北师大版八年级数学(上)第一章勾股定理
教学分析与建议
一、主要内容
勾股定理在数学的发展历史上起过重要的作用,在现实世界中也有着广泛的应用。它的发现、证明和应用都蕴涵着丰富的数学的、文化的内涵。它是几何学中的重要的定理之一。
教材为学生设计了自主探索勾股定理内容以及验证它的素材和空间,教学中要使学生经历观察、归纳、猜想和验证的数学发现过程
教材的设计过程中,希望学生能够利用方格纸探索勾股定理内容,并且能利用拼图验证勾股定理,再次就是通过测量获得勾股定理的逆定理
教材提供了较为丰富的历史的或现实的例子,以展示勾股定理及其逆定理的应用,体现其文化价值。当然限于学生的已有知识,问题解决中所涉及的数据均为完全平方数,本章更多的关注学生对勾股定理及其逆定理的理解和应用,不追求复杂计算。
二,评价建议
1,关注对探索勾股定理等活动的评价。一方面要关注学生是否积极参与,是否能与同伴进行有效合作交流;另一方面也要关注学生在活动中能否进行积极的思考,能否探索出解决问题的方法,是否能够进行积极的思考,在活动中学生所表现出的归纳,概括能力,学生是否能够有条理地表达活动过程和所获得的结论等。
2,关注考查对勾股定理及其逆定理的理解和应用。注意评价时,不应以复杂运算为主,我们应更另关注学生对有关结论的正确使用。
三、教学目标
l.经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合情推理能力,体会数形结合的思想.
2.掌握勾股定理,了解利用拼图验证勾股定理的方法,并能运用勾股定理解决一些实际问题。
3.掌握判断一个三角形是直角三角形的条件,并能运用它解决一些实际问题。
4.通过实例了解勾股定理的历史和应用,体会勾股定理的文化价值。
四、教材特点
勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用。勾股定理的发现、验证和应用蕴涵着丰富的文化价值。勾股定理从边的角度进一步刻画了直角三角形的特征,通过对勾股定理的学习,学生将在原有的基础上对直角三角形有进一步的认识和理解。
为了使学生能更好地认识勾股定理、发展推理能力,教科书设计了在方格纸上通过计算面积的方法探索勾股定理的活动,同时又安排了用拼图的方法验证勾股定理的内容,试图让学生经历观察、归纳、猜想和验证的数学发现的过程,同时也渗透了代数运算与几何图形之间的关系(如将a2,b2,c2与正方形的面积联系起来,再由比较同一正方形面积的几种不同的代数表示得到勾股定理)。
勾股定理的逆定理也有着重要的地位,但在本章中不要求学生从逻辑上对定理与逆定理进行一般的认识,因此,教科书中没有给出勾股定理逆定理的名称,而是称之为直角三角形的判别条件。教科书以历史上古埃及人作直角的方法引人“三角形的三边长如果满足a2+b2=c2是否能得到一个直角三角形”的问题,然后通过让学生按已知数据作出三角形,并测量三角形三个内角的度数来获得一个三角形是直角三角形的有关边的条件。
为了让学生更好地体会勾股定理及逆定理在解决实际问题中的作用,教科书提供了较为丰富的历史的或现实的例子来展示它们的应用,体现了它们的文化价值。限于学生已有的知识,有关应用中涉及的数均为完全平方数,本章更多关注的是对勾股定理的理解和实际应用,而不追求计算上的复杂。在学生学习了无理数之后,可以再利用勾股定理解决一些涉及无理数运算的实际问题。
五、课时安排建议
1.探索勾股定理2课时
2.能得到直角三角形吗1课时
3.蚂蚁怎样走最近1课时
六、具体内容分析
1、探索勾股定理(第一课时)
本节核心内容:勾股定理及它的探索过程
在教学中,我们可以通过介绍我国数学家华罗庚的建议——向宇宙发射勾股定理的图形与外星人联系,并说明勾股定理是我国古代数学家于2000年前就发现了的,激发学生对勾股定理的兴趣和自豪感,引入课题.其中课本中的,做一做”采用的是数方格的方法;“议一议”对归纳基础的加强;“想一想”是一个有趣的实际问题;
教科书设计了在方格纸上通过计算面积的方法探索勾股定理的活动,教师应鼓励学生充分经历这一观察、归纳、猜想的过程!鼓励学生尝试求出方格中三个正方形的面积,比较这三个正方形的面积,由此得到直角三角形三边的关系,通过对几个特殊例子的考察归纳出直角三角形三边之间的一般规律,运用自己的语言表达探索过程和所得结论.当然教学时,教师也可以根据学生的实际情况,设计其他的探索情景。
勾股定理揭示了直角三角形三边之间的数量关系,是直角三角形的一个重要性质.如有条件,还可以利用计算机(几何画板软件动态显示)的优越条件,提供足够充分的典型材料——形状大小、位置发生变化的各种直角三角形,让学生观察分析,归纳概括,探索出直角三角形三边之间的关系式,并通过与锐角、钝角三角形的对比,强调直角三角形的这个特有性质,启发学生独立分析问题、发现问题、总结规律的教学方法.
教学中要注意:a,多采取小组合作讨论的方式b,给学生留下充分的探索实践的时间和空间c,介绍相关的背景材料
2,探索勾股定理(第二课时)
本节核心内容:用拼图来验证勾股定理及其一个简单运用。
在勾股定理的探索和验证过程中,数形结合的思想有较多的体现.教师在教学中应注意渗透这种思想,鼓励学生从代数表示联想到有关的几何图形,由几何图形联想到有关的代数表示,这有助于学生认识数学的内在联系。例如,在探索勾股定理的过程中,教师应引导学生由正方形的面积想到a2,b2,c2,而在勾股定理的验证过程中,教师又应引导学生由数“a2+b2=c2想到正方形的面积。”在教学中,“议一议”使学生进一步体会直角三角形三边的关系,要给学生充分的讨论空间。
勾股定理的发现、验证及应用的过程蕴涵了丰富的文化价值,古代很多国家和民族都对勾股定理有不同程度的认识和了解,我国是最早了解勾股定理的国家之一.当考虑等腰直角三角形的斜边时,这一定理又导致了无理数的产生一数学历史上的第一次数学危机。教师应鼓励每一个学生阅读教科书提供的勾股定理的历史,并可以向学生再展示一些历史资料。教师还可以引导学生自己从书籍、网络上查阅资料,了解更多的有关勾股定理的内容,体会它的文化价值.
3,能得到直角三角形吗
本节的核心内容是:掌握直角三角形的判别条件。
课本创设了古埃及人利用结绳的方法作出直角,教师还可以创设其他现实情境或鼓励学生自己寻找有关问题,进一步展现勾股定理和逆定理在解决问题中的作用,认识现实世界中蕴涵着丰富的数学信息。在教学中,“做一做”是用计算、画图再测量的方法归纳出勾股定理的逆定理。归纳的基础应尽可能的厚实一些,但此处有一定的作图困难。教师可对其正确性予以说明。还要让学生熟悉一些常用的勾股数。
3,蚂蚁怎样走最近
本节的核心内容是:勾股定理及其判别条件的简单运用。
这一节内容,可以让学生先自主探索,再引导其考虑侧面展开图来解决问题,培养空间观念。本节课要以教师为主导,以学生为主体,以知识为载体,以培养学生的思维能力,动手能力,探究能力为重点的教学思想。在课堂教学中,尽量为学生提供“做中学”的空间,小组合作,探究交流得到了真正体现。数学源于生活,并运用于生活是整节课的一条暗线贯穿其中。
这节课的目标具体的可以分为:
1、初步运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。
2、能在实际问题中构造直角三角形,提高建模能力,进一步深化对构造法和代数计算法和理解。
3、在解决实际问题的过程中,体验空间图形展开成平面图形时,对应的点,线的位置关系,从中培养空间观念。
4、在解决实际问题的过程中,进一步培养从“形”到“数”和从“数”到“形”的转化,培养学生的转化、推理能力。
5、通过研究勾股定理的历史,了解中华民族文化的发展对数学发展的贡献,激发学生的爱国热情和学习数学的兴趣。
总之,我们要培养学生从空间到平面的想象能力,运用数学方法解决实际问题的创新能力及探究意识。
课题学习
拼图与勾股定理
一,教学建议
l.本课题具有一定的挑战性,学生可以采用小组合作的方式进行研究。在小组活动中,教师应提供给学生充分实践、探索和交流的时间,鼓励他们积极思考解决问题的方法,并与他人进行合作与交流。教师应深入到各小组中倾听学生们的讨论,了解他们的思考过程并给予一定的指导.在小组活动的基础上,教师要组织各小组在全班充分交流自己的成果。
2.教科书只是提供了该课题研究的基本线索,教师可以根据学生的特点自己设置若干小课题,以保证所有的人都能参与本课题的讨论.但由于课题学习的主要目标是培养学生综合运用所学知识和方法解决挑战性问题的能力,不宜将课题分解成一个一个的小问题,限制学生的思维.
二,评价建议
1.由于课题学习更关注解决问题的过程,所以教师在评价时应首先关注学生在小组活动中的表现。对此的评价主要包括两个方面.一是学生参与活动的积极程度,包括是否积极思考,探索解决问题的方法;是否乐于与小组其他成员进行合作,愿意与同伴交流各自的想法;是否有解决问题的自信心,能够不回避遇到的困难等。二是学生在活动中所表现出来的思考水平,包括是否能够通过动手操作和独立思考获得解决问题的思路;能否找到有效解决问题的方法,尝试从不同的角度去思考问题;是否理解他人的思路,并在与同伴交流中获益;是否有反思自己思考过程的意识等,即要对学生的动手操作能力、推理能力、空间观念、口头表达能力等作出综合的评价.
2.教师要注意观察学生的活动过程,特别是及时记录学生独特的解决问题的想法。教师要注意了解学生的差异(思维特征与活动水平),学生只要能积极投人到活动中都要给予鼓励,同时促进每一个学生得到不同的发展。
三,教学目标:
1,经历综合运用已有知识解决问题的过程,在此过程中,加深对勾股定理、整式运算、面积等的认识。
2.经历用不同的拼图方法验证勾股定理的过程!体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值。
3,通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间的内在联系。
4.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算,推理、交流等过程,发展空间观念和有条理地思考与表达的能力,获得一些研究问题与合作交流的方法与经验。
5.通过获得成功的体验和克服困难的经历,增进数学学习的信心。
四,教材特点
勾股定理是数学中一个非常重要的定理。长期以来,人们对它进行了大量的研究,找到了许多不同的验证方法。这些方法不仅验证了勾股定理,而且丰富了研究问题的手段,促进了数学的发展。
本课学习给出了中国古代历史上利用拼图的方法对勾股定理进行验证的几种思路,也介绍了国外一些验证勾股定理的方法。在本课题中,设计了丰富的拼图活动!学生经过自己的操作与思考,一方面经历了验证勾股定理的过程,感受了解决同一问题的不同方法,激发了数学学习的兴趣,积累了数学活动经验;另一方面通过对中外多种方法的了解,开阔了视野,感受到了古代人民的聪明才智。
课题学习中给出的验证方法,虽然都与图形的拼摆、分割有关,但又各有特点.第一部分的拼图方法与第一章第一节中验证方法有共同之处,都是将数与形联系起来,由所拼图形的面积表达式之间的关系,通过代数恒等变形验证勾股定理。第二部分介绍的是“青朱出人图”,它是我国古代数学家利用拼图来验证勾股定理的一种著名方法,这种方法是利用拼图来说明以勾、股为边长的正方形(分别称为朱和青),经过割补可以拼成以弦为边长的正方形.在这部分的学习中,主要以学生的实践活动为主。
第三部分介绍了意大利著名画家达芬奇对勾股定理的一种研究结果,他的方法新颖,具有一定的操作性,可以开阔学生的视野、丰富学生的想像。
五,课时安排建议
2课时
六,教学建议
本节课的核心内容是:用多种拼图方法来验证勾股定理的过程。
第一课时可以完成议一议。在教学中,教师可以首先回顾第一章中进行过的验证勾股定理的过程,指明本课题学习的目的,激发学生的探索欲望。课题提出后,教师可以不马上进入到下一环节,而是让学生先独立思考和讨论一段时间在学生思维遇到困难而又迫切希望行到帮助的时候,自然引入下一环节。在做议一议的时候,教师应该先让学生观察图1,让学生感知由数到形的过程。然后鼓励学生用同样的思路摆出不同的图形,并让学生得到充分的实践。最后让成功者上来演示,强化他的成功的感觉,激发其他同学渴求成功的欲望。完成做一做,在做一做中,必须要让学生先回家准备好两副五巧板,在做五巧板的时候
本节课的核心内容:利用五巧板来验证勾股定理。
第二课时,完成青朱出入图的讨论与想一想。经过上一节课五巧板的拼图,学生已有一点的经验。教师现在展示“青朱出入图”学生会感觉到亲切。并让学生根据拼图帮助理解“青朱出入图”意思。学生理解后拼出展示过的“青朱出入图”,学生通过拼图,从而抓住拼图的要点,即用已有的两副“五巧板”拼成分别“长”在直角三角形三边上的三个正方形。注意,教学中,要给学生留有充分的时间和空间来拼摆图形,引导要适度,不要限制学生的思维。同时鼓励学生在拼图的过程中进行交流合作。
整个教学过程中,教师要注意引导学生及时反思自己的活动过程以及在小组活动中的表现,积累数学活动与合作交流的经验。
素材精选:
1.如图是一个三级台阶,它的每一级的长宽和高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是_____________.
2..印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:
“平平湖水清可鉴,面上半尺生红莲;
出泥不染亭亭立,忽被强风吹一边,
渔人观看忙向前,花离原位二尺远;
能算诸君请解题,湖水如何知深浅?”
请用学过的数学知识回答这个问题。
3.如图,A、B是笔直公路l同侧的两个村庄,且两个村庄到直路的距离分别是300m和500m,两村庄之间的距离为d(已知d2=400000m2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小。问最小是多少?
4.图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=____________.
5.寒冷的冬天,你需要一杯热热的朱古力。可是在调制的过程中,老师遇到了这样一个问题:搅拌棒的长度太短了,不能搅拌到底部的饮料。已知圆柱形水杯的底面直径为5cm,高为12cm,你能帮老师计算一下搅拌棒至少要多长吗?老师新买的一根长为24cm的搅拌棒,如果设其露在杯子外面的长为hcm,你能求出h的取值范围吗?
处理方式:1)分小组活动,动手实验。
2)画图,并计算。
6.如图是棱长为4cm的立方体木块,一只蚂蚁现在A点,
若在B点处有一块糖,它想尽快吃到这块糖,则蚂蚁沿正
方体表面爬行的最短路程是cm;
7.如图,一块草坪的形状为四边形ABCD,其中∠B=90,AB=3m,BC=4m,CD=12m,AD=13m,求这块草坪的面积。
教学目标:
知识技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形
过程与方法:1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程
2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用
3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题
决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系。
2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神
重点:理解并掌握勾股定理的逆定理,并会应用。
难点:理解勾股定理的逆定理的推导证明。
(一)、创设情景,设疑引新。
1.多媒体:展示图片:古埃及底比斯壁画:很多几何知识源自古埃及人的劳作,他们只用一根绳子就能确定直角
2.展示图片:古埃及人制作直角的方法3.让学生由设置的情境说出心中的疑问.
4.引入新课.
(二)、探究学习,解决问题。
探究问题一:如何确定古埃及人所围成的三角形是直角三角形?
1、学生自我展示解决问题的方法
2、小组合作交流解决问题的方法
3、教师点拨,总结升华
探究问题二:满足什么条件的线段才能围成一个直角三角形?
1、学生自我展示解决问题的方法
2、小组合作交流解决问题的方法
3、教师点拨,总结升华
4、教师引导学生发现新问题
探究问题三:任意三条线段,满足其中两个线段的平方和等于第三条线段的平方,那么这三个线段就能围成直角三角形呢?
1、命题与逆命题的学习
(1)教师引导学生画出几何图形,用几何语言写出学生的猜想—命题1。
(2)展示命题2
(3)提出问题:让学生找出命题1与命题2有何关系
(4)命题与逆命题的定义
(5)应用:写出命题的逆命题并判断两者是否是真命题。
2、探究:如何证明命题1是正确的
(1)、学生自我展示解决问题的方法
(2)、小组合作交流解决问题的方法
(3)、教师点拨,总结升华(三)、归纳总结,提升认知
1、总结勾股定理的逆定理
2、学习定理与逆定理的定义
(四)、新知应用,能力提升
例1设三角形三边长分别为下列各组数,试判断各三角形是否是直角三角形。
(1)7,24,25;(2)12,35,37;(3)13,11,9。
练习1、如图所示的三角形中,哪些是直角三角形,哪些不是,说说你的理由。
解:设每个小正方形的边长为1个单位,则在图中的三角形中,可由勾股定理求在其三边所在的个点直角三角形中求出其三边分别为1,√3,2。因为这三个边满足a2+b2=c2,根据勾股定理的逆定理所以这个三角形为直角三角形
练习2、已知:如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积?
(五)课堂小结
本节课我学习了:1、_____________的推理与论证,知道了勾股定理的逆定理是判断一个三角形是否是___________________的一个常用的方法。
2、还学习了定理与逆定理,能根据一个命题写出它的逆命题,并能判断它们是否是__________定理。
3、学会运用_______________________计算和证明。并了解了一个重要思想—___________思想。
(六)课外拓展:图片展示:1、以x、y、z为三边长的三角形是直角三角形(z最长)x2+y2=z2(x、y、z为正数)
想一想:关于x、y、z的方程x2+y2=z2有没有正数解?古希腊数学家丢番图在《算术》中指出:关于x、y、z的方程x2+y2=z2有无数组正数解。2、邮票上的费马与费马大定理(教材35页)
(七)作业布置教材33页练习
八年级数学下册《勾股定理》教案
【知识与技能】
了解勾股定理的文化背景,体验勾股定理的探索过程.
【过程与方法】
在探索勾股定理的过程中,发展合情推理能力,体会数形结合思想,学会与人合作并能与他人交流思维的过程和探究结果,体验数学思维的严谨性.
【情感态度】
1.通过对勾股定理历史的了解,感受数学的文化,激发学习热情.
2.在探究活动中,体验解决问题的多样性,培养学生合作交流意识和探索精神.
【教学重点】
探索和证明勾股定理.
【教学难点】
用拼图的方法证明勾股定理.
一、情境导入,初步认识
2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会会徽的图案(教师出示图片或照片).
(1)你见过这个图案吗?
(2)你听说过“勾股定理”吗?
【教学说明】学生欣赏图片时,教师应对图片中的图案进行补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被誉为“赵爽弦图”.通过对图片的观察,为学生积极主动投入到探索活动中创设情境,为探索勾股定理提供背景材料.
二、思考探究,获取新知
毕达哥拉斯是古希腊著名数学家.相传在2500年前,他在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.请你也观察一下类似的图案(教材P22图形),你有什么发现?
【教学说明】教师与学生一道分析教材P22图17.1-2,右边的三个正方形及直角三角形是从左边的等腰三角形的图案中截取出来的,将大正方形沿对角线分成四个小直角三角形,再把两个小正方形沿竖直对角线分成两个小直角三角形,从而可发现其中特征.
【归纳结论】等腰直角三角形斜边的平方等于两直角边的平方和.问题等腰直角三角形三边的关系特征是否也适用于其它的直角三角形呢?请同学们继续观察P23图17.1-3,运用割补法分别计算正方形A、B、C和正方形A′、B′、C′的面积,看看它们之间有什么关系?
【教学说明】让学生自主探究或相互交流探寻出正方形C和C′的面积,教师巡视,针对学生的认知方法引导学生选用不同的方法得出它们各自的面积.一方面,正方形C的面积为:52-4××2×3=25-12=13;另一方面也有正方形C的面积为:4××2×3+1=13,而这两种方法都可以从图中直接获得,同样可得到正方形C′的面积为34.
通过观察上述问题的探讨,若将直角三角形的两直角边记为a,b,斜边为c,则应有a2+b2=c2,即直角三角形的两直角边的平方和等于斜边的平方.上述结论我们都是通过特例而获得的,是否对所有的直角三角形都能成立呢?有没有办法来证明呢?
做一做
将一张白纸对折,再对折,然后随意画一个直角三角形,用剪刀沿画线裁出四个全等的直角三角形,在较大直角边处标记b,较短直角边处标记a,斜边标记c,然后按图示方式拼图.
想一想
(1)中间小正方形边长是多少?它的面积呢?
(2)你能由大正方形的面积的两种不同计算方法探讨出三角形三边a、b、c的数量关系吗?不妨试试看.
【教学说明】通过动手操作,可激发学生学习兴趣,并在解决问题过程中体验探究的乐趣和成功的快乐,在快乐中学习,增长知识.
最后师生共同探讨:
S大正方形=c2=4××a×b+(b-a)2=2ab+b2-2ab+a2=a2+b2.
即a2+b2=c2.
有:直角三角形两直角边的平方和等于斜边的平方.
教师简要阐述:现有记载的证明勾股定理的方法多达数百种,前面我们利用的面积法证明勾股定理的方法实际上是我国古人赵爽的证法,所拼成的图案称为“赵爽弦图”.
三、运用新知,深化理解
1.你能利用如图所示的图形来证明勾股定理吗?不妨试试看,并与同伴交流.
2.你能用勾股定理解决下面的问题吗?
(1)在Rt△ABC中,∠ACB=90°,AC=7,BC=24,试求斜边AB的长;
(2)在Rt△ABC中,∠ACB=90°,AB=10,BC=6,试求直角边AC的长.
【教学说明】这两道题先由学生自主完成,然后由教师进行评讲.
【答案】1.解:S梯形=(a+b)·(a+b)·=(a2+b2+2ab)·,
又S梯形=ab+ab+c2=(2ab+c2),
综上a2+b2=c2.
有:直角三角形两直角边的平方和等于斜边的平方.
2.解:(1)由勾股定理有:在Rt△ABC中,AB2=AC2+BC2,即AB=25.
(2)由勾股定理有:在Rt△ABC中,AB2=AC2+BC2,
即AC2=AB2-BC2,∴AC=8.
四、师生互动,课堂小结
这节课你有哪些收获?你还能想到一些证明勾股定理的方法吗?与同伴交流.
五、作业
1.请查阅资料或上网,收集一些证明勾股定理的方法,并与同伴交流.
2.AB生完成练习册中本课时练习.C生:勾股定理概念及课本习题。
新课程标准对勾股定理这部分的教学要求与旧大纲的要求不同,新课程标准对勾股定理这部分的教学要求是:体验勾股定理的探索过程,会运用勾股定理解决简单的问题.勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础.它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+b2=c2),堪称数形结合的典范,在理论上占有重要地位.另外八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法.但是学生在用割补方法和用面积计算方法证明几何命题的意识和能力方面存在障碍,对于如何将图形与数有机的结合起来还很陌生.基于以上三点的原因,本节课教学应把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流;另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,从而教给学生探求知识的方法,教会学生获取知识的本领。本节课精心设计,激情上课,充分调动学生积极性,提高课堂效率,分层作业,新颖灵活作业,让学生轻松学习,快乐减负。
文章来源:http://m.jab88.com/j/51778.html
更多