3.1.1函数的平均变化率3.1.2瞬时速度与导数
【学习要求】1.了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率.
3.会利用导数的定义求函数在某点处的导数.
【学法指导】导数是研究函数的有力工具,要认真理解平均变化率、瞬时变化率的概念,可以从物理和几何两种角度理解导数的意义,深刻体会无限逼近的思想.
1.函数的变化率
定义实例
平均变化率函数y=f(x)从x1到x2的平均变化率为,简记作:ΔyΔx
①平均速度;②曲线割线的斜率
瞬时变化率函数y=f(x)在x=x0处的瞬时变化率是函数f(x)从x0到x0+Δx的平均变化率在Δx→0时的极限,即
=limΔx→0ΔyΔx
①瞬时速度:物体在某一时刻的速度;②切线斜率
2.函数f(x)在x=x0处的导数
函数y=f(x)在x=x0处的称为函数y=f(x)在x=x0处的导数,
记作,即f′(x0)=limΔx→0ΔyΔx=.
引言那么在数学中怎样来刻画变量变化得快与慢呢?
探究点一平均变化率的概念
问题1气球膨胀率我们都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?
问题2高台跳水在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+6.5t+10.计算运动员在下列时间段内的平均速度v,并思考平均速度有什么作用?(1)0≤t≤0.5,(2)1≤t≤2.
问题3什么是平均变化率,平均变化率有何作用?
问题4平均变化率也可以用式子ΔyΔx表示,其中Δy、Δx的意义是什么?ΔyΔx有什么几何意义?
例1已知函数f(x)=2x2+3x-5.
(1)求当x1=4,且Δx=1时,函数增量Δy和平均变化率ΔyΔx;
(2)求当x1=4,且Δx=0.1时,函数增量Δy和平均变化率ΔyΔx;
(3)若设x2=x1+Δx.分析(1)(2)题中的平均变化率的几何意义.
跟踪1(1)计算函数f(x)=x2从x=1到x=1+Δx的平均变化率,其中Δx的值为
①2;②1;③0.1;④0.01.
(2)思考:当|Δx|越来越小时,函数f(x)在区间[1,1+Δx]上的平均变化率有怎样的变化趋势?
探究点二函数在某点处的导数
问题1物体的平均速度能否精确反映它的运动状态?
问题2如何描述物体在某一时刻的运动状态?
问题3导数和瞬时变化率是什么关系?导数有什么作用?
例2利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.
跟踪2求函数f(x)=3x2-2x在x=1处的导数.
例3将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果第xh时,原油的温度(单位:℃)为y=f(x)=x2-7x+15(0≤x≤8).计算第2h和第6h时,原油温度的瞬时变化率,并说明它们的意义.
跟踪3高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)之间的关系式为h(t)=-4.9t2+6.5t+10,求运动员在t=6598s时的瞬时速度,并解释此时的运动状况.
【达标检测】
1.在导数的定义中,自变量的增量Δx满足()
A.Δx0B.Δx0C.Δx=0D.Δx≠0
2.函数f(x)在x0处可导,则limh→0fx0+h-fx0h()
A.与x0、h都有关B.仅与x0有关,而与h无关
C.仅与h有关,而与x0无关D.与x0、h均无关
3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy),则ΔyΔx等于()
A.4B.4xC.4+2ΔxD.4+2(Δx)2
一、基础过关
1.一物体的运动方程是s=3+t2,则在一小段时间[2,2.1]内相应的平均速度为()
A.0.41B.3
C.4D.4.1
2.函数y=1在[2,2+Δx]上的平均变化率是()
A.0B.1
C.2D.Δx
3.设函数f(x)可导,则limΔx→0f1+Δx-f13Δx等于()
A.f′(1)B.3f′(1)
C.f′(1)D.f′(3)
4.一质点按规律s(t)=2t3运动,则t=1时的瞬时速度为()
A.4B.6
C.24D.48
5.函数y=3x2在x=1处的导数为()
A.12B.6
C.3D.2
6.甲、乙两厂污水的排放量W与时间t的关系如图所示,治污效果较好的是()
A.甲B.乙
C.相同D.不确定
7.函数f(x)=5-3x2在区间[1,2]上的平均变化率为______.
二、能力提升
8.过曲线y=f(x)=x2+1上两点P(1,2)和Q(1+Δx,2+Δy)作曲线的割线,当Δx=0.1时,割线的斜率k=________.
9.函数f(x)=1x2+2在x=1处的导数f′(1)=__________.
10.求函数y=-2x2+5在区间[2,2+Δx]内的平均变化率.
11.求函数y=f(x)=2x2+4x在x=3处的导数.
12.若函数f(x)=ax2+c,且f′(1)=2,求a的值.
俗话说,居安思危,思则有备,有备无患。作为教师就要在上课前做好适合自己的教案。教案可以更好的帮助学生们打好基础,帮助教师有计划有步骤有质量的完成教学任务。那么一篇好的教案要怎么才能写好呢?为了让您在使用时更加简单方便,下面是小编整理的“平均变化率”,欢迎您阅读和收藏,并分享给身边的朋友!
课题:平均变化率
教学目标:
1.通过大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,体会导数的思想及其内涵。
2.通过函数图像直观地导数的几何意义。
3.体会建立数学模型刻画客观世界的“数学化”过程,进一步感受变量数学的思想方法。
教学重难点:
导数概念的实际背景,导数的思想及其内涵。导数的几何意义
教学过程:
一、问题情境
1、情境:
某市2008年4月20日最高气温为33.4℃,而4月19日和4月18日的最高气温分别为24.4℃和18.6℃,短短两天时间,气温陡增14.8℃,闷热中的人们无不感叹:“天气热得太快了!”
时间4月18日4月19日4月20日
日最高气温18.6℃24.4℃33.4℃
该市2007年3月18日到4月18日的日最高气温变化曲线:
问题1:你能说出A、B、C三点的坐标所表示意义吗?
问题2:分别计算AB、BC段温差
结论:气温差不能反映气温变化的快慢程度
问题3:如何“量化”(数学化)曲线上升的陡峭程度?
曲线AB、BC段几乎成了“直线”,由此联想如何量化直线的倾斜程度?
(1)连结BC两点的直线斜率为kBC=
二、建构数学
一般地,函数f(x)在区间[x1,x2]上的平均变化率为:
说明:
(1)平均变化率是曲线陡峭程度的“数量化”,曲线的陡峭程度是平均变化率的“视觉化”
(2)用平均变化率量化一段曲线的陡峭程度是“粗糙不精确的”,但应注意当x2—x1很小时,这种量化便由“粗糙”逼近“精确”。
例1、某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率;由此你能得到什么结论?
(1)1kg/月
(2)0.4kg/月
结论:该婴儿从出生到第3个月体重增加的速度比第6个月到第12个月体重增加的速度要快。
变式:甲、乙两人跑步,路程与时间关系如图1及百米赛跑路程与时间关系分别如图2所示,试问:
(1)在这一段时间内甲、乙两人哪一个跑的较快?
(2)甲、乙两人百米赛跑,问快到终点时,谁跑的较快?
图1图2
例2、水经过虹吸管从容器甲中流向容器乙,ts后容器甲中水的体积(单位:)计算第一个10s内V的平均变化率。
解:在区间[0,10]上,体积V的平均变化率为
注:负号表示容器甲中水在减少
变式1:
一底面半径为rcm,高为hcm的倒立圆锥容器,若以ncm3/s的速率向容器里注水,求注水前ts容器里水的体积的平均变化率.
解:设注水ts时,容器里水的体积Vcm3
由题意知V=nt,在[0,t]内容器里水的体积的平均变化率为:
由此可见当t越来越大时,容器里水的体积的平均变化率保持不变。
例3、已知函数,分别计算在下列区间上的平均变化率:
(1)[1,3];(3)[1,1.1];
(2)[1,2];(4)[1,1.001]。
(1)函数f(x)在[1,3]上的平均变化率为4
(2)函数f(x)在[1,2]上的平均变化率为3
(3)函数f(x)在[1,1.1]上的平均变化率为2.1
(4)函数f(x)在[1,1.001]上的平均变化率为2.001
例3引申:已知函数
问题(1)求函数在[1,a](a1)上的平均变化率;
(1)函数在[1,a](a1)上的平均变化率为a+1
问题(2)当a趋近于1时,函数在[1,a]上的平均变化率有何趋势?
(2)当a趋近于1时,函数在[1,a]上的平均变化率趋近于2
求函数y=f(x)在区间[x1,x2]上的平均变化率的步骤:
小结:
问题1:本节课你学到了什么?
①函数的平均变化率的概念;
②利用平均变化率来分析解决实际问题
问题2、解决平均变化率问题需要注意什么?
①分清所求平均变化率类型
(即什么对象的平均变化率)
②两种处理手段:
(1)看图(2)计算
问题3、本节课体现了哪些数学思想方法?
①数形结合的思想方法
②从特殊到一般、从具体到抽象的推理
方法
一名爱岗敬业的教师要充分考虑学生的理解性,作为高中教师就要根据教学内容制定合适的教案。教案可以让学生更好地进入课堂环境中来,减轻高中教师们在教学时的教学压力。那么一篇好的高中教案要怎么才能写好呢?下面是小编为大家整理的“变化率问题”,供大家借鉴和使用,希望大家分享!
3.1.1变化率问题
教学目标知道平均变化率的定义。
会用公式来计算函数在指定区间上的平均变化率。
教学重点:平均变化率的含义
教学难点:会用公式来计算函数在指定区间上的平均变化率。
教学过程:
情景导入:
展示目标:知道平均变化率的定义。
会用公式来计算函数在指定区间上的平均变化率。
检查预习:见学案
合作探究:
探究任务一:
问题1:气球膨胀率,求平均膨胀率
吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象?
问题2;:在高台跳水运动中,,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?
交流展示:学生交流探究结果,并完成学案。
精讲精练:
例1过曲线上两点和作曲线的割线,求出当时割线的斜率.
例2已知函数,分别计算在下列区间上的平均变化率:
(1)[1,3];
(2)[1,2];
(3)[1,1.1];
(4)[1,1.001]
有效训练
练1.某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.
练2.已知函数,,分别计算在区间[-3,-1],[0,5]上及的平均变化率.
反思总结
1.函数的平均变化率是
2.求函数的平均变化率的步骤:
(1)求函数值的增量
(2)计算平均变化率
当堂检测
1.在内的平均变化率为()
A.3B.2C.1D.0
2.设函数,当自变量由改变到时,函数的改变量为()
A.B.
C.D.
3.质点运动动规律,则在时间中,相应的平均速度为()
A.B.
C.D.
4.已知,从到的平均速度是_______
5.在附近的平均变化率是____
6、已知函数的图象上一点(1,1)及邻近一点(1+,)),求
【板书设计】:略
【作业布置】:略
文章来源:http://m.jab88.com/j/38548.html
更多