经验告诉我们,成功是留给有准备的人。作为教师就要在上课前做好适合自己的教案。教案可以让讲的知识能够轻松被学生吸收,让教师能够快速的解决各种教学问题。教案的内容具体要怎样写呢?小编收集并整理了“2017-2018学年高中数学人教A版必修三简单随机抽样教学案”,仅供参考,欢迎大家阅读。
第1课时简单随机抽样
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P54~P57,回答下列问题.
(1)在教材P55的“探究”中,怎样获得样本?
提示:将这批小包装饼干放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取.
(2)最常用的简单随机抽样方法有哪些?
提示:抽签法和随机数法.
(3)你认为抽签法有什么优点和缺点?
提示:抽签法的优点是简单易行,当总体中个体数不多时较为方便,缺点是当总体中个体数较多时不宜采用.
(4)用随机数法读数时可沿哪个方向读取?
提示:可以沿向左、向右、向上、向下等方向读数.
2.归纳总结,核心必记
(1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
(2)最常用的简单随机抽样方法有两种——抽签法和随机数法.
(3)一般地,抽签法就是把总体中的N个个体分段,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.
(4)随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样.
(5)简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.
[问题思考]
(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次被抽到有关吗?
提示:在简单随机抽样中,总体中的每个个体在每次抽取时被抽到的可能性相同,与第几次被抽到无关.
(2)抽签法与随机数法有什么异同点?
提示:
相同点①都属于简单随机抽样,并且要求被抽取样本的
总体的个体数有限;
②都是从总体中逐个不放回地进行抽取
不同点①抽签法比随机数法操作简单;
②随机数法更适用于总体中个体数较多的时候,而抽签法适用于总体中个体数较少的情况,所以当总体中的个体数较多时,应当选用随机数法,可以节约大量的人力和制作号签的成本
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)简单随机抽样的特征是:;
(2)抽签法的步骤:;
(3)随机数法的步骤:.
[思考1]要判断一锅汤的味道需要把整锅汤都喝完吗?该怎样判断?
提示:不需要,只要将锅里的汤“搅拌均匀”,品尝一小勺就可知道汤的味道.
[思考2]假设你作为一名食品卫生工作人员,要对某食品店内的一批水果罐头进行卫生达标检验,你准备怎样做?
提示:从中抽取一定数量的罐头作为检验的样本.
[思考3]怎样认识简单随机抽样?
名师指津:简单随机抽样有如下四个特征:
(1)它要求被抽取样本的总体的个数确定,且较少,个体之间差异不明显.
(2)它是从总体中逐个地抽取.
(3)它是一种不放回地抽取.
(4)它是一种等机率抽样.不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.
?讲一讲
1.下列抽取样本的方法是简单随机抽样吗?为什么?
(1)从无限多个个体中抽取50个个体作为样本.
(2)箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.
(3)从50个个体中一次性抽取5个个体作为样本.
(4)一彩民选号,从装有36个大小、形状都相同的号签的箱子中无放回的抽取6个号签.
[尝试解答](1)不是简单随机抽样,因为被抽取的样本的总体的个数是无限的而不是有限的.
(2)不是简单随机抽样,因为它是有放回地抽样.
(3)不是简单随机抽样,因为它是一次性抽取,而不是“逐个”抽取.
(4)是简单随机抽样,因为总体中的个体是有限的,并且是从总体中逐个抽取、不放回的、等可能的抽样.
简单随机抽样的判断方法
判断所给的抽样是否为简单随机抽样的依据是简单随机抽样的四个特征:
上述四点特征,如果有一点不满足,就不是简单随机抽样.
?练一练
1.判断下面的抽样方法是否为简单随机抽样,并说明理由.
(1)某班45名同学,指定个子最矮的5名同学参加学校组织的某项活动.
(2)从20个零件中一次性抽出3个进行质量检查.
解:(1)不是简单随机抽样.
因为指定个子最矮的5名同学,是在45名同学中特指的,不存在随机性,不是等可能抽样.
(2)不是简单随机抽样.
因为一次性抽取3个不是逐个抽取,不符合简单随机抽样的特征.
?讲一讲
2.某单位对口支援西部开发,现从报名的18名志愿者中选取6人组成志愿小组到西藏工作3年,请用抽签法设计抽样方案.
[思路点拨]制签→制签→搅匀→抽签→定样.
[尝试解答]方案如下:
第一步,将18名志愿者分段,号码为:01,02,03,…,18.
第二步,将号码分别写在相同的纸条上,揉成团,制成号签.
第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.
第四步,从盒子中依次取出6个号签,并记录上面的分段.
第五步,与所得号码对应的志愿者就是医疗小组成员.
抽签法的应用条件及注意点
(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.
(2)应用抽签法时应注意以下几点:
①分段时,如果已有分段可不必重新分段;
②签要求大小、形状完全相同;
③号签要均匀搅拌;
④要逐一不放回的抽取.
?练一练
2.现要从20名学生中抽取5名进行问卷调查,写出抽取样本的过程.
解:(1)先将20名学生进行分段,从1编到20;
(2)把号码写在形状、大小均相同的号签上;
(3)将号签放在一个不透明的箱子中进行充分搅拌,力求均匀,然后从箱子中依次抽取5个号签,这5个号签上的号码对应的学生,即为所求的样本.
?讲一讲
3.设某校共有100名教师,为了支援西部教育事业,现要从中随机抽取12名教师组成暑期西部讲师团,请写出用随机数法抽取该样本的过程.
[思路点拨]用随机数表抽取样本.过程:读取→读取→组团.
[尝试解答]其步骤如下:
第一步,将100名教师进行分段:00,01,02,…,99.
第二步,在随机数表中任取一数作为开始,如从12行第9列开始.
第三步,依次向右读取(两位,两位读取),可以得到75,84,16,07,44,99,83,11,46,32,24,20.
与这12个分段对应的教师组成样本.
利用随机数表法抽样时应注意的问题
利用随机数表法抽取个体时,关键是事先确定以表中的哪个数(哪行哪列)作为起点,以及读数的方向,向左、向右、向上或向下都可以,同时,读数时结合分段特点进行读取,分段为两位数,则两位、两位地读取,分段为三位数,则三位、三位地读取,如果出现重号则跳过,接着读取,取满为止.
?练一练
3.设某总体是由分段为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的分段是________.
78166572080263140702436997281098
32049234493582003623486969387491
解析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的分段依次为08,02,14,07,02,10,其中第二个和第五个都是02,重复.可知对应的数值为08,02,14,07,10,则第5个个体的分段为10.
答案:10
——————————————[课堂归纳感悟提升]———————————————
1.本节课的重点是理解并掌握简单随机抽样的定义、特点和适用范围,掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本,难点是掌握两种简单随机抽样的步骤及应用.
2.本节课要重点掌握的规律方法
(1)判断简单随机抽样的方法,见讲1.
(2)抽签法的应用条件及注意点,见讲2.
(3)利用随机数表法的注意点,见讲3.
3.本节课的易错点是理解简单随机抽样的概念时易出错,见讲1.
课下能力提升(九)
[学业水平达标练]
题组1简单随机抽样的概念
1.(2014四川高考)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是()
A.总体B.个体
C.样本的容量D.从总体中抽取的一个样本
解析:选A5000名居民的阅读时间的全体是总体,每名居民的阅读时间是个体,200是样本容量,故选A.
2.要检查一个工厂产品的合格率,从1000件产品中抽出50件进行检查,检查者在其中随机逐个抽取了50件,这种抽样方法可称为________.
解析:由简单随机抽样的特点可知,该抽样方法是简单随机抽样.
答案:简单随机抽样
3.下面的抽样方法是简单随机抽样的是________.
①从某城市的流动人口中随机抽取100人作调查;
②在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位为2709的为三等奖;
③在待检验的30件零件中随机逐个拿出5件进行检验.
解析:①中总体容量较大,不宜用简单随机抽样;②中抽取的个体的间隔是固定的,不是简单随机抽样.
答案:③
题组2简单随机抽样的应用
4.抽签法中确保样本代表性的关键是()
A.制签B.搅拌均匀
C.逐一抽取D.抽取不放回
解析:选B逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取也不影响样本的代表性,制签也一样,故选B.
5.用随机数表法进行抽样有以下几个步骤:
①将总体中的个体分段;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为()
A.①②③④B.①③④②
C.③②①④D.④③①②
解析:选B由随机数表法的步骤知选B.
6.采用抽签法从含有3个个体的总体{1,3,8}中抽取一个容量为2的样本,则所有可能的样本是________.
解析:从三个总体中任取两个即可组成样本,
∴所有可能的样本为{1,3},{1,8},{3,8}.
答案:{1,3},{1,8},{3,8}
7.上海某中学从40名学生中选1人作为上海男篮拉拉队的成员,采用下面两种选法:
选法一将这40名学生从1~40进行分段,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签分段一致的学生幸运入选;
选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为拉拉队成员.
试问这两种选法是否都是抽签法?为什么?这两种选法有何异同?
解:选法一满足抽签法的特征,是抽签法;选法二不是抽签法.因为抽签法要求所有的号签分段互不相同,而选法二中39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的可能性都相等,均为140.
8.现有一批分段为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检测,如何用随机数法设计抽样方案?
解:第一步,将元件的分段调整为010,011,012,…,099,100,…,600.
第二步,在随机数表中任取一数作为开始,任选一方向作为读数方向,比如,选第6行第7个数“9”,向右读.
第三步,从数“9”开始,向右读,每次读取三位,凡不在010~600中的跳过去不读,前面已经读过的数也跳过去不读,依次可得到544,354,378,520,384,263.
第四步,以上这6个号码对应的元件就是要抽取的对象.
[能力提升综合练]
1.在简单随机抽样中,某一个个体被抽到的可能性()
A.与第几次抽样有关,第一次被抽到的可能性最大
B.与第几次抽样有关,第一次被抽到的可能性最小
C.与第几次抽样无关,每一次被抽到的可能性相等
D.与第几次抽样无关,与抽取几个样本有关
解析:选C在简单随机抽样中,总体中的每个个体在每次抽取时被抽到的可能性相同,故选C.
2.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的分段方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是()
A.①②B.①③C.②③D.③
解析:选C根据随机数表的要求,只有分段时数字位数相同,才能达到随机等可能抽样.
3.下列抽样试验中,用抽签法方便的是()
A.从某工厂生产的3000件产品中抽取600件进行质量检验
B.从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
D.从某厂生产的3000件产品中抽取10件进行质量检验
解析:选BA总体容量较大,样本容量也较大,不适宜用抽签法;B总体容量较小,样本容量也较小,可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.故选B.
4.某班有34位同学,座位号记为01,02,…,34,用如图的随机数表选取5组数作为参加青年志愿者活动的五位同学的座位号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座位号是()
49544354821737932378873520
96438426349164572455068877
04744767217633502583921206
A.23B.09C.02D.16
解析:选D从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字中小于34的分段依次为21,32,09,16,其中第4个为16,故选D.
5.某中学高一年级有1400人,高二年级有1320人,高三年级有1280人,从该中学学生中抽取一个容量为n的样本,每人被抽到的机会为0.02,则n=________.
解析:三个年级的总人数为1400+1320+1280=4000,每人被抽到的机会均为0.02,∴n=4000×0.02=80.
答案:80
6.为了检验某种产品的质量,决定从1001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是________位.
解析:由于所分段码的位数和读数的位数要一致,因此所分段码的位数最少是四位.从0000到1000,或者是从0001到1001等.
答案:四
7.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.
解:第一步:先确定艺人:(1)将30名内地艺人从1到30分段,然后用相同的纸条做成30个号签,在每个号签上写上这些分段,然后放入一个不透明小筒中摇匀,从中依次抽出10个号签,则相应分段的艺人参加演出;(2)运用相同的方法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.
第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.
8.某学生在一次理科竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.选用合适的抽样方法确定这个学生所要回答的三门学科的题的序号(物理题的序号为1~15,化学题的序号为16~35,生物题的序号为36~47).
解:法一(抽签法):
第一步,将试题的分段1~47分别写在纸条上.
第二步,将纸条揉成团,制成号签.
第三步,将物理、化学、生物题的号签分别放在三个不透明的袋子中,充分搅拌.
第四步,从装有物理题的袋子中逐个抽取3个号签,从装有化学题的袋子中逐个抽取3个号签,从装有生物题的袋子中逐个抽取2个号签,并记录所得号签上的分段,这便是所要回答的问题的序号.
法二:(随机数表法):
第一步,将物理题的序号对应改成01,02,…,15,其余两科题的序号不变.
第二步,在教材所附的随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第10行第11个数0,并向右开始读取.
第三步,从数0开始向右读,每次读取两位,若得到的号码不在01~47中,则跳过,前面已经取出的也跳过.从01~15中选3个号码,从16~35中选3个号码,从36~47中选2个号码.依次可得到09,47,27,17,08,02,43,28.
第四步,对应以上号码找出所要回答的问题的序号.物理题的序号为:2,8,9;化学题的序号为:17,27,28;生物题的序号为:43,47.
第2课时程序框图、顺序结构
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P6~P9,回答下列问题.
(1)常见的程序框有哪些?
提示:终端框(起止框),输入、输出框,处理框,判断框.
(2)算法的基本逻辑结构有哪些?
提示:顺序结构、条件结构和循环结构.
2.归纳总结,核心必记
(1)程序框图
程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.
在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.
(2)常见的程序框、流程线及各自表示的功能
图形符号名称功能
终端框(起止框)表示一个算法的起始和结束
输入、输出框表示一个算法输入和输出的信息
处理框(执行框)赋值、计算
判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”
流程线连接程序框
○连接点连接程序框图的两部分
(3)算法的基本逻辑结构
①算法的三种基本逻辑结构
算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的.
②顺序结构
顺序结构是由若干个依次执行的步骤组成的.这是任何一个算法都离不开的基本结构,用程序框图表示为:
[问题思考]
(1)一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束吗?
提示:由程序框图的概念可知一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束.
(2)顺序结构是任何算法都离不开的基本结构吗?
提示:根据算法基本逻辑结构可知顺序结构是任何算法都离不开的基本结构.
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)程序框图的概念:;
(2)常见的程序框、流程线及各自表示的功能:;
(3)算法的三种基本逻辑结构:;
(4)顺序结构的概念及其程序框图的表示:.
问题背景:计算1×2+3×4+5×6+…+99×100.
[思考1]能否设计一个算法,计算这个式子的值.
提示:能.
[思考2]能否采用更简洁的方式表述上述算法过程.
提示:能,利用程序框图.
[思考3]画程序框图时应遵循怎样的规则?
名师指津:(1)使用标准的框图符号.
(2)框图一般按从上到下、从左到右的方向画.
(3)除判断框外,其他程序框图的符号只有一个进入点和一个退出点,判断框是唯一一个具有超过一个退出点的程序框.
(4)在图形符号内描述的语言要非常简练清楚.
(5)流程线不要忘记画箭头,因为它是反映流程执行先后次序的,如果不画出箭头就难以判断各框的执行顺序.
?讲一讲
1.下列关于程序框图中图形符号的理解正确的有()
①任何一个流程图必须有起止框;②输入框只能放在开始框后,输出框只能放在结束框前;③判断框是唯一的具有超过一个退出点的图形符号;④对于一个程序框图来说,判断框内的条件是唯一的.
A.1个B.2个C.3个D.4个
[尝试解答]任何一个程序必须有开始和结束,从而流程图必须有起止框,①正确.输入、输出框可以用在算法中任何需要输入、输出的位置,②错误.③正确.判断框内的条件不是唯一的,④错误.故选B.
答案:B
画程序框图时应注意的问题
(1)画流程线不要忘记画箭头;
(2)由于判断框的退出点在任何情况下都是根据条件去执行其中的一种结果,而另一个则不会被执行,故判断框后的流程线应根据情况注明“是”或“否”.
?练一练
1.下列关于程序框图的说法中正确的个数是()
①用程序框图表示算法直观、形象、容易理解;②程序框图能够清楚地展现算法的逻辑结构,也就是通常所说的“一图胜万言”;③在程序框图中,起止框是任何程序框图中不可少的;④输入和输出框可以在算法中任何需要输入、输出的位置.
A.1B.2C.3D.4
解析:选D由程序框图的定义知,①②③④均正确,故选D.
观察如图所示的内容:
[思考1]顺序结构有哪些结构特征?
名师指津:顺序结构的结构特征:
(1)顺序结构的语句与语句之间、框与框之间按从上到下的顺序执行,不会引起程序步骤的跳转.
(2)顺序结构是最简单的算法结构.
(3)顺序结构只能解决一些简单的问题.
[思考2]顺序结构程序框图的基本特征是什么?
名师指津:顺序结构程序框图的基本特征:
(1)必须有两个起止框,穿插输入、输出框和处理框,没有判断框.
(2)各程序框用流程线依次连接.
(3)处理框按计算机执行顺序沿流程线依次排列.
?讲一讲
2.已知P0(x0,y0)和直线l:Ax+By+C=0,写出求点P0到直线l的距离d的算法,并用程序框图来描述.
[尝试解答]第一步,输入x0,y0,A,B,C;
第二步,计算m=Ax0+By0+C;
第三步,计算n=A2+B2;
第四步,计算d=|m|n;
第五步,输出d.
程序框图如图所示.
应用顺序结构表示算法的步骤:
(1)仔细审题,理清题意,找到解决问题的方法.
(2)梳理解题步骤.
(3)用数学语言描述算法,明确输入量,计算过程,输出量.
(4)用程序框图表示算法过程.
?练一练
2.写出解不等式2x+10的一个算法,并画出程序框图.
解:第一步,将1移到不等式的右边;
第二步,不等式的两端同乘12;
第三步,得到x-12并输出.
程序框图如图所示:
—————————————[课堂归纳感悟提升]———————————————
1.本节课的重点是了解程序框图的含义,理解程序框图的作用,掌握各种程序框和流程线的画法与功能,理解程序框图中的顺序结构,会用顺序结构表示算法.难点是理解程序框图的作用及用顺序结构表示算法.
2.本节课要重点掌握的规律方法
(1)掌握画程序框图的几点注意事项,见讲1;
(2)掌握应用顺序结构表示算法的步骤,见讲2.
3.本节课的易错点
对程序框图的理解有误致错,如讲1.
课下能力提升(二)
[学业水平达标练]
题组1程序框图
1.在程序框图中,一个算法步骤到另一个算法步骤的连接用()
A.连接点B.判断框C.流程线D.处理框
解析:选C流程线的意义是流程进行的方向,一个算法步骤到另一个算法步骤表示的是流程进行的方向,而连接点是当一个框图需要分开来画时,在断开处画上连接点.判断框是根据给定条件进行判断,处理框是赋值、计算、数据处理、结果传送,所以A,B,D都不对.故选C.
2.a表示“处理框”,b表示“输入、输出框”,c表示“起止框”,d表示“判断框”,以下四个图形依次为()
A.abcdB.dcabC.bacdD.cbad
答案:D
3.如果输入n=2,那么执行如下算法的结果是()
第一步,输入n.
第二步,n=n+1.
第三步,n=n+2.
第四步,输出n.
A.输出3B.输出4
C.输出5D.程序出错
答案:C
题组2顺序结构
4.如图所示的程序框图表示的算法意义是()
A.边长为3,4,5的直角三角形面积
B.边长为3,4,5的直角三角形内切圆面积
C.边长为3,4,5的直角三角形外接圆面积
D.以3,4,5为弦的圆面积
解析:选B由直角三角形内切圆半径r=a+b-c2,知选B.
第4题图第5题图
5.(2016东营高一检测)给出如图所示的程序框图:
若输出的结果为2,则①处的执行框内应填的是()
A.x=2B.b=2
C.x=1D.a=5
解析:选C∵b=2,∴2=a-3,即a=5.∴2x+3=5时,得x=1.
6.写出如图所示程序框图的运行结果:S=________.
解析:S=log24+42=18.
答案:18
7.已知半径为r的圆的周长公式为C=2πr,当r=10时,写出计算圆的周长的一个算法,并画出程序框图.
解:算法如下:第一步,令r=10.第二步,计算C=2πr.第三步,输出C.
程序框图如图:
8.已知函数f(x)=x2-3x-2,求f(3)+f(-5)的值,设计一个算法并画出算法的程序框图.
解:自然语言算法如下:
第一步,求f(3)的值.
第二步,求f(-5)的值.
第三步,将前两步的结果相加,存入y.
第四步,输出y.
程序框图:
[能力提升综合练]
1.程序框图符号“”可用于()
A.输出a=10B.赋值a=10
C.判断a=10D.输入a=1
解析:选B图形符号“”是处理框,它的功能是赋值、计算,不是输出、判断和输入,故选B.
2.(2016广州高一检测)如图程序框图的运行结果是()
A.52B.32
C.-32D.-1
解析:选C因为a=2,b=4,所以S=ab-ba=24-42=-32,故选C.
3.(2016广州高一检测)如图是一个算法的程序框图,已知a1=3,输出的b=7,则a2等于()
A.9B.10
C.11D.12
解析:选C由题意知该算法是计算a1+a22的值.
∴3+a22=7,得a2=11,故选C.
4.(2016佛山高一检测)阅读如图所示的程序框图,若输出的结果为6,则①处执行框应填的是()
A.x=1B.x=2
C.b=1D.b=2
解析:选B若b=6,则a=7,∴x3-1=7,∴x=2.
5.根据如图所示的程序框图所表示的算法,输出的结果是________.
解析:该算法的第1步分别将1,2,3赋值给X,Y,Z,第2步使X取Y的值,即X取值变成2,第3步使Y取X的值,即Y的值也是2,第4步让Z取Y的值,即Z取值也是2,从而第5步输出时,Z的值是2.
答案:2
6.计算图甲中空白部分面积的一个程序框图如图乙,则①中应填________.
图甲图乙
解析:图甲空白部分的面积为a2-π16a2,故图乙①中应填S=a2-π16a2.
答案:S=a2-π16a2
7.在如图所示的程序框图中,当输入的x的值为0和4时,输出的值相等,根据该图和各小题的条件回答问题.
(1)该程序框图解决的是一个什么问题?
(2)当输入的x的值为3时,求输出的f(x)的值.
(3)要想使输出的值最大,求输入的x的值.
解:(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.
(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).
因为f(0)=0,f(4)=-16+4m,
所以-16+4m=0,
所以m=4.
所以f(x)=-x2+4x.
则f(3)=-32+4×3=3,
所以当输入的x的值为3时,输出的f(x)的值为3.
(3)因为f(x)=-x2+4x=-(x-2)2+4,
所以当x=2时,f(x)max=4,
所以要想使输出的值最大,输入的x的值应为2.
8.如图是为解决某个问题而绘制的程序框图,仔细分析各框内的内容及图框之间的关系,回答下面的问题:
(1)图框①中x=2的含义是什么?
(2)图框②中y1=ax+b的含义是什么?
(3)图框④中y2=ax+b的含义是什么?
(4)该程序框图解决的是怎样的问题?
(5)当最终输出的结果是y1=3,y2=-2时,求y=f(x)的解析式.
解:(1)图框①中x=2表示把2赋值给变量x.
(2)图框②中y1=ax+b的含义是:该图框在执行①的前提下,即当x=2时,计算ax+b的值,并把这个值赋给y1.
(3)图框④中y2=ax+b的含义是:该图框在执行③的前提下,即当x=-3时,计算ax+b的值,并把这个值赋给y2.
(4)该程序框图解决的是求函数y=ax+b的函数值的问题,其中输入的是自变量x的值,输出的是对应x的函数值.
(5)y1=3,即2a+b=3.⑤
y2=-2,即-3a+b=-2.⑥
由⑤⑥,得a=1,b=1,
所以f(x)=x+1.
第3课时分层抽样
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P60~P61,回答下列问题.
(1)教材探究中你认为应当怎样抽取样本?
提示:利用分层抽样方法抽取样本.
(2)什么情况下适用分层抽样?
提示:当总体中个体之间差异较大时可使用分层抽样抽取样本.
2.归纳总结,核心必记
(1)分层抽样
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法是一种分层抽样.
当总体是由差异明显的几部分组成时,往往选用分层抽样的方法.
(2)分层抽样的步骤
①根据已经掌握的信息,将总体分成互不相交的层;
②根据总体中的个体数N和样本容量n计算抽样比k=nN;
③确定第i层应该抽取的个体数目ni≈Ni×k(Ni为第i层所包含的个体数),使得各ni之和为n;
④在各个层中,按步骤③中确定的数目在各层中随机抽取个体,合在一起得到容量为n的样本.
[问题思考]
(1)分层抽样中的总体有什么特征?
提示:分层抽样中的总体是由差异明显的几部分组成.
(2)有人说系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样的概念,故系统抽样是一种特殊的分层抽样,对吗?
提示:不对.因为分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取时是按事先定好的规则进行的,各层分段有联系,不是独立的,故系统抽样不同于分层抽样.
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)什么是分层抽样?
;
(2)分层抽样的步骤:.
背景:为了解学生视力情况,某校在开学初对400名学生进行视力抽查.其中高一学生1200人,高二有1300人,高三有1500人.
[思考1]学校应怎样抽查这400名学生的视力?
提示:由于高一、高二、高三年级学生的视力情况差别较大,因而可利用分层抽样的方法抽取学生进行视力抽查.
[思考2]分层抽样有什么特点?
名师指津:分层抽样的特点:
①适用于总体由差异明显的几部分组成的情况;
②更充分地反映了总体的情况;
③等可能抽样,每个个体被抽到的可能性都相等.
?讲一讲
1.下列问题中,最适合用分层抽样抽取样本的是()
A.从10名同学中抽取3人参加座谈会
B.红星中学共有学生1600名,其中男生840名,防疫站对此校学生进行身体健康调查,抽取一个容量为200的样本
C.从1000名工人中,抽取100人调查上班途中所用时间
D.从生产流水线上,抽取样本检查产品质量
[尝试解答]A中总体所含个体无差异且个数较少,适合用简单随机抽样;C和D中总体所含个体无差异且个数较多,适合用系统抽样;B中总体所含个体差异明显,适合用分层抽样.
答案:B
分层抽样的适用条件
当已知总体由差异明显的几部分组成时,为保证所抽取的样本具有代表性,应采用分层抽样抽取样本.
?练一练
1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本,记作①;某学校高一年级有18名女排运动员,要从中选出4人调查训练情况,记作②.那么完成上述两项调查应分别采用的抽样方法是()
A.①用简单随机抽样法,②用系统抽样法
B.①用分层抽样法,②用简单随机抽样法
C.①用系统抽样法,②用分层抽样法
D.①用分层抽样法,②用系统抽样法
解析:选B①因家庭收入不同其社会购买力也不同,宜用分层抽样的方法.②因总体个数较少,宜用简单随机抽样法.
[思考]怎样确定分层抽样中各层入样的个体数?
名师指津:在实际操作时,应先计算出抽样比=样本容量总体容量,获得各层入样数的百分比,再按抽样比确定每层需要抽取的个体数:抽样比×该层个体数目=样本容量总体容量×该层个体数目.
?讲一讲
2.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工只能参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%;登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取容量为200的样本.试求:
(1)游泳组中,青年人、中年人、老年人分别所占的比例;
(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.
[尝试解答](1)设登山组人数为x,游泳组中青年人、中年人、老年人所占比例分别为a,b,c,则有x40%+3xb4x=47.5%,x10%+3xc4x=10%,
解得b=50%,c=10%,故a=100%-50%-10%=40%,
即游泳组中,青年人、中年人、老年人各占比例为40%,50%,10%.
(2)游泳组中,抽取的青年人人数为200×34×40%=60;
抽取的中年人人数为200×34×50%=75;
抽取的老年人人数为200×34×10%=15.
即游泳组中,青年人、中年人、老年人分别应抽取的人数为60,75,15.
分层抽样的步骤
?练一练
2.一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.
解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.
具体过程如下:
(1)将3万人分为5层,其中一个乡镇为一层.
(2)按照样本容量的比例求得各乡镇应抽取的人数分别为60人,40人,100人,40人,60人.
(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.
(4)将300人合到一起,即得到一个样本.
?讲一讲
3.①教育局督学组到校检查工作,临时需在每班各抽调两人参加座谈;②某班数学期中考试有14人在120分以上,35人在90~119分,7人不及格,现从中抽出8人研讨进一步改进教与学;③某班春节聚会,要产生两位“幸运者”.就这三件事,合适的抽样方法分别为()
A.分层抽样,分层抽样,简单随机抽样
B.系统抽样,系统抽样,简单随机抽样
C.分层抽样,简单随机抽样,简单随机抽样
D.系统抽样,分层抽样,简单随机抽样
[思路点拨]根据三种抽样方法的特征、适用范围判断.
[尝试解答]①每班各抽两人需用系统抽样.②由于学生分成了差异比较大的几层,应用分层抽样.③由于总体与样本容量较小,应用简单随机抽样.故选D.
答案:D
三种抽样方法的适用范围
三种抽样方法均为不放回、逐个、等可能抽样.当总体中的个体较少时,常用简单随机抽样;当总体中的个体较多,样本容量较大时,常用系统抽样,但在第一段内抽取个体时,用简单随机抽样;当总体是由差异明显的几部分组成时,采用分层抽样,但在各层内抽取个体时,可用简单随机抽样或系统抽样.
?练一练
3.某学院A、B、C三个专业共有1200名学生,其中A专业有380名学生,B专业有420名学生,为调查这些学生勤工俭学的情况,要从中抽取一个容量为120的样本,记为①;某中学高二年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②;从某厂生产的802辆轿车中抽取8辆测试某项性能,记作③.则完成上述3项应分别采用的抽样方法是()
A.①用简单随机抽样,②用系统抽样,③用分层抽样
B.①用分层抽样,②用简单随机抽样,③用系统抽样
C.①用简单随机抽样,②用分层抽样,③用系统抽样
D.①用分层抽样,②用系统抽样,③用简单随机抽样
解析:选B对于①,总体由差异明显的三部分组成,应采用分层抽样.对于②,总体中的个体数较少,而且所调查内容对12名调查对象是平等的,应用简单随机抽样.对于③,总体中的个体数较多,应用系统抽样.故选B.
——————————————[课堂归纳感悟提升]———————————————
1.本节课的重点是记住分层抽样的特点和步骤,难点是会用分层抽样从总体中抽取样本.
2.本节课要牢记分层抽样中的两个比例关系:
(1)样本容量n总体的个数N=各层抽取的个体数该层的个体数;
(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.
3.要掌握分层抽样的两类问题:
(1)根据分层抽样的特征判断分层抽样,见讲1.
(2)根据分层抽样的步骤设计分层抽样,特别是当总体容量不能被样本容量整除时注意剔除个体.
4.本节课的易错点有:
(1)概念理解错误致错,如讲3;
(2)忽视每个个体被抽到的机会相等而致误,如讲2.
课下能力提升(十一)
[学业水平达标练]
题组1分层抽样的概念
1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()
A.抽签法B.随机数法
C.系统抽样法D.分层抽样法
解析:选D由于是调查男、女学生在学习兴趣与业余爱好方面是否存在差异,因此用分层抽样方法.
2.下列问题中,最适合用分层抽样方法抽样的是()
A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈
B.从10台冰箱中抽出3台进行质量检查
C.某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田480亩估计全乡农田平均产量
D.从50个零件中抽取5个做质量检验
解析:选CA的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.
3.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是()
A.简单随机抽样
B.系统抽样
C.分层抽样
D.先从老年人中剔除1人,再用分层抽样
解析:选D总体总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整数解.故考虑先剔除1人,抽取比变为36∶162=2∶9,则中年人取54×29=12(人),青年人取81×29=18(人),从老年人中剔除1人,老年人取27×29=6(人),组成容量为36的样本,故选D.
4.某班有40名男生,20名女生,已知男女身高有明显不同,现欲调查平均身高,准备抽取130,采用分层抽样方法,抽取男生1名,女生1名,你认为这种做法是否妥当?如果让你来调查,你准备怎样做?
解:这种做法不妥当.原因:取样比例数130过小,很难准确反映总体情况,况且男、女身高差异较大,抽取人数相同,也不合理.
考虑到本题的情况,可以采用分层抽样,可抽取15.
男生抽取40×15=8(名),女生抽取20×15=4(名),各自用抽签法或随机数法抽取组成样本.
题组2分层抽样设计
5.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为()
A.5,10,15B.3,9,18
C.3,10,17D.5,9,16
解析:选B高级、中级、初级职称的人数所占的比例分别为15150=10%,45150=30%,90150=60%,则所抽取的高级、中级、初级职称的人数分别为10%×30=3,30%×30=9,60%×30=18.
6.某公司生产三种型号的轿车,产量分别是1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取________辆、________辆、________辆.
解析:三种型号的轿车共9200辆,抽取样本为46辆,则按469200=1200的比例抽样,所以依次应抽取1200×1200=6(辆),6000×1200=30(辆),2000×1200=10(辆).
答案:63010
7.某市化工厂三个车间共有工人1000名,各车间男、女工人数如下表:
第一车间第二车间第三车间
女工173100y
男工177xz
已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0.15.
(1)求x的值;
(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?
解:(1)由x1000=0.15,得x=150.
(2)∵第一车间的工人数是173+177=350,第二车间的工人数是100+150=250,
∴第三车间的工人数是1000-350-250=400.
设应从第三车间抽取m名工人,则由m400=501000,得m=20.
∴应在第三车间抽取20名工人.
8.某单位有技师18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n的样本,如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中剔除1个个体,求样本容量n.
解:因为采用系统抽样和分层抽样时不用剔除个体,所以n是36的约数,且36n是6的约数,即n又是6的倍数,n=6,12,18或36,又n+1是35的约数,故n只能是4,6,34,综合得n=6,即样本容量为6.
题组3抽样方法的综合应用
9.为了考察某校的教学水平,抽查了该学校高三年级部分学生的本年度考试成绩.为了全面地反映实际情况,采取以下三种考察方式(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).
①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;
②每个班都抽取1人,共计14人,考察这14个学生的成绩;
③把该校高三年级的学生按成绩分成优秀,良好,普通三个级别,从中抽取100名学生进行考查(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).
根据上面的叙述,试回答下列问题:
(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?
(2)上面三种抽取方式各自采用何种抽取样本的方法?
(3)试分别写出上面三种抽取方法各自抽取样本的步骤.
解:(1)这三种抽取方式中,其总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第二种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第三种抽取方式中样本为所抽取的100名学生本年度的考试成绩,样本容量为100.
(2)上面三种抽取方式中,第一种方式采用的方法是简单随机抽样法;第二种方式采用的方法是系统抽样法和简单随机抽样法;第三种方式采用的方法是分层抽样法和简单随机抽样法.
(3)第一种方式抽样的步骤如下:
第一步:在这14个班中用抽签法任意抽取一个班;
第二步:从这个班中按学号用随机数表法或抽签法抽取14名学生,考察其考试成绩.
第二种方式抽样的步骤如下:
第一步:在第一个班中,用简单随机抽样法任意抽取某一学生,记其学号为x;
第二步:在其余的13个班中,选取学号为x+50k(1≤k≤12,k∈Z)的学生,共计14人.
第三种方式抽样的步骤如下:
第一步:分层,因为若按成绩分,其中优秀生共105人,良好生共420人,普通生共175人,所以在抽取样本中,应该把全体学生分成三个层次;
第二步:确定各个层次抽取的人数,因为样本容量与总体数的比为100∶700=1∶7,所以在每个层抽取的个体数依次为1057,4207,1757,即15,60,25;
第三步:按层分别抽取,在优秀生中用简单随机抽样法抽取15人,在良好生中用简单随机抽样法抽取60人,在普通生中用简单随机抽样法抽取25人.
第四步:将所抽取的个体组合在一起构成样本.
[能力提升综合练]
1.(2014湖南高考)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1、p2、p3,则()
A.p1=p2p3
B.p2=p3p1
C.p1=p3p2
D.p1=p2=p3
解析:选D根据抽样方法的概念可知,简单随机抽样、系统抽样和分层抽样三种抽样方法,每个个体被抽到的概率都是nN,故p1=p2=p3,故选D.
2.(2015北京高考)某校老年、中年和青年教师的人数如表所示,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()
类别人数
老年教师900
中年教师1800
青年教师1600
合计4300
A.90B.100C.180D.300
解析:选C设该样本中的老年教师人数为x,由题意及分层抽样的特点得x900=3201600,故x=180.
3.(2014重庆高考)某中学有高中生3500人,初中生1500人.为了了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()
A.100B.150C.200D.250
解析:选A样本抽取比例为703500=150,该校总人数为1500+3500=5000,则n5000=150,故n=100,选A.
4.(2016无锡质检)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.
解析:设应从高二年级抽取x名学生,则x∶50=3∶10.解得x=15.
答案:15
5.(2014湖北高考)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.
解析:分层抽样中各层的抽样比相同.样本中甲设备生产的有50件,则乙设备生产的有30件.在4800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1800件.
答案:1800
6.为了对某课题进行讨论研究,用分层抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
高校相关人数抽取人数
Ax1
B36y
C543
(1)求x,y;
(2)若从高校B相关的人中选2人进行专题发言,应采用什么抽样方法,请写出合理的抽样过程.
解:(1)分层抽样是按各层相关人数和抽取人数的比例进行的,所以有:354=1xx=18,354=y36y=2,故x=18,y=2.
(2)总体容量和样本容量较小,所以应采用抽签法,过程如下:
第一步将36人随机分段,号码为1,2,3,…,36;
第二步将号码分别写在相同的纸片上,揉成团,制成号签;
第三步将号签放入一个不透明的容器中,充分搅匀,依次抽取2个号码,并记录上面的分段;
第四步把与号码相对应的人抽出,即可得到所要的样本.
第一章算法初步
1.1.1算法的概念
【学习目标】
1.了解算法的含义,体会算法的思想;
2.能够用自然语言叙述算法,知道正确的算法应满足的要求;
3.会写出数值性计算的算法问题和解线性方程(组)的算法;
【新知自学】
问题1.你知道在家里烧开水的基本过程吗?
问题2.两个大人和两个小孩一起渡河,渡口只有一条小船,每次最多能渡1个大人或两个小孩,他们四人都会划船,但都不会游泳。试问他们怎样渡过河去?
请写出一个渡河方案。
问题3.猜物品的价格游戏:
现在一商品,价格在0~8000元之间,解决这一问题有什么策略?
新知梳理:
1.算法的概念:
数学中的算法通常是指
;
现代算法通常是指
.
2.算法与计算机
计算机解决任何问题都要依赖于,只有将解决问题的过程分解为若干个,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能解决问题.
3.算法的特点:
(1)确定性;(2)有限性;(3)普遍性;(4)不唯一性.
对点练习:1.下列关于算法的描述正确的是()
A.算法与求解一个问题的方法相同
B.算法只能解决一个问题,不能重复使用
C.算法过程要一步一步执行,每步执行的操作必须确切
D.有的算法执行完以后,可能没有结果.
2.下列可以看成算法的是()
A.学习数学时,课前预习,课上认真听讲并记好笔记,课下先复习再作业,之后做适当的练习题
B.今天餐厅的饭真好吃
C.这道数学题难做
D.方程无实数根
3.下列各式的值不能用算法求解的是()
A.
B.
C.
D.
【合作探究】
典例精析
例题1.给出求1+2+3+4+5的一个算法.
变式练习:1.给出求1+2+3+…+100的一个算法.
例题2.写出解方程的一个算法.
变式练习:2.写出解方程组的一个算法.
例题3.设计一个问题2的算法.
变式练习:3.一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?试写出一个算法.
【课堂小结】
【当堂达标】
1.下列关于算法的叙述中,不正确的是()
A.计算机解决任何问题都需要算法
B.只有将要解决的问题分解为若干步骤,并且用计算机能够识别的语言描述出来,计算机才能解决问题
C.算法执行后可以不产生确定的结果
D.解决同一个问题的算法并不唯一,而且每一个算法都要一步一步执行,每一步都要产生确切的结果
2.下列叙述能称为算法的个数为()
①植树需要运苗、挖坑、栽苗、浇水这些步骤.
②顺序进行下列运算:,,,.
③从枣庄乘火车到徐州,从徐州乘飞机到广州.
④求所有能被3整除的正数,即3,6,9,12,….
3.求的值的一个算法是:
第一步:求得到结果3;
第二步:将第一步所得结果3乘5,得到结果15;
第三步:;
第四步:再将105乘9得到945;
第五步:再将945乘11,得到10395,即为最后结果.
【课时作业】
1.下列关于算法的说法,正确的个数是()
①求解某一问题的算法是唯一的;②算法必须在有限步骤操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊.
A.1B.2C.3D.0
2.关于方程的求根问题,下列说法正确的是()
A.只能设计一种算法
B.可以设计两种算法
C.不能设计算法
D.不能根据解题过程设计算法
3.早上从起床到出门需要洗脸刷牙(5分钟)、刷水壶(2分钟)、烧水(8分钟)、泡面(3分钟)、吃饭(10分钟)、听广播(8分钟)几个步骤.从下列选项中选出最好的一种算法.
A.第一步洗脸刷牙、第二步刷水壶、第三步烧水、第四步泡面、第五步吃饭、第六步听广播
B.第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭、第五步听广播
C.第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭同时听广播
D.第一步吃饭同时听广播、第二步泡面、第三步烧水同时洗脸刷牙、第四步刷水壶
4.给出下列算法:
第一步,输入的值.
第二步,当时,计算;否则执行下一步.
第三步,计算.
第四步,输出.
当输入时,输出=.
5.求二次函数的最值的一个算法如下,请将其补充完整:
第一步,计算.
第二步,.
第三步,.
6.一般一元二次方程组
(其中)的求解步骤(参照课本填空)
第一步,
第二步,
第三步,
第四步,
第五步,.
7.写出判断整数是否为质数的算法.
8.已知直角坐标系中的两点,,写出求直线的方程的一个算法.
9.写出求中最小值的算法.
文章来源:http://m.jab88.com/j/37810.html
更多