88教案网

高考物理复习:牛顿第二定律

一名优秀负责的教师就要对每一位学生尽职尽责,高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以让学生能够听懂教师所讲的内容,帮助高中教师营造一个良好的教学氛围。那么一篇好的高中教案要怎么才能写好呢?为了让您在使用时更加简单方便,下面是小编整理的“高考物理复习:牛顿第二定律”,供您参考,希望能够帮助到大家。

第二课时牛顿第二定律

【教学要求】
1.理解加速度与力的关系,理解加速度与质量的关系。
2.理解牛顿第二定律的内容,知道牛顿第二定律表达式的含义。
【知识再现】
牛顿第二定律:
1、内容:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。表达式:F合=ma
2、理解:F量化了迫使物体运动状态发生变化的外部作用,m量化了物体“不愿改变运动状态”的基本特性(惯性),而a则描述了物体的运动状态(v)变化的快慢。明确了上述三个量的物理意义,就不难理解如下的关系了:.
另外,牛顿第二定律给出的是F、m、a三者之间的瞬时关系,也是由力的作用效果的瞬时性特征所决定的。

知识点一对牛顿第二定律的理解
1、牛顿第二定律中的F应该是物体受到的合外力;
2、同向——加速度的方向跟合外力的方向相同;
3、同时——加速度随着合外力的变化同时变化;
4、同体——F、m、a对应于同一物体或同一系统。
【应用1】(苏州市08届高三教学调研测试)A、B两个小球的质量分别为m、2m,由两轻质弹簧连接(如图所示),处于平衡状态,下列说法正确的是()
A.将A球上方弹簧剪断的瞬时,A的加速度为零,B的加速度为零
B.将A球上方弹簧剪断的瞬时,A的加速度不为零,B的加速度为零
C.将A球下方弹簧剪断的瞬时,A的加速度不为零,B的加速度为零
D.将A球下方弹簧剪断的瞬时,A的加速度不为零,B的加速度不为零
导示:选择BD。先分析弹簧剪断前A、B受力情况,再分析弹簧剪断后,A、B受力的变化。

知识点二力学单位制
1.基本单位:所选定的基本物理量的单位。
2.导出单位:根据物理公式中其他物理量和基本物理量的关系,推导出的物理量的单位。
3.单位制:基本单位和导出单位的总和叫单位制.
4.国际单位制:1960年第11届国际计量大会制订了一种国际通用的、包括一切计量领域的单位制,叫做国际单位制,其法文简称为SI。
以下是国际单位制中的七个基本物理量和相应的国际单位制中的基本单位。
【应用2】请把下列物理量与单位一对应起来
(1)力A、kgm2/s3
(2)压强B、kgm/s2
(3)功C、kgm2/s2
(4)功率D、kg/(s2m)
导示:力的单位是N,1N=1kgm/s2,对应B;压强的单位是N/m2=kg/(s2m),对应D;功的单位
J=Nm=kgm2/s2,对应C;功率的单位W=J/s=kgm2/s3,对应A。
类型一牛顿定律解决的两类基本问题
(一)已知物体的运动情况,分析物体受力情况
【例1】(山东临沂市08届高三上学期期中考试)在山东省临沂市某一旅游景区,建有一山坡滑草运动项目,该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m=80kg,他从静止开始匀加速下滑,在时间t=5s内沿斜面滑下的位移x=50m。(不计空气阻力,取g=10m/s2,结果保留2位有效数字)问:
(1)游客连同滑草装置在下滑过程中受到的摩擦力F为多大?
(2)滑草装置与草皮之间动摩擦因数μ为多大?
导示:(1)由位移公式
沿斜面方向,由牛顿第二定律得:
联立并代入数值后,得
(2)在垂直斜面方向上,
;又
联立并代入数值后,得

(二)已知物体的受力情况,分析物体运动情况
【例2】(山东沂源一中08届高三模块终结性检测)设洒水车的牵引力不变,所受的阻力与车重成正比,洒水车在平直路面上原来匀速行驶,开始洒水后,它的运动情况将是()
A.继续做匀速运动
B.变为做匀加速运动
C.变为做匀减速运动
D.变为做变加速运动
导示:选择D。分析洒水车水平方向受力:牵引力F、阻力f;由题意知f=kmg
根据牛顿第二定律,有F—kmg=ma;
洒水车开始洒水后,质量m减小,a变大。

解决两类基本问题的思路是:“两画一分析”即:画出物体受力图、运动过程示意图,分析物理过程;
注意:加速度是联系运动和力的桥梁。
类型二力和加速度的瞬时对应性
【例3】(山东沂源一中08届高三模块终结性检测)如图4所示,小球用两根轻质橡皮条悬吊着,且AO呈水平状态,BO跟竖直方向的夹角为α,那么在剪断某一根橡皮条的瞬间,小球的加速度情况是()
A、不管剪断哪一根,小球加速度均是零
B、剪断AO瞬间,小球加速度大小a=gtanα
C、剪断BO瞬间,小球加速度大小a=gcosα
D、剪断BO瞬间,小球加速度大小a=g/cosα
导示:对小球进行受力分析,当橡皮条剪断前
AO上作用力TAO=mgtanα;
BO上作用力TBO=mg/cosα。
橡皮条剪断瞬间,橡皮条上的作用力仍然保持原来的大小和方向,所以,剪断AO瞬间,小球所受合力与TAO等大反向,小球加速度大小a=gtanα;剪断BO瞬间,小球所受合力与TBO等大反向,小球加速度大小a=a=g/cosα。故BD正确。

类型三图象问题
图象问题包括:识别图象、读图(从图象中获取信息)、用图象法解题和画图。经常采用“数形结合”的方法。
【例4】(南通市2008届高三基础调研测试)下面四个图象分别表示四个物体的位移、速度、加速度和摩擦力随时间变化的规律.其中反映物体受力不可能平衡的是7.BC
导示:本题是一道识图题;A图表示物体匀速直线运动;D图中物体,当外力F与阻力f始终相等的话,也可能作匀速直线运动。物体受力不平衡,则必有加速度,由此B、C选项正确。

【例5】(如东中学08届高三第二阶段测试)物体A、B、C均静止在同一水平面上,它们的质量分别为mA、mB、mC,与水平面的动摩擦因数分别为μA、μB、μC,用平行于水平面的拉力F分别拉物体A、B、C,所得加速度a与拉力F的关系图线如图2所示,A、B两直线平行,则以下正确的是()
A、μA=μB=μC
B、μA<μB=μC
C、mA<mB<mC
D、mA<mB=mC
导示:选择B。根据题目所描述的情景,对物体,由牛顿第二定律得:
F-μmg=ma
变形得:a=F-μg
a-F图线的斜率表示1/m,所以,mA=mB<mC;
a-F图线在纵轴上的截距表示-μg,
所以,μA<μB=μC。

1.(镇江中学08届高三第一学期期中考试卷)静止在光滑水平面上的物体,受到一个水平拉力,当拉力开始作用瞬间()
A、物体立即具有速度和加速度
B、物体立即具有加速度但速度为零
C、物体立即具有速度但加速度为零
D、物体的速度和加速度该时刻都为零

2.(华南师大附中08届高三综合测试)某青年的质量是某少年质量的两倍,该青年能施的最大拉力是该少年能施最大拉力的两倍。设想该青年和少年在太空中拔河,他们最初静止地呆在空中,然后分别抓紧细绳的两端尽力对拉。那么,对拉时青年和少年的加速度大小之比是()
A.2:1B.1:1
C.1:2D.1:4

3.(山西省实验中学08届高三第二次月考试题)质量为m的物体放在粗糙的水平面上,受到一个水平方向的恒力F作用而运动,在运动过程中,该物体的加速度a的大小()
A、与物体运动速度大小无关
B、与恒力F成正比
C、与物体运动的位移大小无关
D、与物体运动的时间无关
4、(金陵中学07~08学年度第一学期期中考试)如图所示,传送带不动时,物体由皮带顶端A从静止开始下滑到皮带底端B用的时间为t,则()
A.当皮带向上运动时,物块由A滑到B的时间一定大于t
B.当皮带向上运动时,物块由A滑到B的时间一定等于t
C.当皮带向下运动时,物块由A滑到B的时间一定等于t
D.当皮带向下运动时,物块由A滑到B的时间一定小于t

5、(南京一中08届高三第一次月考试卷)一个质量为m的小球B,用两根等长的细绳1、2分别固定在车厢的A、C两点,已知两绳拉直时,如图所示,两绳与车厢前壁的夹角均为45°,试求当车以加速度a=向左做匀加速直线运动时1、2两绳的拉力。

答案:1、C2、C3、ACD4、BD
5、绳2的拉力为零,绳1的拉力

扩展阅读

牛顿第二定律


作为优秀的教学工作者,在教学时能够胸有成竹,作为高中教师就要早早地准备好适合的教案课件。教案可以让学生更容易听懂所讲的内容,帮助高中教师能够井然有序的进行教学。高中教案的内容要写些什么更好呢?以下是小编为大家精心整理的“牛顿第二定律”,仅供您在工作和学习中参考。

教学目标
知识目标
(1)通过演示实验认识加速度与质量和和合外力的定量关系;
(2)会用准确的文字叙述牛顿第二定律并掌握其数学表达式;
(3)通过加速度与质量和和合外力的定量关系,深刻理解力是产生加速度的原因这一规律;
(4)认识加速度方向与合外力方向间的矢量关系,认识加速度与和外力间的瞬时对应关系;
(5)能初步运用运动学和牛顿第二定律的知识解决有关动力学问题.

能力目标
通过演示实验及数据处理,培养学生观察、分析、归纳总结的能力;通过实际问题的处理,培养良好的书面表达能力.

情感目标
培养认真的科学态度,严谨、有序的思维习惯.

教学建议

教材分析

1、通过演示实验,利用控制变量的方法研究力、质量和加速度三者间的关系:在质量不变的前题下,讨论力和加速度的关系;在力不变的前题下,讨论质量和加速度的关系.
2、利用实验结论总结出牛顿第二定律:规定了合适的力的单位后,牛顿第二定律的表达式从比例式变为等式.
3、进一步讨论牛顿第二定律的确切含义:公式中的表示的是物体所受的合外力,而不是其中某一个或某几个力;公式中的和均为矢量,且二者方向始终相同,所以牛顿第二定律具有矢量性;物体在某时刻的加速度由合外力决定,加速度将随着合外力的变化而变化,这就是牛顿第二定律的瞬时性.

教法建议
1、要确保做好演示实验,在实验中要注意交代清楚两件事:只有在砝码质量远远小于小车质量的前题下,小车所受的拉力才近似地认为等于砝码的重力(根据学生的实际情况决定是否证明);实验中使用了替代法,即通过比较小车的位移来反映小车加速度的大小.
2、通过典型例题让学生理解牛顿第二定律的确切含义.
3、让学生利用学过的重力加速度和牛顿第二定律,让学生重新认识出中所给公式

教学设计示例

教学重点:牛顿第二定律

教学难点:对牛顿第二定律的理解

示例:

一、加速度、力和质量的关系

介绍研究方法(控制变量法):先研究在质量不变的前题下,讨论力和加速度的关系;再研究在力不变的前题下,讨论质量和加速度的关系.介绍实验装置及实验条件的保证:在砝码质量远远小于小车质量的条件下,小车所受的拉力才近似地认为等于砝码的重力.介绍数据处理方法(替代法):根据公式可知,在相同时间内,物体产生加速度之比等于位移之比.

以上内容可根据学生情况,让学生充分参与讨论.本节书涉及到的演示实验也可利用气垫导轨和计算机,变为定量实验.

1、加速度和力的关系

做演示实验并得出结论:小车质量相同时,小车产生的加速度与作用在小车上的力成正比,即,且方向与方向相同.

2、加速度和质量的关系

做演示实验并得出结论:在相同的力F的作用下,小车产生的加速度与小车的质量成正比,即.

二、牛顿第二运动定律(加速度定律)

1、实验结论:物体的加速度根作用力成正比,跟物体的质量成反比.加速度方向跟引起这个加速度的力的方向相同.即,或.

2、力的单位的规定:若规定:使质量为1kg的物体产生1m/s2加速度的力叫1N.则公式中的=1.(这一点学生不易理解)

3、牛顿第二定律:

物体的加速度根作用力成正比,跟物体的质量成反比.加速度方向跟引起这个加速度的力的方向相同.

数学表达式为:.或

4、对牛顿第二定律的理解:

(1)公式中的是指物体所受的合外力.

举例:物体在水平拉力作用下在水平面上加速运动,使物体产生加速度的合外力是物体

所受4个力的合力,即拉力和摩擦力的合力.(在桌面上推粉笔盒)

(2)矢量性:公式中的和均为矢量,且二者方向始终相同.由此在处理问题时,由合外力的方向可以确定加速度方向;反之,由加速度方向可以找到合外力的方向.

(3)瞬时性:物体在某时刻的加速度由合外力决定,加速度将随着合外力的变化而变化.

举例:静止物体启动时,速度为零,但合外力不为零,所以物体具有加速度.

汽车在平直马路上行驶,其加速度由牵引力和摩擦力的合力提供;当刹车时,牵引力突然消失,则汽车此时的加速度仅由摩擦力提供.可以看出前后两种情况合外力方向相反,对应车的加速度方向也相反.

(4)力和运动关系小结:

物体所受的合外力决定物体产生的加速度:

当物体受到合外力的大小和方向保持不变、合外力的方向和初速度方向沿同一直线且方向相同——→物体做匀加速直线运动

当物体受到合外力的大小和方向保持不变、合外力的方向和初速度方向沿同一直线且方向相反——→物体做匀减速直线运动

以上小结教师要带着学生进行,同时可以让学生考虑是否还有其它情况,应满足什么条件.

探究活动

题目:验证牛顿第二定律
组织:2-3人小组
方式:开放实验室,学生实验.
评价:锻炼学生的实验设计和操作能力.


§4.2牛顿第二定律(复习学案)


§4.2牛顿第二定律(复习学案)
【学习目标】
1.理解牛顿第二定律的内容,知道牛顿第二定律表达式的确切含义
2.会用牛顿第二定律处理两类动力学问题
【自主学习】
一、牛顿第二定律
1.牛顿第二定律的内容,物体的加速度跟成正比,跟成反比,加速度的方向跟方向相同。
2.公式:
3.理解要点:
(1)F=ma这种形式只是在国际单位制中才适用
一般地说F=kma,k是比例常数,它的数值与F、m、a各量的单位有关。在国际单位制中,即F、m、a分别用N、kg、m/s2作单位,k=1,才能写为F=ma.
(2)牛顿第二定律具有“四性”
①矢量性:物体加速度的方向与物体所受的方向始终相同。
②瞬时性:牛顿第二定律说明力的瞬时效应能产生加速度,物体的加速度和物体所受的合外力总是同生、同灭、同时变化,所以它适合解决物体在某一时刻或某一位置时的力和加速度的关系问题。
③独立性:作用于物体上的每一个力各自产生的加速度都遵从牛顿第二定律,而物体的实际加速度则是每个力产生的加速度的矢量和,分力和加速度的各个方向上的分量关系
Fx=max
也遵从牛顿第二定律,即:
Fy=may
④相对性:物体的加速度必须是对相对于地球静止或匀速直线运动的参考系而言的。
4.牛顿第二定律的适用范围
(1)牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系。)
(2)牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。
二、两类动力学问题
1.已知物体的受力情况求物体的运动情况
根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
2.已知物体的运动情况求物体的受力情况
根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。
求解以上两类动力学问题的思路,可用如下所示的框图来表示:
第一类第二类

在匀变速直线运动的公式中有五个物理量,其中有四个矢量v0、v1、a、s,一个标量t。在动力学公式中有三个物理量,其中有两个矢量F、a,一个标量m。运动学和动力学中公共的物理量是加速度a。在处理力和运动的两类基本问题时,不论由力确定运动还是由运动确定力,关键在于加速度a,a是联结运动学公式和牛顿第二定律的桥梁。
【典型例题】
例1.质量为m的物体放在倾角为α的斜面上,物体和斜面间的动摩擦系数为μ,如沿水平方向加一个力F,使物体沿斜面向上以加速度a做匀加速直线运动,如下图甲,则F多大?

例2.如图所示,质量为m的人站在自动扶梯上,
扶梯正以加速度a向上减速运动,a与水平方向
的夹角为θ,求人受的支持力和摩擦力。

例3.风洞实验室中可产生水平方向的、大小可调节的风力,现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径。(如图)
(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上匀速运动。这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数。
(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离s所需时间为多少?(sin37°=0.6,cos37°=0.8)

例4.如图所示,物体从斜坡上的A点由静止开始滑到斜坡底部B处,又沿水平地面滑行到C处停下,已知斜坡倾角为θ,A点高为h,物体与斜坡和地面间的动摩擦因数都是μ,物体由斜坡底部转到水平地面运动时速度大小不变,求B、C间的距离。

【针对训练】
1.一个木块沿倾角为α的斜面刚好能匀速下滑,若这个斜面倾角增大到β
(α<β<90°),则木块下滑加速度大小为()
A.gsinβB.gsin(β-α)
C.g(sinβ-tanαcosβ)D.g(sinβ-tanα)
2.一支架固定于放于水平地面上的小车上,细线上一端系着质量为m的小球,另一端系在支架上,当小车向左做直线运动时,细线与竖直方向的夹角为θ,此时放在小车上质量M的A物体跟小车相对静止,如图所示,则A受到的摩擦力大小和方向是()
A.Mgsinθ,向左
B.Mgtanθ,向右
C.Mgcosθ,向右
D.Mgtanθ,向左
3.重物A和小车B的重分别为GA和GB,用跨过定滑轮的细线将它们连接起来,如图所示。已知GA>GB,不计一切摩擦,则细线对小车B的拉力F的大小是()
A.F=GA
B.GA>F≥GB
C.F<GB
D.GA、GB的大小未知,F不好确定
4.以24.5m/s的速度沿水平面行驶的汽车上固定
一个光滑的斜面,如图所示,汽车刹车后,经2.5s
停下来,欲使在刹车过程中物体A与斜面保持相对
静止,则此斜面的倾角应为,车的行
驶方向应向。(g取9.8m/s2)
5.如图所示,一倾角为θ的斜面上放着一小车,小车上吊着小球m,小车在斜面上下滑时,小球与车相对静止共同运动,当悬线处于下列状态时,分别求出小车下滑的加速度及悬线的拉力。
(1)悬线沿竖直方向。
(2)悬线与斜面方向垂直。
(3)悬线沿水平方向。

【能力训练】
一、选择题
1.A、B、C三球大小相同,A为实心木球,B为实心铁球,C是质量与A一样的空心铁球,三球同时从同一高度由静止落下,若受到的阻力相同,则()
A.B球下落的加速度最大B.C球下落的加速度最大
C.A球下落的加速度最大D.B球落地时间最短,A、C球同落地
2.如图所示,物体m原以加速度a沿斜面匀加速下滑,现在物体上方施一竖直向下的恒力F,则下列说法正确的是()
A.物体m受到的摩擦力不变
B.物体m下滑的加速度增大
C.物体m下滑的加速度变小
D.物体m下滑的加速度不变
3.如图所示,两个质量相同的物体1和2,紧靠在一起放在光滑的水平面上,如果它们分别受到水平推力F1和F2的作用,而且F1>F2,则1施于2的作用力的大小为()
A.F1B.F2
C.(F1+F2)/2D.(F1-F2)/2
4.如图所示,A、B两条直线是在A、B两地分别用竖直向上的力F拉质量分别为mA、mB的物体得出的两个加速度a与力F的
关系图线,由图线分析可知()
A.两地的重力加速度gA>gB
B.mA<mB
C.两地的重力加速度gA<gB
D.mA>mB
5.如图所示,质量m=10kg的物体在水平面上向左运动,物体与水平面间的动摩擦因数为0.2,与此同时物体受到一个水平向右的推力F=20N的作用,则物体产生的加速度是(g取为10m/s2)
A.0B.4m/s2,水平向右
C.2m/s2,水平向左D.2m/s2,水平向右
6.如图所示,质量为60kg的运动员的两脚各用750N的水平力蹬着两竖直墙壁匀速下滑,若他从离地12m高处无初速匀加速下滑2s可落地,则此过程中他的两脚蹬墙的水平力均应等于(g=10m/s2)
A.150NB.300N
C.450ND.600N
7.如图所示,传送带保持1m/s的速度运动,现将一质量为0.5kg的小物体从传送带左端放上,设物体与皮带间动摩擦因数为0.1,传送带两端水平距离为2.5m,则物体从左端运动到右端所经历的时间为()
A.B.
C.3sD.5s
8.如图所示,一物体从竖直平面内圆环的最高点A处由静止开始沿光滑弦轨道AB下滑至B点,那么()
①只要知道弦长,就能求出运动时间
②只要知道圆半径,就能求出运动时间
③只要知道倾角θ,就能求出运动时间
④只要知道弦长和倾角就能求出运动时间
A.只有①B.只有②
C.①③D.②④
9.将物体竖直上抛,假设运动过程中空气阻力
不变,其速度–时间图象如图所示,则物体所
受的重力和空气阻力之比为()
A.1:10B.10:1
C.9:1D.8:1
10.如图所示,带斜面的小车各面都光滑,车上放一均匀球,当小车向右匀速运动时,斜面对球的支持力为FN1,平板对球的支持力FN2,当小车以加速度a匀加速运动时,球的位置不变,下列说法正确的是()
A.FN1由无到有,FN2变大
B.FN1由无到有,FN2变小
C.FN1由小到大,FN2不变
D.FN1由小到大,FN2变大
二、非选择题
11.汽车在两站间行驶的v-t图象如图所示,车所受阻力恒定,在BC段,汽车关闭了发动机,汽车质量为4t,由图可知,汽车在BC
段的加速度大小为m/s2,在AB
段的牵引力大小为N。在OA段
汽车的牵引力大小为N。
12.物体的质量除了用天平等计量仪器直接测量外,还可以根据动力学的方法测量,1966年曾在地球的上空完成了以牛顿第二定律为基础的测定地球卫星及其它飞行物的质量的实验,在实验时,用双子星号宇宙飞船(其质量m1已在地面上测量了)去接触正在轨道上运行的卫星(其质量m2未知的),接触后开动飞船尾部的推进器,使宇宙飞船和卫星共同加速如图所示,已知推进器产生的
平均推力F,在开动推进器时间△t的过程中,
测得宇宙飞船和地球卫星的速度改变△v,试写出
实验测定地球卫星质量m2的表达式。
(须用上述给定已知物理量)
13.如图所示,将金属块用压缩轻弹簧卡在一个矩形箱中,在箱的上顶板和下底板上安有压力传感器,箱可以沿竖直轨道运动,当箱以a=2m/s2的加速度做竖直向上的匀减速直线运动时,上顶板的传感器显示的压力为6.0N,下底板的传感器显示的压力为10.0N,取g=10m/s2
(1)若上顶板的传感器的示数是下底板传感器示数的一半,试判断箱的运动情况。
(2)要使上顶板传感器的示数为零,箱沿竖直方向的运动可能是怎样的?

14.某航空公司的一架客机,在正常航线上做水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降了1700m,造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动,取g=10m/s2,试计算:
(1)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力才能使乘客不脱离座椅?
(2)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位?
15.传送带与水平面夹角37°,皮带以10m/s的速率运动,皮带轮沿顺时针方向转动,如图所示,今在传送带上端A处无初速地放上一个质量为m=0.5kg的小物块,它与传送带间的动摩擦因数为0.5,若传送带A到B的长度为16m,g取10m/s2,则物体从A运动到B的时间为多少?

【课后反思】
________________________________________________________________________________________________________________________________________________________________________________________________。
参考答案
例1[解析](1)受力分析:物体受四个力作用:重力mg、弹力FN、推力F、摩擦力Ff,(2)建立坐标:以加速度方向即沿斜面向
上为x轴正向,分解F和mg如图乙所示;
(3)建立方程并求解
x方向:Fcosα-mgsinα-Ff=ma①
y方向:FN-mgcosα-Fsinα=0②
f=μFN③
三式联立求解得:
F=
[答案]
例2[解析]以人为研究对象,他站在减速上升的电梯上,受到竖直向下的重力mg和竖直向上的支持力FN,还受到水平方向的静摩擦力Ff,由于物体斜向下的加速度有一个水平向左的分量,故可判断静摩擦力的方向水平向左。人受力如图的示,建立如图所示的坐标系,并将加速度分解为水平加速度ax和竖直加速度ay,如图所示,则:
ax=acosθ
ay=asinθ
由牛顿第二定律得:
Ff=max
mg-FN=may
求得Ff=FN=
例3[解析](1)设小球受的风力为F,小球质量为m,因小球做匀速运动,则
F=μmg,F=0.5mg,所以μ=0.5
(2)如图所示,设杆对小球的支持力为FN,摩擦力为Ff,小球受力产生加速度,沿杆方向有Fcosθ+mgsinθ-Ff=ma
垂直杆方向有FN+Fsinθ-mgcosθ=0
又Ff=μFN。
可解得a=g
由s=at2得t=
[答案](1)0.5(2)
例4[解析]物体在斜坡上下滑时受力情况如图所示,根据牛顿运动定律,物体沿斜面方向和垂直斜面方向分别有
mgsinθ-Ff=ma1
FN-mgcosθ=0
Ff=μFN
解得:a1=g(sinθ-μcosθ)
由图中几何关系可知斜坡长度为Lsinθ=h,则L=
物体滑至斜坡底端B点时速度为v,根据运动学公式v2=2as,则
v=
解得
物体在水平面上滑动时,在滑动摩擦力作用下,做匀减速直线运动,根据牛顿运动定律有
μmg=ma2
则a2=μg
物体滑至C点停止,即vC=0,应用运动学公式vt2=v02+2as得
v2=2a2sBC
则sBC=
针对训练
1.C2.B3.C4.45°水平向右
5.[解析]作出小球受力图如图(a)所示为绳子拉力F1与重力mg,不可能有沿斜面方向的合力,因此,小球与小车相对静止沿斜面做匀速运动,其加速度a1=0,绳子的拉力
F1=mg.
(2)作出小球受力图如图(b)所示,绳子的拉力F2与重力mg的合力沿斜面向下,小球的加速度a2=,绳子拉力F2=mgcosθ
(3)作出受力图如图(c)所示,小球的加速度,
绳子拉力F3=mgcotθ
[答案](1)0,g(2)gsinθ,mgcosθ(3)g/sinθmgcotθ

能力训练
1-5ADBCBB6-10BCBBB
11.0.52000600012.
13.解析:(1)设金属块的质量为m,F下-F上-mg=ma,将a=-2m/s2代入求出m=0.5kg。由于上顶板仍有压力,说明弹簧长度没变,弹簧弹力仍为10N,此时顶板受压力为5N,则
F′下-F′上-mg=ma1,求出a1=0,故箱静止或沿竖直方向匀速运动。
(2)若上顶板恰无压力,则F′′下-mg=ma2,解得a2=10m/s2,因此只要满足a≥10m/s2且方向向上即可使上顶板传感器示数为零。
[答案](1)静止或匀速运动(2)箱的加速度a≥10m/s2且方向向上
14.[解析](1)在竖直方向上,飞机做初速为零的匀加速直线运动,h=①
设安全带对乘客向下的拉力为F,对乘客由牛顿第二定律:F+mg=ma②
联立①②式解得F/mg=2.4
(2)若乘客未系安全带,因由求出a=34m/s2,大于重力加速度,所以人相对于飞机向上运动,受到伤害的是人的头部。
[答案](1)2.4倍(2)向上运动头部
15.[解析]由于μ=0.5<tanθ=0.75,物体一定沿传送带对地下移,且不会与传送带相对静止。
设从物块刚放上到达到皮带速度10m/s,物体位移为s1,加速度a1,时间t1,因物速小于皮带速率,根据牛顿第二定律,,方向沿斜面向下。t1=v/a1=1s,s1=a1t12=5m<皮带长度。
设从物块速度为10m/s到B端所用时间为t2,加速度a2,位移s2,物块速度大于皮带速度,物块受滑动摩擦力沿斜面向上,有
舍去
所用总时间t=t1+t2=2s.
[答案]2s

《牛顿第二定律》教案


《牛顿第二定律》教案

【教学目标】:1.理解牛顿第二定律的内容、表达式和适用范围.2.学会分析两类动力学问题.
【教学重点】:理解牛顿第二定律的内容、表达式和适用范围
【教学难点】:.学会分析两类动力学问题.
【教学方法】:讲练结合
一、牛顿第二定律
[基础导引]
由牛顿第二定律可知,无论怎样小的力都可以使物体产生加速度,可是,我们用力提一个很重的箱子,却提不动它.这跟牛顿第二定律有没有矛盾?应该怎样解释这个现象?
[知识梳理]
1.内容:物体加速度的大小跟它受到的作用力成________、跟它的质量成________,加速度的方向跟____________相同.
2.表达式:________.
3.适用范围
(1)牛顿第二定律只适用于________参考系(相对地面静止或____________运动的参考系).
(2)牛顿第二定律只适用于________物体(相对于分子、原子)、低速运动(远小于光速)的情况.
二、两类动力学问题
[基础导引]
以15m/s的速度行驶的无轨电车,在关闭电动机后,经过10s停了下来.电车的质量是4.0×103kg,求电车所受的阻力.
[知识梳理]
1.动力学的两类基本问题
(1)由受力情况判断物体的____________
(2)由运动情况判断物体的____________.
2.解决两类基本问题的方法:以__________为桥梁,由运动学公式和____________________列方程求解.
:解决两类动力学问题的关键是什么?
三、力学单位制
[基础导引]
如果一个物体在力F的作用下沿着力的方向移动了一段距离l,这个力对物体做的功W=Fl.我们还学过,功的单位是焦耳(J).请由此导出焦耳与基本单位米(m)、千克(kg)、秒(s)之间的关系.
[知识梳理]
1.单位制由基本单位和导出单位共同组成.
2.力学单位制中的基本单位有________、________、时间(s).
3.导出单位有________、________、________等.
探究一牛顿第二定律的理解
例1牛顿第二定律导学案如图所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?
牛顿第二定律导学案总结
利用牛顿第二定律分析物体运动过程时应注意以下两点:
(1)a是联系力和运动的桥梁,根据受力条件,确定加速度,以加速度
确定物体速度和位移的变化.(2)

高一物理牛顿第二定律


俗话说,居安思危,思则有备,有备无患。作为高中教师就要精心准备好合适的教案。教案可以更好的帮助学生们打好基础,帮助高中教师缓解教学的压力,提高教学质量。那么如何写好我们的高中教案呢?为满足您的需求,小编特地编辑了“高一物理牛顿第二定律”,供大家借鉴和使用,希望大家分享!

牛顿第二定律
(课时为2学时)
一、教学内容分析
1.内容与地位
在共同必修模块物理1的内容标准中涉及本节的内容有:“通过实验,探究加速度与物体质量、物体受力的关系.理解牛顿运动定律”.本条目要求学生通过实验,探究加速度、质量、力三者的关系,强调让学生经历实验探究过程.
牛顿第二定律是动力学的核心规律,是学习其他动力学规律的基础,是本章的重点内容,它阐明了物体的加速度跟力和质量间的定量关系,是在实验基础上建立起来的重要规律,在理论与实际问题中都有广泛的运用.在教学过程中要创设问题情境,让学生经历探究加速度、质量、力三者关系的过程,可以通过实验测量加速度、力、质量,分别作出表示加速度与力、加速度与质量的关系的图像,根据图像导出加速度与力、质量的关系式.学习过程中引导体会科学的研究方法——控制变量法、图像法的应用,培养观察能力、质疑能力、分析解决问题的能力和交流合作能力.在知识的形成中真正理解牛顿第二定律,同时体验到探究的乐趣.
2.教学目标
(1)经历探究加速度与力和质量的关系的过程.
(2)感悟控制变量法、图像法等科学研究方法的应用.
(3)体验探究物理规律的乐趣.
(4)培养观察能力、质疑能力、分析解决问题的能力和交流合作能力.
3.教学重点、难点
引导学生探究加速度与力和质量的关系的过程是本节课教学的重点,通过实验数据画出图像,根据图像导出加速度与力、质量的关系式是本节的难点.
二、案例设计
(一)复习导入
教师:什么是物体运动状态的改变?物体运动状态发生变化的原因是什么?
学生:物体运动状态的改变就是指物体速度发生了改变,力是使物体运动状态发生变化的原因.
教师:物体运动状态的改变,也就是指物体产生了加速度.加速度大,物体运动状态变化快;加速度小,物体运动状态变化慢.弄清物体的加速度是由哪些因素决定的,具有十分重要的意义.那么物体的加速度大小是由哪些因素决定的呢?请同学们先根据自己的经验对这个问题展开讨论,让学生尝试从身边实例中提出自己的观点.讨论中体会到a跟力F、物体质量m有关.
(二)探究加速度a跟力F、物体质量m的关系
1.定性讨论a、F、m的关系
学生:分小组讨论.
教师:在学生分组讨论的基础上,请各组派代表汇报讨论结果.
引导学生总结出定性的结论:a与F、m有关系,当m一定时F越大,a就越大;当F一定时,m越大,a就越小.
请思考:
在这里为什么要组织学生开展这样的讨论?
2.定量研究a、F、m的关系
(1)设计实验方案
教师在肯定学生回答的基础上,提问:如何定量地研究a与F、m的关系呢?指出刚才大家在定性讨论a、F、m三者关系时,就已经采用了在研究a与F关系时保持m一定,在研究a与m的关系时保持F一定的方法,这种方法叫做控制变量法,它是研究多变量问题的一种重要方法.下面我们可应用这种方法,通过实验对a、F、m的关系进行定量研究.
教师进一步引导,使学生明确要在实验中研究a、F、m的关系必须有办法测出a、F、m.
教师在指出讲台上放有气垫导轨、气源、两个光电开关和与之配套的数字计时器、滑块、细线、砝码、小桶、弹簧秤、托盘天平、一端带有滑轮的长木板、小车、钩码、打点计时器、纸带、刻度尺,并说明每个光电开关与数字计时器一起能测出一定宽度的遮光板通过它的时间进而测出物体的瞬时速度后,让学生根据给定的器材设计实验方案,并在小组讨论基础上,全班交流.在大家互相启发、补充的过程中形成较为完善的方案.
学生:设计出如下实验方案.
方案一以小车、打点计时器、纸带、长木板、细线、小桶、钩码、砝码、刻度尺、天平为器材,研究小车的运动.用天平测出小车的质量m1,测出小桶的质量m2,把小桶与小桶中砝码的总重力m′g当作小车受到的拉力F,从打点计时器打出的纸带上测出△s,由△s=at2计算出小车的加速度a.
方案二以气垫导轨、气源、两个光电开关、数字计时器、滑块、刻度尺、细线、小桶、砝码、钩码、天平为器材研究滑块的运动.用天平测出滑块的质量m1,测出小桶的质量m2,把小桶与小桶中砝码的总重力m′g当作滑块受到的拉力F,用导轨旁边的刻度尺测出两光电开关的距离s0,用刻度尺测出固定在滑块上的遮光片的宽度△s,根据数字计时器给出的遮光片分别通过前后两个光电开关所经历的时间△t1、△t2,由于△ss0,因此可以根据v1=△s/△t1和v2=△s/△t2计算出滑块在两光电开关间运动时的初、末速度,再由计算出滑块的加速度a.
教师引导学生讨论两种方案的可行性,让学生踊跃发表自己见解.
教师:上述两种方案都是可行的.但前一种方案中小车受到的摩擦力较大,实验误差较大,因此就得想办法消除摩擦力的影响,那么如何消除摩擦力呢?建议有兴趣的同学自己利用课余的时间去实验室用前一种方案或其他方案进行实验探索.本节课我们采用上述后一种方案进行实验探究.
教师:不论采用上述哪种方案,我们把小桶与小桶中砝码的总重力mg当作小车(包括上面的钩码)或滑块(包括上面的钩码)受到的拉力,这是有条件的,这条件就是mm′(m为小车与钩码或滑块与钩码的总质量).
(2)进行实验探究
教师:引导学生在气垫导轨上研究a、F、m三者关系,为了让学生能有条不紊地进行实验,用电子幻灯片打出研究内容、实验步骤和数据记录表格如下:
【研究内容】研究m一定时,a与F的关系
【研究步骤】①用天平分别测出单个滑块的质量m1=__________g,小桶质量m2=__________g,则滑块总质量m等于m1加上放在它上面的钩码的质量△m1.
②在桶中放置质量为△m2的砝码,则m′=m2+△m2,当mm′时,认为F=m′g(g取9.8m/s2).
③用刻度尺测出遮光片的宽度△s=__________m,用轨道边上的标尺测出两光电开关之间的距离s0=__________m.
④实验时,保持s0不变,把各次滑块运动中遮光片经过前后光电开关的时间△t1、△t3代入公式计算出各次滑块运动的加速度,并把实验数据填入表11-1.
表11-1研究m一定时,滑块加速度a与其受力F的关系
单个滑块质量
m1=_____g
滑块总质量
m=_____g
小桶质量
m2=_____g
遮光片宽度
△s=_____m
两光电开关间距
s0=_____m实验次数小桶上的砝码质量△m2/g小桶与坛码总质量m′/g△t1/s△t2/s滑块加速度a/(m﹒s-2)滑块受的拉力F/N
1
2
3
4
【实验的结论】____________________________________________________
【研究内容二】研究a与m的关系(F一定)
【研究步骤】①用天平分别测出单个滑块的质量m1=__________g,小桶质量m2=__________g,则各次实验中滑块总质量m等于m1加上放在它上面的钩码的质量△m1.
②在小桶中放置质量为△m2的砝码,则m′=m2+△m2,当mm′时,认为F=m′g(g取9.8m/s2),并保持m不变.
③用刻度尺测出遮光片的宽度△s=__________m,用轨道边上的标尺测出两光电开关之间的距离s0=__________m.
④实验时,保持s0不变,把各次滑块运动中遮光片经过光电开关的时间△t1、△t2代入公式,计算出各次滑块运动的加速度,把实验数据填入表11-2.
表11-2研究滑块加速度a与滑块总质量m的关系(拉力F一定)
单个滑块质量
m2=_____g
小桶质量
m2=_____g
小桶与砝码的总质量
m′=_____g
遮光片宽度
△s=_____m
两光电开关间距
s0=_____m实验次数滑块砝码质量△m1/g△t1/s△t2/s滑块加速度a/(m﹒s-2)滑块与砝码总质量m/g
1
2
3
4
【实验的结论】____________________________________________________
说明在简要说明数字计时器的使用方法,强调实验过程应使气垫导轨保持水平,两光电开关间距要尽可能大些,尽可能使m′远大于m(如果m′≥20m,则可认为m′m)等注意事项后,请两位学生上台操作并报告测量数据,其他学生边观察边在课前印发的实验数据记录表(表11-1、表11-2)上填上实验测量数据.
教师:把全班学生分成8个小组,第1组~第4组学生分别完成(表11-1)中从实验次数1~4各项目的计算与填写,第5组~第8组学生分别完成(表11-2)中从实验次数1~4各项目的计算与填写.
教师:让学生反馈计算结果,并填入电子幻灯片(表11-1)、(表11-2)的对应栏目中.
教师:引导学生对表11-1的数据①通过直接观察;②通过在坐标纸上画出a-F图像进行分析,得出a∝F(m一定时)的结论.
在描点画图时,让学生体会为什么要让描出的点尽可能多地分布在某一直线的两侧,尝试说出实验误差的原因.
教师:引导学生对表11-2的数据①通过直接观察②通过在坐标纸上画出a-m图像进行分析,只能得出当F一定时,m越大a就越小的结论.
教师:能不能就此马上断言a与m成反比?让学生展开讨论.
教师:在引导学生进行全班交流的基础上,问学生能不能猜想a与m成反比?
如何证明这种猜想是否正确?请思考讨论.
学生:可以画出a与图像,看它是否为过原点的直线.
学生:还可以通过计算a与m的比值来判断.
教师:让学生分组计算出对应各次实验的,并在全班反馈填人表11-2后,在坐标纸上作出a-图像.
学生:确实实验得到的直线是接近过原点的,实验误差允许范围内a与m是成反比(F一定时)的.
说明这里开展一系列讨论的目的是为了让学生体会从a-m图像转化到a-图像的意义,认识图像法描述物理规律的作用.
教师:本实验只是让我们对于自然规律的探究有所体验,实际上一个规律的发现不可能是几次简单的测量实验就能得出,还需要通过大量的实验事实来论证.
3.牛顿第二定律
通过大量的实验探究得到加速度与力、质量的关系是:
当物体的质量一定时,物体的加速度跟所受的作用力成正比,跟物体的质量成反比,这就是牛顿第二定律.
加速度和力都是矢量,它们都有方向,牛顿第二定律不但确定了加速度和力的大小之间的关系,还确定了它们的方向之间的关系:加速度的方向跟引起这个加速度的力的方向相同.
牛顿第二定律也可用数学公式来表示:
a∝F/m或F∝ma
上式可改写为等式:F=kma,式中的k是比例常数.
教师指出:
(1)如果各物理量都采用国际单位,k=1;
(2)力的单位“牛顿”是根据牛顿第二定律定义的.
定义:使质量1kg的物体产生1m/s2的加速度所需要的力,叫做1N.即1N=1kgm/s2
可见,如果都用国际制单位,则k=1.
牛顿第二定律可简化为
F=ma
这就是牛顿第二定律的数学表达式.
三、案例评析
本节课教学设计的思路是:首先提出物体的加速度是由哪些因素决定的这个问题,引导学生根据自己已有的经验进行定性探究,在此基础上,进一步引导学生应用控制变量法进行定量探究,让学生经历自己设计实验方案、观察实验现象、记录实验数据、全班合作处理实验数据、分析实验数据得出结论的过程,最后总结出牛顿第二定律的数学表达式.
本节课教学设计为创设问题情境,让学生主动参与探究加速度、质量、力三者关系的全过程,在实验方案设计分析、应用图像探究规律等问题解决的过程中较为关注学生自己的观念,让学生在问题讨论中完善自己的观点,学习应用物理和数学的方法研究自然规律,有效地培养学生的实验设计能力、观察能力、分析能力、解决问题的能力以及合作交流的能力.教师在实验完成后的一句话“本实验只是让我们对于自然规律的探究有所体验,实际上一个规律的发现不可能是几次简单的测量实验就得出,还需要通过大量的实验事实来论证”充分体现了注重对学生进行科学态度和科学精神的教育.对于实验的方案可以根据学校、学生的情况,选择一种或两种或三种做,让学生比较实验的结果,对实验进行多方面的反思.
四、相关链接
探究牛顿第二定律中的图像问题
典型例题1在“探究牛顿第二定律”实验中,研究加速度与力的关系时得到如图11-1所示的图像,试分析其原因.
分析:在做a-F关系实验时,用砂和砂桶所受重力mg代替了小车所受的拉力F,如图11-2所示:
事实上,砂和砂桶的重力mg与小车所受的拉力F是不相等的,这是产生实验系统误差的原因,为此,必须根据牛顿第二定律分析mg和F在产生加速度问题上存在的差别.由图像经过原点知,小车所受的摩擦力已被平衡.设小车实际加速度为a,由牛顿第二定律可得
mg=(m+m0)a即
若视F=mg,设这种情况下小车的加速度为a′,则a′=mg/m0.在本实验中,m0保持不变,与mg(F)成正比,而实际加速度a与mg成非线性关系,且m越大,图像斜率越小.理想情况下,加速度a与实际加速度a差值为
上式可见,m取不同值,△a不同,m越大,△a越大,当m0m时,a≈a′△a→0,这就是要求该实验必须满足m0m的原因所在.
本题误差是由于砂及砂桶质量较大,不能很好满足m0m造成的.
点评:本实验的误差来源:因原理不完善引起的误差,本实验用砂和砂桶所受的总重力mg代替小车的拉力,而实际小车所受的拉力要小于砂和砂桶所受的总重力,这个砂和砂桶的总质量越接近小车和砝码的总质量,误差越大;反之砂和砂桶的总质量越小于小车和砝码的总质量,由此引起的误差就越小.因此满足砂和砂桶的总质量m远小于小车和砝码的总质量m0的目的就是为了减小因实验原理不完善而引起的误差.此误差可因为mm0而减小,但不可能消去此误差.
典型例题2在利用打点计时器和小车做“探究牛顿第二定律”的实验时,实验前为什么要平衡摩擦力?应当如何平衡摩擦力?
分析:牛顿第二定律表达式F=ma中的F,是物体所受的合外力,在本实验中,如果不采用一定的办法平衡小车及纸带所受的摩擦力,小车所受的合外力就不只是细绳的拉力,而应是细绳的拉力和系统所受的摩擦力的合力.因此,在研究加速度a和外力F的关系时,若不计摩擦力,误差较大;若计摩擦力,其大小的测量又很困难.在研究加速度a和质量m的关系时,由于随着小车上的砝码增加,小车与木板间的摩擦力会增大,小车所受的合外力就会变化(此时长板是水平放置的),不满足合外力恒定的实验条件,因此实验前必须平衡摩擦力.
应如何平衡摩擦力?怎样检查平衡的效果?有人是这样操作的:把如图11-3所示装置中的长木板的右端垫高一些,使之形成一个斜面,然后把实验用小车放在长木板上,轻推小车,给小车一个沿斜面向下的初速度,观察小车的运动情况,看其是否作匀速直线运动.如果基本可看作匀速直线运动,就认为平衡效果较好.这样操作有两个问题:一是在实验开始以后,阻碍小车运动的阻力不只是小车受到的摩擦力,还有打点计时器限位孔对纸带的摩擦力及打点时振针对纸带的阻力,在上面的做法中没有考虑后两个阻力;二是检验平衡效果的方法不当,靠眼睛的直接观察判断小车是否做匀速直线运动是很不可靠的.正确的做法是:将长木板的末端(如图11-3中的右端)垫高一些,把小车放在斜面上,轻推小车,给小车一个沿斜面向下的初速度,观察小车的运动,当用眼睛直接观察可认为小车做加速度很小的直线运动以后,保持长木板和水平桌面的夹角不动,并装上打点计时器及纸带,在小车后拖纸带、打点计时器开始打点的情况下,给小车一个沿斜面向下的初速度,使小车沿斜面向下运动.取下纸带后,如果在纸带上打出的点的间隔基本上均匀,就表明小车受到的阻力跟它所受的重力沿斜面的分力平衡.
点评:
(1)打点计时器工作时,振针对纸带的阻力是周期性变化的,所以,难以做到重力沿斜面方向的分力与阻力始终完全平衡,小车的运动也不是严格的匀速直线运动,纸带上的点的间隔也不可能完全均匀,所以上面提到要求基本均匀.
(2)在实验前对摩擦力进行了平衡以后,实验中需在小车上增加或减少砝码,因为改变了小车对木板的压力,从而使摩擦力出现了变化,有没有必要重新平衡摩擦力?我们说没有必要,因为由此引起的摩擦力变化是极其微小的.从理论上讲,在小车及其砝码质量变化时,由力的分解可知,重力沿斜面向下的分力G1和垂直斜面方向的分力G2(大小等于对斜面的压力),在斜面倾角不变的情况下是成比例增大或减小的,进而重力沿斜面方向的分力G1和摩擦力f成比例变化,仍能平衡.但实际情况是,纸带所受阻力F′f,在平衡时有G1=Ff+F′f,而当F′f和Ff成比例变化后,前式不再相等,因而略有变化.另外,小车的轴与轮的摩擦力也会略有变化,在我们的实验中,质量变化较小,所引起的误差可忽略不计.
典型例题3用如图11-4(a)所示的装置研究质量、定时加速度与作用力的关系.实验中认为细绳对小车的作用力F等于砂和桶所受的总重力,用改变砂的质量的办法来改变对小车的作用力F,用打点计时器测出小车的加速度a,得出若干组F和a的数值,然后根据测得的数据作a-F图线.一学生作出如图11-4(b)所示的图线,发现横轴上的截距OA较大,明显地超出了偶然误差的范围,这是由于实验中没有进行什么步骤?
分析:这是一个验证性的实验,作出的a-F图线理应通过原点,表明质量m0一定时,加速度a与F成正比,作出图11-4(b)所示的图线,表示什么意思呢?设截距OA=Ff,现变换一下坐标原点,把原点移至A点,纵坐标仍表示加速度a,横坐标表示F-Ff,设直线的斜率为,则图11-4(c)表示
a=k(F-Ff),F-Ff=m0a
即:由牛顿第二定律可知,在某同学所做的这个实验中,合外力并不是细绳对小车的作用力F,而是F-Ff,显然,这个f是水平长木板对小车的摩擦力,这个摩擦力在实验中是不能忽略的,实验中需平衡此摩擦力,采用的办法是:“在长木板的不带定滑轮的一端下面垫一块木板,反复移动木板的位置,直到小车在斜面上运动时可以保持匀速直线运动状态,这时小车拖着纸带运动时受到的摩擦阻力恰好与小车所受的重力在斜面上的分力平衡”.(见高中课本)这时小车所受的合外力F-Ff+m0gsinθ=F,画出的图线应当通过原点,该同学作出如图11-4乙所示的a-F图线,是因为他在实验中没有进行平衡摩擦力这一步骤.
典型例题4利用例3图11-4(a)所示的装置做“探究牛顿第二定律”实验,甲同学根据实验数据画出的小车的加速度。和小车所受拉力F的图像为图11-5中的直线Ⅰ,乙同学画出的a-F图像为图11-5中的直线Ⅱ.直线Ⅰ、Ⅱ在纵轴或横轴上的截距较大,明显超出了误差范围,下面给出了关于形成这种情况原因的四种解释,其中可能正确的是()
A.实验前甲同学没有平衡摩擦力
B.甲同学在平衡摩擦力时,把长木板的末端抬得过高了
C.实验前乙同学没有平衡摩擦力
D.乙同学在平衡摩擦力时,把长木板的末端抬得过高了
分析:图像Ⅰ在纵轴上有较大的截距,说明在绳对小车的拉力F=0(还没有挂砂桶)的情况下,小车就有了沿长木板向下的加速度a0.设长木板与水平桌面间的夹角为θ,小车所受的重力mg沿长木板向下的分力应为mgsinθ,长木板对小车的摩擦阻力应为μmgcosθ.又设运动系统所受的其他阻力为Ff(可视为定值),则应有mgsinθ-(μmgcosθ+Ff)=ma0,在此式中m、g、μ、Ff为定值.如果适当减小θ值,可使sinθ减小而cosθ值增大,实现a0=0,图像起点回到坐标系的原点.图像Ⅱ在横轴上有较大的截距,说明乙同学在实验前没有平衡摩擦力,因此在绳对小车有了较大的拉力F以后,小车的加速度仍然为零,其原因如例3所述.由上述分析可知,B、C选项的叙述正确.
分析:(1)关键分析纵截距及其物理意义;(2)在实验中平衡摩擦力的标准是物体在不挂砂桶时匀速运动,即所连纸带上的点应是均匀分布的.

文章来源:http://m.jab88.com/j/70975.html

更多

最新更新

更多