一位优秀的教师不打无准备之仗,会提前做好准备,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生们能够更好的找到学习的乐趣,帮助高中教师缓解教学的压力,提高教学质量。那么如何写好我们的高中教案呢?小编为此仔细地整理了以下内容《算术平均数与几何平均数1》,相信您能找到对自己有用的内容。
算术平均数与几何平均数1教学目标高二数学教案:《算术平均数与几何平均数》教学设计(一)
教学目标
(1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理;
(2)能运用定理证明不等式及求一些函数的最值;
(3)能够解决一些简单的实际问题;
(4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系;
(5)通过对重要不等式的证明和等号成立的条件的分析,培养学生严谨科学的认识习惯,进一步渗透变量和常量的哲学观;
教学建议
1.教材分析
(1)知识结构
(2)重点、难点分析
本节课的重点内容是掌握“两个正数的算术平均数不小于它们的几何平均数”;掌握两个正数的和为定值时积有最大值,积为定值时和有最小值的结论,教学难点是正确理解和使用平均值定理求某些函数的最值.为突破重难点,教师单方面强调是远远不够的,只有让学生通过自己的思考、尝试,注意到平均值定理中等号成立的条件,发现使用定理求最值的三个条件“一正,二定,三相等”缺一不可,才能大大加深学生对正确使用定理的理解,教学中要注意培养学生分析归纳问题的能力,帮助学生形成知识体系,全面深刻地掌握平均值定理求最值和解决实际问题的方法.
㈠定理教学的注意事项
它们本身也是根据不等式的意义、性质或用比较法(将在下一小节学习)证出的。因此,凡是用它们可以获证的不等式,一般也可以直接根据不等式的意义、性质或用比较法证明。
(三)应用定理求最值的条件
应用定理时注意以下几个条件:
(1)两个变量必须是正变量;
(2)当它们的和为定值时,其积取得最大值;当它们的积是定值时,其和取得最小值;
(3)当且仅当两个数相等时取最值.
即必须同时满足“正数”、“定值”、“相等”三个条件,才能求得最值.
在求某些函数的最值时,还要注意进行恰当的恒等变形、分析变量、配置系数.
(四)应用定理解决实际问题的分析
在应用两个正数的算术平均数与几何平均数的定理解决这类实际问题时,要让学生注意;
(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;
(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;
(3)在定义域内,求出函数的最大值或最小值;
(4)正确写出答案。
2.教法建议
(1)导入新课建议采用学生比较熟悉的问题为背景,这样容易被学生接受,产生兴趣,激发学习动机.使得学生学习本节课知识自然且合理.
(2)在新授知识过程中,教师应力求引导、启发,让学生逐步回忆所学的知识,并应用它们来分析问题、解决问题,以形成比较系统和完整的知识结构.对有关概念使学生理解准确,尽量以多种形式反映知识结构,使学生在比较中得到深刻理解.
(3)教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.
(4)可以设计解法的正误讨论,这样能够使学生尝试失败,并从失败中找到错误原因,加深对正确解法的理解,真正把新知识纳入到原有认知结构中.
(5)注意培养应用意识.教学中应不失时机地使学生认识到数学源于客观世界并反作用干客观世界.为增强学生的应用意识,在平时教学中就应适当增加解答应用问题的教学,使学生不禁感到“数学有用,要用数学”.
第一课时
教学目标:
1.学会推导并掌握两个正数的算术平均数与几何平均数定理;
2.理解定理的几何意义;
3.能够简单应用定理证明不等式.
教学重点:均值定理证明
教学难点:等号成立条件
教学方法:引导式
教学过程:
一、复习回顾
上一节,我们完成了对不等式性质的学习,首先我们来作一下回顾.
(学生回答)
由上述性质,我们可以推导出下列重要的不等式.
二、讲授新课
第二课时
教学目标:
1.进一步掌握均值不等式定理;
2.会应用此定理求某些函数的最值;
3.能够解决一些简单的实际问题.
教学重点:均值不等式定理的应用
教学难点:
解题中的转化技巧
教学方法:启发式
教学过程:
一、复习回顾
上一节,我们一起学习了两个正数的算术平均数与几何平均数的定理,首先我们来回顾一下定理内容及其适用条件.
(学生回答)
利用这一定理,可以证明一些不等式,也可求解某些函数的最值,这一节,我们来继续这方面的训练.
二、讲授新课
高二数学教案:《算术平均数与几何平均数》教学设计(二)
第一课时
一、教材分析
(一)教材所处的地位和作用
“算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用数学知识,灵活解决实际问题,学数学用数学的好素材二同时本节知识又渗透了数形结合、化归等重要数学思想,所以有利于培养学生良好的思维品质.
(二)教学目标
1.知识目标:理解两个实数的平方和不小于它们之积的2倍的重要不等式的证明及其几何解释;掌握两个正数的算术平均数不小于它们的几何平均数定理的证明及其几何解释;掌握应用平均值定理解决一些简单的应用问题.
2.能力目标:培养学生数形结合、化归等数学思想.
(三)教学重点、难点、关键
重点:用平均值定理求某些函数的最值及有关的应用问题.
难点:定理的使用条件,合理地应用平均值定理.
关键:理解定理的约束条件,掌握化归的数学思想是突破重点和难点的关键.
(四)教材处理
依据新大纲和新教材,本节分为二个课时进行教学.第一课时讲解不等式(两个实数的平方和不小于它们之积的2倍)和平均值定理及它们的几何解释.掌握应用定理解决某些数学问题.第二课时讲解应用平均值定理解决某些实际问题.为了讲好平均值定理这节内容,在紧扣新教材的前提下,对例题作适当的调整,适当增加例题.
二、教法分析
(-)教学方法
为了激发学生学习的主体意识,又有利于教师引导学生学习,培养学生的数学能力与创新能力,使学生能独立实现学习目标.在探索结论时,采用发现法教学;在定理的应用及其条件的教学中采用归纳法;在训练部分,主要采用讲练结合法进行.
(二)教学手段
根据本节知识特点,为突出重点,突破难点,增加教学容量,利用计算机辅导教学.
三、教学过程设计
6.2算术平均数与几何平均数(第一课时)
(一)导入新课
(教师活动)1.教师打出字幕(提出问题);2.组织学生讨论,并点评.
(学生活动)学生分组讨论,解决问题.
297600元.
设计意图:加深理解应用平均值定理求最值的方法,学会应用平均值定理解决某些函数最值问题和实际问题,并掌握分析变量的构建思想.培养学生用数学知识解决实际问题的能力,化归的数学思想.
【课堂练习】
(教师活动)打出字幕(练习),要求学生独立思考,完成练习;请三位同学板演;巡视学生解题情况,对正确的给予肯定,对偏差进行纠正;讲评练习.
(学生活动)在笔记本且完成练习、板演.
[字幕〕练习
设计意图;A组题训练学生掌握应用平均值定理求最值.B组题训练学生掌握平均值定理的综合应用,并对一些易出现错误的地方引起注意.同时反馈课堂教学效果,调节课堂教学.
【分析归纳、小结解法】
(教师活动)分析归纳例题和练习的解题过程,小结应用平均值定理解决有关函数最值问题和实际问题的解题方法.
(学生活动)与教师一道分析归纳,小结解题方法,并记录笔记.
1.应用平均值定理可以解决积为定值或和为定值条件下,两个正变量的和或积的最值问题.
2.应用定理时注意以下几个条件:(ⅰ)两个变量必须是正变量.(ⅱ)当它们的和为定值时,其积取得最大值;当它们的积是定值时,其和取得最小值.(iii)当且仅当两个数相等时取最值,即必须同时满足“正数”、“定值”、“相等”三个条件,才能求得最值.
3.在求某些函数的最值时,会恰当的恒等变形——分析变量、配置系数.
4.应用平均值定理解决实际问题时,应注意:(l)先理解题意,没变量,把要求最值的变量定为函数.(2)建立相应的函数关系式,把实际问题抽象为函数的最值问题,确定函数的定义域.(3)在定义域内,求出函数的最值,正确写出答案.
设计意图:培养学生分析归纳问题的能力,帮助学生形成知识体系,全面深刻地掌握平均值定理求最值和解决实际问题的方法.
(三)小结
(教师活动)教师小结本节课所学的知识要点.
(学生活动)与教师一道小结,并记录笔记.
这节课学习了利用平均值定理求某些函数的最值问题.现在我们又多了一种求正变量在定积或定和条件下的函数最值方法.这是平均值定理的一个重要应用,也是本节的重点内容,同学们要牢固掌握.
应用定理时要注意定理的适用条件,即“正数、定值、相等”三个条件同时成立,且会灵活转化问题,达到化归的目的.
设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识.
3.研究性题:某种汽车购车时费用为10万元,每年保险、养路、汽车费用9千元;汽车的维修费各年为:第一年2千元,第二年4千元,依每年2千元的增量逐年递增.问这种汽车最多使用多少年报废最合算(即使用多少年的平均费用最少)?
设计意图:课本作业供学生巩固基础知识;思考题供学有余力的学生练习,使学生能灵活运用定理解决某些数学问题;研究性题培养学生应用数学知识解决实际问题的能力.
(五)课后点评
1.关于新课引入设计的想法:
导入这一环节是调动学生学习的积极性,激发学生探究精神的重要环节,本节课开始给出一个引例,通过探究解决此问题的各种解法,产生用平均值定理求最值,点明课题.事实上,在解决引例问题的过程中也恰恰突出了教学重点.
2.关于课堂练习设计的想法:
正确理解和使用平均值定理求某些函数的最值是教学难点.为突破难点,教师单方面强调是远远不够的,只有让学生通过自己的思考、尝试,发现使用定理的三个条件缺一不可,才能大大加深学生对正确使用定理的理解,设计解法正误讨论能够使学生尝试失败,并从失败中找到错误原因,加深了对正确解法的理解,真正把新知识纳入到原有认知结构中.
3.培养应用意识.
教学中应不失时机地使学生认识到数学源于客观世界并反作用干客观世界.为增强学生的应用意识,在平时教学中就应适当增加解答应用问题的教学.本节课中设计了两道应用问题,用刚刚学过的数学知识解决了问题,使学生不禁感到“数学有用,要用数学”.
作业解答
思考题:
第23课时平均数及其估计
【学习导航】
学习要求
1.知道平均数是对调查数据的一种简明的描述,它表示变量一切可能值的算术平均值,从而实现对总体可靠度的估计,学习时仔细体会它的实际意义。
2.熟练掌握平均数的计算公式。
【课堂互动】
自学评价
案例某校高一(1)班同学在老师的布置下,用单摆进行测试,以检验重力加速度.全班同学两人一组,在相同的条件下进行测试,得到下列实验数据(单位:m/s2):
9.629.549.789.9410.019.669.889.6810.32
9.769.459.999.819.569.789.729.939.94
9.659.799.429.689.709.849.90
怎样利用这些数据对重力加速度进行估计?
【分析】
我们常用算术平均数(其中(=1,2,…,n)为n个实验数据)作为重力加速度的“最理想”的近似值.它的依据是什么?
处理实验数据的原则是使这个近似值与实验数据之间的离差最小.
设这个近似值为,那么它与n个实验值(=1,2,…,n)的离差分别为,,…,.由于上述离差有正有负,故不宜直接相加.可以考虑将各个离差的绝对值相加,研究||+||+…+||取最小值时的值.但由于含绝对值,运算不太方便,所以考虑离差的平方和,即()2+()2+…+()2,当此和最小时,对应的的值作为近似值,因为
()2+()2+…+()2=
,
所以当时离差的平方和最小,故可用作为表示这个物理量的理想近似值,称其为这n个数据,,…,的平均数或均值,一般记为.
用计算器操作,验证:求得重力加速度的最佳近似值为m/s2.
【小结】
1.个实数的和简记为
2.已知个实数,则称为这个数据的平均数(average)或均值(mean)
3.若取值为的频率分别为,则其平均数为
【精典范例】
例1某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150),试确定这次考试中,哪个班的语文成绩更好一些。
甲班
1128610684100
87112949499
10810096115111
10410711910793
92102938494
1059810294107
901209895119
10495108111105
1029811211299
941009084114
乙班
1169510996106
9498105101115
10810011098107
10710611112197
107111114106104
9810899110103
10411210111396
8710810610397
107114122101107
10495111111110
【分析】我们可用一组数据的平均数衡量这组数据的水平,因此,分别求得甲、乙两个班级的平均分即可。
【解】用科学计算器分别求得甲班的平均分为101.1,乙班的平均分为105.4,故这次考试乙班成绩要好于甲班。
例2下面是某校学生日睡眠时间的抽样频率分布表(单位:h),试估计该学生的日平均睡眠时间。
睡眠时间人数频率
50.05
170.17
330.33
370.37
60.06
20.02
1001
【分析】要确定这100名学生的平均睡眠时间,就必须计算其总睡眠时间,由于每组中的个体睡眠时间只是一个范围,可以用各组区间的组中值近似地表示。
【解】解法1总睡眠时间约为
故平均睡眠时间约为7.39h
解法2求组中值与对应频率之积的和
答估计该校学生的日平均睡眠时间约为7.39h
例3某单位年收入在10000到15000、15000到20000、20000到25000、25000到30000、30000到35000、35000到40000及40000到50000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入。
【分析】上述比就是各组的频率
【解】:估计该单位职工的平均年收入为
=26125(元)
答:估计该单位人均年收入约为2125元。
例4学校对王老师与张老师的工作态度、教学成绩及业务学习三个方面做了一个初步的评估,成绩如下表:
工作态度教学成绩业务学习
王老师989596
张老师909998
(1)如果以工作态度、教学成绩及业务学习三个方面的平均分来计算他们的成绩,作为评优的依据,你认为谁会被评为优秀?
(2)如果三项成绩的比例依次为20%、60%、20%来计算他们的成绩,结果又会如何?
【解】(1)王老师的平均分是.张老师的均分是:.王老师的平均分较高,评王老师为优秀.
(2)王老师的平均分是
,
张老师的平均分为
.
张老师的得分高,评张老师为优秀.
追踪训练
1.期中考试之后,班长算出了全班40个人数学成绩的平均分为M,如果把M当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N,那么为()
A.B.1C.D.2
2.从某校全体高考考生的数学成绩中任意抽取20名考生的成绩(单位:分,总分:150分)为102,105,131,95,83,121,140,100,97,96,
95,121,124,135,106,109,110,101,98,97,试估计该校全体考生数学平均成绩。
解:
样本的平均数为108.3
估计该校全体考生数学平均成绩为108分
3.某教师出了一份共3道题的测试卷,每道题1分,全班得3分、2分、1分和0分的学生所占比例分别为30%,50%,10%,10%。
(1)若全班共10人,则平均分是多少?
(2)若全班共20人,则平均分是多少?
(3)如果该班人数未知,能求出该班的平均分吗?
解:(1)=2
(2)=2
(3)可以
第8课时平均数及其估计
分层训练
1.某运动员参加体操比赛,当评委亮分后,其成绩往往是先去掉一个最高分、去掉一个最低分,再计算剩下分数的平均值,这是因为
()
(A)减少计算量(B)避免故障
(C)剔除异常值(D)活跃赛场气氛
2.某房间中10个人平均身高为1.74米,身高为1.85米的第11人进入房间后,求11个人的平均身高。
3.如上题,某房间中10个人平均身高为1.74米,求第11人身高为多少时,使得房间中所有11人的平均身高达到1.78米。
4.从1,2,3,4,5,6这6个数中任取2个,求所有这样的两数之积的平均数。
5.用甲、乙两台半自动车床加工同一型号的产品,各生产1000只产品中次品数分别用x和y表示。经过一段时间的观察,发现x和y的频率分布如下表,问:哪一台车床生产的产品质量较好?
x0123
p0.70.10.10.1
y0123
p0.50.30.20
6.某工厂一个月(30天)中的日产值如下:
日产值(万元)5.15.25.35.45.55.65.7
天数2368731
试计算该厂这个月的平均日产值。
7.证明:.
8.为了检验某自来水消毒设备的效果,现从消毒后的水中随机抽取50升,化验每升水中大肠杆菌的个数,结果如下:
大肠杆菌个数/升01234
频数17201021
则所取50升水中平均含有大肠杆菌_____个/升
估计全部消毒过的自来水中平均每升水的大肠杆菌的含量为_______个。
拓展延伸
9.有一个容量为100的某校毕业生起始月薪的样本,数据的分组及各组的频数如下:
起始月薪(百元)
频数7112623
起始月薪(百元)
频数15846
估计这100名毕业生起始月薪的平均值
10.个体户李某经营一家快餐店,下面是快餐店所有工作人员8月份的工资表:
李
某大
厨二
厨采购员杂
工服务生会
计
3000450350400320320410
(1)计算所有人员8月份的平均工资
(2)计算出的平均工资能否反映打工人员这个月收入的一般水平?为什么?
(3)去掉李某的工资后,再计算平均工资,这能代表打工人员当月的收入水平吗?
文章来源:http://m.jab88.com/j/44853.html
更多