从算式到方程(1)
从算式到方程(1)湖北省黄冈市浠水县麻桥中学裴荣富
一、教材分析:
1.学习目标:
知识与技能:学会用方程描述问题中数量之间的相等关系.
过程与方法:通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型.
情感、态度与价值观:初步认识方程与现实世界的密切联系,感受数学的价值.
2.重、难点:理解题意,寻求数量间的等量关系并列出方程.
二、教材处理:
1.情景创设:
问题章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远?
地名
时间
王家庄
10:00
青山
13:00
秀水
15:00
2.学生活动
思考:(1)、在上述图表中,你读出了哪些信息?
(2)、你会用算术方法解决这个实际问题吗?
(3)、你能借助方程来解吗?
从而揭示课题──从算式到方程(板书)
引导学生列方程:
提问:设:王庄到翠湖的路程为χ千米,则王家庄距青山千米,王家庄距秀水千米.从王家庄到青山行车小时,王家庄到秀水行车小时.王家庄到青山时的速度,王家庄到秀水时的速度.这里有什么等量关系,于是列出方程
小结列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的式子──方程
你还能列出其他方程吗?
注意:通常用“x、y、z”等字母来表示未知数
3.数学应用
例1根据下列条件列出方程:
(1)某数比它大4倍小3;
(2)某数的1/3与15的差的3倍等于2;
(3)比某数的5倍大2的数是17;
(4)某数的3/4与它的1/2的和为5.
提示:做上面的题时请注意怎样设未知数,怎样建立等量关系,特别注意关键字“大、小、多、少”,“和、差、倍、分”的含义.
例2根据下列问题,设未知数并列出方程:
(1)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
(2)用一根长24cm的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长、宽各应是多少?
(3)某校女生占全校学生数的52%,比男生多80人,这个学校有多少学生?
讨论:同学们先独立思考,看怎样设未知数?有怎样的等量关系?并列出方程,然后以小组为单位进行讨论交流.
议一议下面的方程有什么共同特点?
1700+150x=24502(x+1.5x)=240.52x-(1-0.52)x=80
一元一次方程的概念只含有一个未知数(元)x,未知数x的指数都是1(次)方程叫做一元一次方程。
归纳上面的分析过程可以表示如下:
做一做填下表:
x的值
1
2
3
4
5
6
7
…
1700+150x
提问:当x等于多少时,1700+150x的值是2450?
方程的解:使方程中左右两边相等的未知数的值就是这个方程的解.
4.巩固练习
1.判断下列哪些是一元一次方程?
(1)2x-1(2)x+y=1(3)m-1≥1(4)x+3=a+b+c(5)4x-3=2(x+1)
(6)p=0(7)x2-2x-3=0.
2.列式表示:
(1)比a大5的数;(2)b的三分之一;
(3)x的2倍与1的和;(4)x的三分之一减y的差;
(5)比a的3倍大5的数;(6)比b的一半小7的数.
3.检验下列数哪个是方程的解:
(1)2(x-7)-19=-21(-1,6,7)
(2)x2-2x+3=0(-3,0,1,5)
4.你能根据“2[x+(6-x)]=100”编一道应用题吗?
5.回顾反思:
(1)本课只是要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程是作为刻画现实世界模型的重要意义,建立方程思想.为第3单元作铺垫,对本章知识的学习起到提纲挈领的作用.
(2)教学时,要在调动学生的积极性和激发他们的学习兴趣上下工夫.
下载:
每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。将教案课件的工作计划制定好,新的工作才会如鱼得水!你们会写一段适合教案课件的范文吗?考虑到您的需要,小编特地编辑了“从算式到方程导学案”,仅供参考,欢迎大家阅读。
课题3.1.1一元一次方程
【学习目标】
1、理解什么是一元一次方程。
2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。
【重点难点】能验证一个数是否是一个方程的解。
【导学指导】
一、温故知新
1:前面学过有关方程的一些知识,同学们能说出什么是方程吗?
答:叫做方程。
2:判断下列是不是方程,是打“√”,不是打“×”:
①;()②3+4=7;()
③;()④;()
⑤;()⑥;()
二、自主探究
1.一元一次方程的概念
观察下面方程的特点
(1)4=24;(2)1700+150=2450
(3)0.52x-(1-0.52x)=80
小结:象上面方程,它们都含有个未知数(元),未知数的次数都是,这样的方程叫做一元一次方程。
(即方程的一边或两边含有未知数)
2.方程的解
如何求出使方程左右两边相等的未知数的值?
如方程=4中,=?
方程中的呢?
请用小学所学过的逆运算尝试解决上面的问题。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
例检验2和-3是否为方程的解。
解:当x=2时,
左边==,
右边==,
∵左边右边(填=或≠)
∴x=2方程的解(填是或不是)
当x=时,
左边==,
右边==,
∵左边右边(填=或≠)
∴x=3方程的解(填是或不是)
【课堂练习】
1.判断下列是不是一元一次方程,是打“√”,不是打“×”:
①=4;()②;()
③;()④;()
⑤;()⑥3+4=7;()
2.检验3和-1是否为方程的解。
3.x=1是下列方程()的解:
(A),(B),
(C)),(D)
4、已知方程是关于x的一元一次方程,则a=。
【要点归纳】:
1.这节课我们学习了什么内容?
2.什么是方程的解?如何检验一个数是否是方程的解?
【拓展训练】:
1.检验2和是否为方程的解。
2.老师要求把一篇有2000字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出方程的解)
【总结反思】:
每个老师需要在上课前弄好自己的教案课件,大家在用心的考虑自己的教案课件。教案课件工作计划写好了之后,这样接下来工作才会更上一层楼!有没有好的范文是适合教案课件?小编特地为大家精心收集和整理了“七年级数学上《从算式到方程》专题复习(浙教版)”,仅供您在工作和学习中参考。
从算式到方程
重难点易错点辨析
题一:下列各式中,方程是,其中一元一次方程是.(请填写序号)
2x+1;1x=x1;;7+14=309;;;3x+5y=2;.
考点:方程与一元一次方程的判定
题二:已知关于x的方程3x+2a=2的解是1,则a的值是多少?
考点:方程的解的作用
题三:如果x=y,那么下列等式不一定成立的是()
A.x+a=y+aB.xa=yaC.ax=ayD.
考点:等式的性质
金题精讲
题一:下列各式中,变形正确的是().
A.如果a=b,那么a+c=bc
B.如果,那么a=2
C.如果(a+3)x=b1,那么
D.如果,那么(a+3)x=b1
考点:等式的性质
题二:已知x=3是方程|2x1|3|m|=1的解,求代数式3m2m1的值.
考点:代入法
题三:如果是关于x的一元一次方程,那么a23=.
考点:一元一次方程的定义
题四:已知:关于x的方程4xk=2与2(2+x)=k的解相同,求k的值及相同的解.
考点:解相同问题
思维拓展
题一:已知方程有两个解,分别为a和,则方程的解是()
A.,
B.,
C.,
D.,
考点:特殊方程求解
从算式到方程
讲义参考答案
重难点易错点辨析
题一:,.题二:5/2.题三:D.
金题精讲
题一:D.题二:9或13.题三:2.题四:k=10,x=3.
思维拓展
题一:D.
文章来源:http://m.jab88.com/j/50096.html
更多