88教案网

老师在新授课程时,一般会准备教案课件,大家应该开始写教案课件了。对教案课件的工作进行一个详细的计划,可以更好完成工作任务!你们会写适合教案课件的范文吗?下面是小编为大家整理的“数量积”,仅供您在工作和学习中参考。

课时11数量积综合练习
一、填空题:
1.已知,则=。
2.在中,,则=。
3.若,⊥,且2+3与k-4互相垂直,则k的值为
4.若向量满足=,且,则与的夹角为
5.已知向量=,且单位向量与的夹角为,则的坐标为
6.若向量满足:,,,则与的数量积为.
7.若,,且与的夹角为,则。
8.下列命题中正确的是______
(1)(2)(3)(4)
9.如图,半圆的直径AB=2,O为圆心,C是半圆上不同于A,B的任意一点.若P为半径OC上的动点,则()的最小值是。
10.已知,,当时,=,
当时,=,当与的夹角为300时,=,
11.ABC中,且==,则形状是_________
12.设向量,,满足++=0,且(—),.若||=1,|=_________
13.在ABC中,,则O为ABC的__________心。
14.若向量=与=的夹角为钝角,则的取值范围是___________
二、解答题:
15.若向量满足,且,求。

16.已知,
(1)求的值;(2)求的夹角;(3)求.

17.已知向量,,且.
(Ⅰ)若,求函数关于的解析式;(Ⅱ)求(1)中的单调递减区间;(Ⅲ)求函数的最大值。

18.已知,与的夹角是45°;⑴求;⑵若与同向,且与垂直,求。

19.已知向量,其中为互相垂直的两个单位向量。
(1)求;(2)为何值时,向量垂直?
(3)为何值时,向量平行?

20.已知A,B,C三点的坐标分别是A(3,0),B(0,3),C(),其中(1)若,求角的值;(2)若的值;

21.在平面直角坐标系中,已知向量又点A(8,0),,(1)若,且,求向量;
(2)向量与共线,当,且取最大值4,求

22.已知长方形ABCD,且E为BC的中点,P为AB上的一点,试用向量的知识解答:(1)判定P在什么位置时,PED=450?
(2)若PED=450,求证PDPE.

相关推荐

平面向量的数量积


俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生们充分体会到学习的快乐,减轻高中教师们在教学时的教学压力。您知道高中教案应该要怎么下笔吗?下面是小编精心为您整理的“平面向量的数量积”,仅供您在工作和学习中参考。

课题:2.4平面向量的数量积(2)
班级:姓名:学号:第学习小组
【学习目标】
1、掌握平面向量数量积的坐标表示;
2、掌握向量垂直的坐标表示的等价条件。
【课前预习】
1、(1)已知向量和的夹角是,||=2,||=1,则(+)2=,|+|=。
(2)已知:||=2,||=5,=-3,则|+|=,|-|=。
(3)已知||=1,||=2,且(-)与垂直,则与的夹角为
2、设轴上的单位向量,轴上的单位向量,则=,=,=,=,若=,=,则=+.=+。
3、推导坐标公式:=。
4、(1)=,则||=___________;,则||=。
(2)=;(3)⊥;(4)//。
5、已知=,=,则||=,||=,=,
=;=。

【课堂研讨】
例1、已知=,=,求(3-)(-2),与的夹角。

例2、已知||=1,||=,+=,试求:
(1)|-|(2)+与-的夹角

例3、在中,设=,=,且是直角三角形,求的值。

【学后反思】
1、平面向量数量积的概念及其几何意义;2、数量积的性质及其性质的简单应用。

课题:2.4平面向量的数量积检测案(2)
班级:姓名:学号:第学习小组
【课堂检测】
1、求下列各组中两个向量与的夹角:
(1)=,=(2)=,=
2、设,,,求证:是直角三角形。
3、若=,=,当为何值时:
(1)(2)(3)与的夹角为锐角

【课后巩固】
1、设,,是任意的非零向量,且相互不共线,则下列命题正确的有:
①()-()=②||-|||-
|③()-()不与垂直④(3+4)(3-4)=9||2-16||2
⑤若为非零向量,=,且≠,则⊥(-)
2、若=,=且与的夹角为钝角,则的取值范围是。
3、已知=,则与垂直的单位向量的坐标为。
4、已知若=,=,则+与-垂直的条件是
5、的三个顶点的坐标分别为,,,判断三角形的形状。

6、已知向量=,||=2,求满足下列条件的的坐标。
(1)⊥(2)

7、已知向量=,=。
(1)求|+|和|-|;(2)为何值时,向量+与-3垂直?
(3)为何值时,向量+与-3平行?

8、已知向量,,,其中分别为直角坐标系内轴与轴正方向上的单位向量。
(1)若能构成三角形,求实数应满足的条件;
(2)是直角三角形,求实数的值。

课题:2.4平面向量的数量积(2)
班级:姓名:学号:第学习小组
【学习目标】
3、掌握平面向量数量积的坐标表示;
4、掌握向量垂直的坐标表示的等价条件。
【课前预习】
1、(1)已知向量和的夹角是,||=2,||=1,则(+)2=,|+|=。
(2)已知:||=2,||=5,=-3,则|+|=,|-|=。
(3)已知||=1,||=2,且(-)与垂直,则与的夹角为
2、设轴上的单位向量,轴上的单位向量,则=,=,=,=,若=,=,则=+.=+。
3、推导坐标公式:=。
4、(1)=,则||=___________;,则||=。
(2)=;(3)⊥;(4)//。
5、已知=,=,则||=,||=,=,
=;=。

【课堂研讨】
例1、已知=,=,求(3-)(-2),与的夹角。

例2、已知||=1,||=,+=,试求:
(1)|-|(2)+与-的夹角

例3、在中,设=,=,且是直角三角形,求的值。

【学后反思】
1、平面向量数量积的概念及其几何意义;2、数量积的性质及其性质的简单应用。

课题:2.4平面向量的数量积检测案(2)
班级:姓名:学号:第学习小组
【课堂检测】
1、求下列各组中两个向量与的夹角:
(1)=,=(2)=,=

2、设,,,求证:是直角三角形。
3、若=,=,当为何值时:
(1)(2)(3)与的夹角为锐角

【课后巩固】
1、设,,是任意的非零向量,且相互不共线,则下列命题正确的有:
①()-()=②||-|||-
|③()-()不与垂直④(3+4)(3-4)=9||2-16||2
⑤若为非零向量,=,且≠,则⊥(-)
2、若=,=且与的夹角为钝角,则的取值范围是。
3、已知=,则与垂直的单位向量的坐标为。
4、已知若=,=,则+与-垂直的条件是
5、的三个顶点的坐标分别为,,,判断三角形的形状。

6、已知向量=,||=2,求满足下列条件的的坐标。
(1)⊥(2)

7、已知向量=,=。
(1)求|+|和|-|;(2)为何值时,向量+与-3垂直?
(3)为何值时,向量+与-3平行?

8、已知向量,,,其中分别为直角坐标系内轴与轴正方向上的单位向量。
(1)若能构成三角形,求实数应满足的条件;
(2)是直角三角形,求实数的值。

平面向量数量积的坐标表示


平面向量数量积的坐标表示
教学目标
1.正确理解掌握两个向量数量积的坐标表示方法,能通过两个向量的坐标求出这两个向量的数量积.
2.掌握两个向量垂直的坐标条件,能运用这一条件去判断两个向量垂直.
3.能运用两个向量的数量积的坐标表示去解决处理有关长度、角度、垂直等问题.
重点:两个向量数量积的坐标表示,向量的长度公式,两个向量垂直的充要条件.
难点:对向量的长度公式,两个向量垂直的充要条件的灵活运用.
教学过程设计
(一)学生复习思考,教师指导.
1.A点坐标(x1,y1),B点坐标(x2,y2).
=________=________
2.A点坐标(x1,y1),B点坐标(x2,y2)
=________
3.向量的数量积满足那些运算律?
(二)教师讲述新课.
前面我们已经学过了两个向量的数量积,如果已知两个向量的坐标,如何用这些坐标来表示两个向量的数量积,这是一个很有价值的问题.
设两个非零向量为=(x1,y1),=(x2,y2).为x轴上的单位向量,为y轴上的单位向量,则=x1+y1,=x2+y2
这就是说:两个向量的数量积等于它们对应坐标的乘积的和.
引入向量的数量积的坐标表示,我们得到下面一些重要结论:
(1)向量模的坐标表示:
(2)平面上两点间的距离公式:
向量的起点和终点坐标分别为A(x1,y1),B(x2,y2),=
(3)两向量的夹角公式
设=(x1,y1),=(x2,y2),=θ.
4.两向量垂直的充要条件的坐标表示
=(x1,y1),=(x2,y2).
即两向量垂直的充要条件是它们对应坐标乘积的和为零.
(三)学生练习,教师指导.
练习1:课本练习1.
已知a(-3,4),(5,2)
练习2:课本练习2.
已知=(2,3),=(-2,4),=(-1,-2).
=2×(-2)+3×4=8,(+)(-)=-7.
(+)=0,(a+b)2=(0,7)(0,7)=49.
练习3:已知A(1,2),B(2,3),C(-2,5).
求证:△ABC是直角三角形.
证:∵=(1,1),=(-3,3),=(-4,2).
经检验,=1×(-3)+1×3=0.
∴⊥,△ABC是直角三角形.
(四)师生共同研究例题.
例1:已知向量=(3,4),=(2,-1).
(1)求与的夹角θ,
(2)若+x与-垂直,求实数x的值.
解:(1)=(3,4),=(2,-1).
(2)+x与-垂直,
(+x)(-)=0,+x=(3,4)+x(2,-1)=(2x+3,4-x)
-=(3,4)-(2,-1)=(1,5).
例2:求证:三角形的三条高线交于一点.
证:设△ABC的BC、AC边上的高交于P点,现分别以BC、PA所在直线为x轴、y轴,建立直角坐标系,设有关各点的坐标为B(x1,0),C(x2,0),A(0,y1),P(0,y).
∵⊥,=(-x1,y),=(-x2,y1).
(-x1)×(-x2)+y×y1=0.
即x1x2+yy1=0.
又=(-x2,y),=(-x1,y1).
=(-x1)×(-x2)+y×y1=x1x2+yy1=0.
∴⊥,CP是AB边上的高.
故三角形的三条高线交于一点.
(五)作业.习题5.71,2,3,4,5.

高二数学向量的数量积013


一位优秀的教师不打无准备之仗,会提前做好准备,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更容易听懂所讲的内容,让教师能够快速的解决各种教学问题。你知道怎么写具体的教案内容吗?以下是小编为大家精心整理的“高二数学向量的数量积013”,欢迎大家阅读,希望对大家有所帮助。

8.2(2)向量的数量积(2)
教学目标设计
1.深刻领会向量的数量积的概念和运算性质、向量的夹角公式及其内涵、两向量垂直的充要条件;
2.掌握求向量的长度、求两个向量的夹角、判断两个向量垂直的技能和方法;
3.初步运用向量的方法解决一些简单的几何问题,领略向量的数量积的数学价值;
4.通过对问题的分析研究,体会数学思考的过程.
教学重点及难点
重点:向量的数量积的运算性质、向量的夹角公式、向量垂直的条件及其应用;
难点:向量的夹角公式的应用.
教学用具准备
直尺,投影仪
教学过程设计
一.情景引入:
1.复习回顾
(1)两个非零向量的夹角的概念:
对于两个非零向量,如果以为起点,作,那么射线的夹角叫做向量与向量的夹角,其中.
(2)平面向量数量积(内积)的定义:
如果两个非零向量的夹角为(),那么我们把叫做向量与向量的数量积,记做,即.并规定与任何向量的数量积为0.
(3)“投影”的概念:
定义:叫做向量在方向上的投影.
投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当=0时投影为;当=180时投影为.
(4)向量的数量积的几何意义:
数量积等于的长度与在方向上投影|的乘积.
(5)向量的数量积的运算性质:
对于,有
(1)当且仅当时,=
(2)
(3)
(4)
2.分析思考:
(1)类比实数的运算性质,向量的数量积结合律是否成立?
学生通过讨论,回答:一般不成立
(2)如果一个物体在大小为2牛顿的力的作用下,向前移动1米,其所做的功的大小为1焦耳,问力的方向与运动方向的夹角是否为?
分析:设该物体在力的作用下产生位移,所做的功为,与的夹角为,则由知
二.学习新课:
1.向量的夹角公式:
在学习了向量数量积的定义之后,我们很容易推导出两个非零向量的夹角满足
因此,当时,,反之,当时,.考虑到可与任何向量垂直,所以可得:
两个向量垂直的充要条件是.
2.例题分析
例1:化简:.(课本P66例2)
解:
=
=
=
例2:已知,且与的夹角为,求.(课本P66例3)
解:
所以
例3:已知,垂直,求的值.(课本P66例4)
解:因为垂直,所以
化简得

由已知,可得
解得.
所以,当时,垂直.
例4:已知、都是非零向量,且与垂直,与垂直,求与的夹角.
解:由①

两式相减:
代入①或②得:
设、的夹角为,则
∴=60
3.问题拓展
例5.利用向量数量积的运算证明半圆上的圆周角是直角.
证明:设AB是⊙O直径,半径为r
设,则;,则

,即∠ACB是直角.

三.巩固练习
1已知,(1)若∥,求;
(2)若与的夹角为60°,求;?
(3)若与垂直,求与的夹角.
2已知,向量与的位置关系为()
A.平行B.垂直?C.夹角为D.不平行也不垂直
3已知,与之间的夹角为,则向量的模为()
?A.2B.2?C.6D.12
4已知与是非零向量,则是与垂直的()
A.充分但不必要条件B.必要但不充分条件?
C.充要条件D.既不充分也不必要条件
四.课堂小结
1.向量的数量积及其运算性质;
2.两向量的夹角公式;
3.两个向量垂直的充要条件;
4.求向量的模、两个向量的夹角、判断两个向量垂直的技能和方法.
五.作业布置
练习8.2(1)P67T2、T3、T4;P35T3、T4
思考题
1已知向量与的夹角为,,则|+||-|=.
2已知+=2-8,-=-8+16,其中、是直角坐标系中轴、轴正方向上的单位向量,那么=.
3已知⊥、与、的夹角均为60°,且则=______.???
4对于两个非零向量与,求使最小时的t值,并求此时与的夹角.
5求证:平行四边形两条对角线平方和等于四条边的平方和

教学设计说明及反思
本节课是在上节课学习了向量的数量积的概念、向量的数量积的运算性质之后.再一次抛出物理模型问题,学生通过交流、分析.讨论,解决问题.进一步推而广之,由数量积的定义,通过变形十分容易的导出向量的夹角公式.并推出了两向量垂直的充要条件.之后,通过例题分析,学生体验了运用向量的数量积的定义和运算性质求向量的模、向量的夹角、以及研究一些简单几何问题的过程.学生获取了知识、掌握了方法、提高了技能、训练了能力.

课时11数量积综合练习


一名优秀的教师在每次教学前有自己的事先计划,作为高中教师就要精心准备好合适的教案。教案可以让学生能够在教学期间跟着互动起来,帮助高中教师提高自己的教学质量。那么一篇好的高中教案要怎么才能写好呢?以下是小编为大家精心整理的“课时11数量积综合练习”,供您参考,希望能够帮助到大家。

课时11数量积综合练习
一、填空题:
1.已知,则=。
2.在中,,则=。
3.若,⊥,且2+3与k-4互相垂直,则k的值为
4.若向量满足=,且,则与的夹角为
5.已知向量=,且单位向量与的夹角为,则的坐标为
6.若向量满足:,,,则与的数量积为.
7.若,,且与的夹角为,则。
8.下列命题中正确的是______
(1)(2)(3)(4)
9.如图,半圆的直径AB=2,O为圆心,C是半圆上不同于A,B的任意一点.若P为半径OC上的动点,则()的最小值是。
10.已知,,当时,=,
当时,=,当与的夹角为300时,=,
11.ABC中,且==,则形状是_________
12.设向量,,满足++=0,且(—),.若||=1,|=_________
13.在ABC中,,则O为ABC的__________心。
14.若向量=与=的夹角为钝角,则的取值范围是___________
二、解答题:
15.若向量满足,且,求。

16.已知,
(1)求的值;(2)求的夹角;(3)求.

17.已知向量,,且.
(Ⅰ)若,求函数关于的解析式;(Ⅱ)求(1)中的单调递减区间;(Ⅲ)求函数的最大值。

18.已知,与的夹角是45°;⑴求;⑵若与同向,且与垂直,求。
19.已知向量,其中为互相垂直的两个单位向量。
(1)求;(2)为何值时,向量垂直?
(3)为何值时,向量平行?

20.已知A,B,C三点的坐标分别是A(3,0),B(0,3),C(),其中(1)若,求角的值;(2)若的值;

21.在平面直角坐标系中,已知向量又点A(8,0),,(1)若,且,求向量;
(2)向量与共线,当,且取最大值4,求

22.已知长方形ABCD,且E为BC的中点,P为AB上的一点,试用向量的知识解答:(1)判定P在什么位置时,PED=450?
(2)若PED=450,求证PDPE.

文章来源:http://m.jab88.com/j/49986.html

更多

最新更新

更多