,
下面用数学归纳法来证明不等式:
证明:(1)当时,左边=右边,不等式成立.
(2)假设当时,不等式成立,即,
则当时,
不等式左边=
所以当时,不等式也成立,
综上(1)(2)可知:当时,不等式恒成立,
所以对任意的,不等式成立.
(文科)(Ⅱ)由(Ⅰ)知,,,所以=,
,
+,
两式相减得:
,
故=.
(Ⅱ)因为,…10分
所以
.…14分
19.(天津市南开中学2011年3月高三月考文科)已知数列的前以项和为且对于任意的恒有设
(1)求证:数列是等比数列;(2)求数列的通项公式和
(3)若证明:
【解析】(1)当n=l时,得
当时,两式相减得:
是以为首项,2为公比的等比数列.……………………4分
(2)由(1)得
……………………………………8分
由为正项数列,所以也为正项数列,
从而所以数列递减,
所以…12分
另证:由
所以
20.(天津市红桥区2011届高三一模文科)(本题满分14分)
设数列的前项和为,且;数列为等差数列,且。
(1)求数列的通项公式;
(2)若为数列的前项和,求证:。
【解析】(1)由,
(2)数列为等差数列,公差
从而
从而
21.(山东省济南市2011年2月高三教学质量调研文科)
已知{an}是递增的等差数列,满足a2a4=3,a1+a5=4.
(1)求数列{an}的通项公式和前n项和公式;
(2)设数列{bn}对n∈N*均有成立,求数列{bn}的通项公式.
22.(山东省青岛市2011年3月高考第一次模拟理科)已知数列满足,且,为的前项和.
(Ⅰ)求证:数列是等比数列,并求的通项公式;
(Ⅱ)如果对任意,不等式恒成立,求实数的取值范围.
【解析】(Ⅰ)对任意,都有,所以
则成等比数列,首项为,公比为…………2分
所以,…………4分
(Ⅱ)因为
所以…………6分
因为不等式,化简得对任意恒成立…………7分
设,则…………8分
当,,为单调递减数列,当,,为单调递增数列
,所以,时,取得最大值…………11分
所以,要使对任意恒成立,…………12分

文章来源://m.jab88.com/j/52023.html

更多

猜你喜欢

更多

最新更新

更多