88教案网

苏教版高二数学随机事件与概率知识点

一名爱岗敬业的教师要充分考虑学生的理解性,教师要准备好教案为之后的教学做准备。教案可以让学生们能够在上课时充分理解所教内容,减轻教师们在教学时的教学压力。优秀有创意的教案要怎样写呢?下面是小编为大家整理的“苏教版高二数学随机事件与概率知识点”,但愿对您的学习工作带来帮助。

苏教版高二数学随机事件与概率知识点

一、随机事件

主要掌握好(三四五)

(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。

二、概率定义

(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;

(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;

(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

三、概率性质与公式jAb88.Com

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.

(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.

相关推荐

高二数学随机事件的概率36


俗话说,凡事预则立,不预则废。教师要准备好教案,这是教师的任务之一。教案可以让学生更好的吸收课堂上所讲的知识点,让教师能够快速的解决各种教学问题。你知道如何去写好一份优秀的教案呢?下面是小编为大家整理的“高二数学随机事件的概率36”,欢迎阅读,希望您能阅读并收藏。

第1节随机事件的概率
1.有下列事件:
①连续掷一枚硬币两次,两次都出现正面朝上;
②异性电荷相互吸引;
③在标准大气压下,水在1℃结冰;
④买了一注彩票就得了特等奖.
其中是随机事件的有()
A.①②B.①④C.①③④D.②④
2.(创新题)下列事件中,随机事件的个数为()
①方程ax+b=0有一个实数根;
②2009年5月15日,去新加坡旅游的人感染甲型H1N1;
③2012年伦敦奥运会中国拿金牌数居第一名;
④常温下,焊锡熔化;
⑤若a>b,那么ac>bc.
A.2B.3C.4D.5
3.关于随机事件的频率与概率,以下说法正确的是()
A.频率是确定的,概率是随机的
B.频率是随机的,概率也是随机的
C.概率是确定的,概率是频率的近似值
D.概率是确定的,频率是概率的近似值
4.下列事件中,随机事件是()
A.向区间(0,1)内投点,点落在(0,1)区间
B.向区间(0,1)内投点,点落在(1,2)区间
C.向区间(0,2)内投点,点落在(0,1)区间
D.向区间(0,2)内投点,点落在(-1,0)区间
5.事件A的频率满足()
A.=0B.=1C.0<<1D.0≤≤1
6.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为.
7.同时掷两枚骰子,点数之和在2~12间的事件是事件,点数之和为12的事件是事件,点数之和小于2或大于12的事件是事件;将一枚骰子连掷两次,点数之差为5的事件是事件,点数之差为6的事件是事件.
8.指出下列随机事件的条件及结果.
(1)某人射击8次,恰有2次中靶;
(2)某人购买福利彩票10注,有2注中得三等奖,其余8注未中奖.

9.(1)某厂一批产品的次品率为,问任意抽取10件产品是否一定会发现一件次品?为什么?
(2)10件产品中次品率为,问“这10件产品中必有一件次品”的说法是否正确?为什么?

10.(改编题)用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:
直径个数直径个数
d∈(6.88,6.89]1d∈(6.93,6.94]26
d∈(6.89,6.90]2d∈(6.94,6.95]15
d∈(6.90,6.91]10d∈(6.95,6.96]8
d∈(6.91,6.92]17d∈(6.96,6.97]2
d∈(6.92,6.93]17d∈(6.97,6.98]2
直径个数从这100个螺母中,任意抽取一个,求事件A(d∈(6.92,6.94]),事件B(d∈(6.90,6.96]),事件C(d6.96)的频率.

11.某射手在同一条件下进行射击,结果如下表所示:
射击次数n1020501002005001000
击中靶心的次数m8194490178455906
击中靶心的频率
(1)计算表中击中靶心的各个频率;
(2)这个运动员击中靶心的概率约是多少?

12.(创新题)某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10个智力题,每个题10分,然后作了统计,下表是统计结果.
贫困地区:
参加测试的人数3050100200500800
得60分以上的人数162752104256402
得60分以上的频率
发达地区:
参加测试的人数3050100200500800
得60分以上的人数172956111276440
得60分以上的频率
(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率;
(2)求两个地区参加测试的儿童得60分以上的概率;
(3)分析贫富差距为什么会带来人的智力的差别.

答案
1.B2.C3.D4.C5.D6.0.037.必然随机不可能随机不可能
8.(1)条件:某人射击8次;结果:恰有2次中靶.
(2)条件:某人购买福利彩票10注;结果:2注中得三等奖,其余8注未中奖.
9.(1)不一定,因为此处次品率即指概率,是随机事件的结果,而不是确定性事件的结果.
(2)正确,因为这是确定事件.
10.设n=100,A、B、C发生的次数分别为
mA=17+26=43,mB=10+17+17+26+15+8=93,
mC=2+2=4.
事件A发生的频率为=0.43,
事件B发生的频率为=0.93,
事件C发生的频率为=0.04.
11.(1)0.8,0.95,0.88,0.9,0.89,0.91,0.906(2)0.9
12.(1)贫困地区:
参加测试的人数3050100200500800
得60分以上的人数162752104256402
得60分以上的频率0.5330.5400.5200.5200.5120.503
发达地区:
参加测试的人数3050100200500800
得60分以上的人数172956111276440
得60分以上的频率0.5670.5800.5600.5550.5520.550
(2)贫困地区和发达地区参加测试的儿童得60分以上的频率逐渐趋于0.5和0.55,故概率分别为0.5和0.55.
(3)经济上的贫困导致贫困地区生活水平落后,儿童的健康和发育会受到一定的影响;另外经济落后也会使教育事业发展落后,导致智力出现差别.

随机事件的概率


人教版高中数学必修系列:11.1随机事件的概率(备课资料)
一、参考例题
[例1]先后抛掷3枚均匀的一分,二分,五分硬币.
(1)一共可能出现多少种不同的结果?
(2)出现“2枚正面,1枚反面”的结果有多少种?
(3)出现“2枚正面,1枚反面”的概率是多少?
分析:(1)由于对先后抛掷每枚硬币而言,都有出现正面和反面的两种情况,所以共可能出现的结果有2×2×2=8种.
(2)出现“2枚正面,1枚反面”的情况可从(1)中8种情况列出.
(3)因为每枚硬币是均匀的,所以(1)中的每种结果的出现都是等可能性的.
解:(1)∵抛掷一分硬币时,有出现正面和反面2种情况,
抛掷二分硬币时,有出现正面和反面2种情况,
抛掷五分硬币时,有出现正面和反面2种情况,
∴共可能出现的结果有2×2×2=8种.
故一分、二分、五分的顺序可能出现的结果为:
(正,正,正),(正,正,反),
(正,反,正),(正,反,反),
(反,正,正),(反,正,反),
(反,反,正),(反,反,反).
(2)出现“2枚正面,1枚反面”的结果有3个,即(正,正,反),(正,反,正),(反,正,正).
(3)∵每种结果出现的可能性都相等,
∴事件A“2枚正面,1枚反面”的概率为P(A)=.
[例2]甲、乙、丙、丁四人中选3名代表,写出所有的基本事件,并求甲被选上的概率.
分析:这里从甲、乙、丙、丁中选3名代表就是从4个不同元素中选3个元素的一个组合,也就是一个基本事件.
解:所有的基本事件是:甲乙丙,甲乙丁,甲丙丁,乙丙丁选为代表.
∵每种选为代表的结果都是等可能性的,甲被选上的事件个数m=3,
∴甲被选上的概率为.
[例3]袋中装有大小相同标号不同的白球4个,黑球5个,从中任取3个球.
(1)共有多少种不同结果?
(2)取出的3球中有2个白球,1个黑球的结果有几个?
(3)取出的3球中至少有2个白球的结果有几个?
(4)计算第(2)、(3)小题表示的事件的概率.
分析:(1)设从4个白球,5个黑球中,任取3个的所有结果组成的集合为I,所求结果种数n就是I中元素的个数.
(2)设事件A:取出的3球,2个是白球,1个是黑球,所以事件A中的结果组成的集合是I的子集.
(3)设事件B:取出的3球至少有2个白球,所以B的结果有两类:一类是2个白球,1个黑球;另一类是3个球全白.
(4)由于球的大小相同,故任意3个球被取到的可能性都相等.故由P(A)=,P(B)=,可求事件A、B发生的概率.
解:(1)设从4个白球,5个黑球中任取3个的所有结果组成的集合为I,
∴card(I)==84.
∴共有84个不同结果.
(2)设事件A:“取出3球中有2个白球,1个黑球”的所有结果组成的集合为A,
∴card(A)==30.
∴共有30种不同的结果.
(3)设事件B:“取出3球中至少有2个白球”的所有结果组成的集合为B,
∴card(B)=+=34.
∴共有34种不同的结果.
(4)∵从4个白球,5个黑球中,任取3个球的所有结果的出现可能性都相同,
∴事件A发生的概率为,事件B发生的概率为.
二、参考练习
1.选择题
(1)如果一次试验中所有可能出现的结果有n个,而且所有结果出现的可能性相等,那么每一个基本事件的概率
A.都是1B.都是
C.都是D.不一定
答案:B
(2)抛掷一个均匀的正方体玩具(它的每一面上分别标有数字1,2,3,4,5,6),它落地时向上的数都是3的概率是
A.B.1
C.D.
答案:D
(3)把十张卡片分别写上0,1,2,3,4,5,6,7,8,9后,任意搅乱放入一纸箱内,从中任取一张,则所抽取的卡片上数字不小于3的概率是
A.B.
C.D.
答案:D
(4)从6名同学中,选出4人参加数学竞赛,其中甲被选中的概率为
A.B.
C.D.
答案:D
(5)甲袋内装有大小相等的8个红球和4个白球,乙袋内装有大小相等的9个红球和3个白球,从2个袋内各摸出一个球,那么等于
A.2个球都是白球的概率
B.2个球中恰好有一个是白球的概率
C.2个球都不是白球的概率
D.2个球都是白球的概率
答案:B
(6)某小组有成员3人,每人在一个星期(7天)中参加一天劳动,如果劳动日可任意安排,则3人在不同的3天参加劳动的概率为
A.B.
C.D.
答案:C
2.填空题
(1)随机事件A的概率P(A)应满足________.
答案:0≤P(A)≤1
(2)一个口袋内装有大小相同标号不同的2个白球,2个黑球,从中任取一个球,共有________种等可能的结果.
答案:4
(3)在50瓶饮料中,有3瓶已经过期,从中任取一瓶,取得已过期的饮料的概率是________.
答案:
(4)一年以365天计,甲、乙、丙三人中恰有两人在同天过生日的概率是________.
解析:P(A)=.
答案:
(5)有6间客房准备安排3名旅游者居住,每人可以住进任一房间,且住进各房间的可能性相等,则事件A:“指定的3个房间各住1人”的概率P(A)=________;事件B:“6间房中恰有3间各住1人”的概率P(B)=________;事件C:“6间房中指定的一间住2人”的概率P(C)=________.

解析:P(A)=;
P(B)=;
P(C)=.
答案:
3.有50张卡片(从1号到50号),从中任取一张,计算:
(1)所取卡片的号数是偶数的情况有多少种?
(2)所取卡片的号数是偶数的概率是多少?
解:(1)所取卡片的号数是偶数的情况有25种.
(2)所取卡片的号数是偶数的概率为P==.
●备课资料?
一、参考例题
[例1]一栋楼房有六个单元,李明和王强住在此楼内,试求他们住在此楼的同一单元的概率.
分析:因为李明住在此楼的情况有6种,王强住在此楼的情况有6种,所以他们住在此楼的住法结果有6×6=36个,且每种结果的出现的可能性相等.而事件A:“李明和王强住在同一单元”含有6个结果.
解:∵李明住在这栋楼的情况有6种,王强住在这栋楼的情况有6种,
∴他们同住在这栋楼的情况共有6×6=36种.
由于每种情况的出现的可能性都相等,
设事件A:“李明和王强住在此楼的同一单元内”,而事件A所含的结果有6种,
∴P(A)=.
∴李明和王强住在此楼的同一单元的概率为.
评述:也可用“捆绑法”,将李明和王强视为1人,则住在此楼的情况有6种.
[例2]在一次口试中,要从10道题中随机选出3道题进行回答,答对了其中2道题就获得及格.某考生会回答10道题中的8道,那么这名考生获得及格的概率是多少?
分析:因为从10道题中随机选出3道题,共有种可能的结果,而每种结果出现的可能性都相等,故本题属于求等可能性事件的概率问题.
解:∵从10题中随机选出3题,共有等可能性的结果个.
设事件A:“这名考生获得及格”,则事件A含的结果有两类,一类是选出的3道正是他能回答的3题,共有种选法;另一类是选出的3题中有2题会答,一题不会回答,共有种选法,所以事件A包含的结果有+个.
∴P(A)=.
∴这名考生获得及格的概率为.
[例3]7名同学站成一排,计算:
(1)甲不站正中间的概率;
(2)甲、乙两人正好相邻的概率;
(3)甲、乙两人不相邻的概率.
分析:因为7人站成一排,共有种不同的站法,这些结果出现的可能性都相等.
解:∵7人站成一排,共有种等可能性的结果,
设事件A:“甲不站在正中间”;
事件B:“甲、乙两人正好相邻”;
事件C:“甲、乙两人正好不相邻”;
事件A包含的结果有6个;
事件B包含的结果有个;
事件C包含的结果有个.
(1)甲不站在正中间的概率P(A)=.
(2)甲、乙两人相邻的概率P(B)=.
(3)甲、乙两人不相邻的概率P(C)=.
[例4]从1,2,3,…,9这九个数字中不重复地随机取3个组成三位数,求此数大于456的概率.
分析:因为从1,2,3,…,9这九个数字中组成无重复数字的三位数共有=504个,且每个结果的出现的可能性都相等,故本题属求等可能性事件的概率问题.由于比456大的三位数有三类:(1)百位数大于4,有=280个;(2)百位数为4,十位数大于5,有=28个;(3)百位数为4,十位数为5,个位数大于6有2个,因此,事件“无重复数字且比456大的三位数”包含的结果有280+28+3=311个.
解:∵由数字1,2,3,…,9九个数字组成无重复数字的三位数共有=504个,而每种结果的出现的可能性都相等.其中,事件A:“比456大的三位数”包含的结果有311个,
∴事件A的概率P(A)=.
∴所求的概率为.
[例5]某班有学生36人,现从中选出2人去完成一项任务,设每人当选的可能性都相等,若选出的2人性别相同的概率是,求该班男生、女生的人数.
分析:由于每人当选的可能性都相等,且从全班36人中选出2人去完成一项任务的选法有种,故这些当选的所有结果出现的可能性都相等.
解:设该班男生有n人,则女生(36-n)人.(n∈N*,n≤36)
∵从全班的36人中,选出2人,共有种不同的结果,每个结果出现的可能性都相等.其中,事件A:“选出的2人性别相同”含有的结果有(+)个,
∴P(A)=.
∴n2-36n+315=0.
∴n=15或n=21.
∴该班有男生15人,女生21人,或男生21人,女生15人.
评述:深刻理解等可能性事件概率的定义,能够正确运用排列、组合的知识对等可能性事件进行分析、计算.
二、参考练习
1.选择题
(1)十个人站成一排,其中甲、乙、丙三人彼此不相邻的概率为
A.B.
C.D.
答案:D
(2)将一枚均匀硬币先后抛两次,恰好出现一次正面的概率是
A.B.
C.D.
答案:A
(3)从数字0,1,2,3,4,5这六个数字中任取三个组成没有重复数字的三位数,则这个三位数是奇数的概率等于
A.B.
C.D.
答案:B
(4)盒中有100个铁钉,其中有90个是合格的,10个是不合格的,从中任意抽取10个,其中没有一个不合格铁钉的概率为
A.0.9B.
C.0.1D.
答案:D
(5)将一枚硬币先后抛两次,至少出现一次正面的概率是
A.B.
C.D.1
答案:C
2.填空题
(1)从甲地到乙地有A1,A2,A3,A4共4条路线,从乙地到丙地有B1,B2,B3共3条路线,其中A1B1是甲地到丙地的最短路线,某人任选了一条从甲地到丙地的路线,它正好是最短路线的概率为________.
答案:
(2)袋内装有大小相同的4个白球和3个黑球,从中任意摸出3个球,其中只有一个白球的概率为________.
答案:
(3)有数学、物理、化学、语文、外语五本课本,从中任取一本,取到的课本是理科课本的概率为________.
答案:
(4)从1,2,3,…,10这10个数中任意取出4个数作为一组,那么这一组数的和为奇数的概率是________.
答案:
(5)一对酷爱运动的年轻夫妇,让刚好十个月大的婴儿把“0,0,2,8,北,京”六张卡片排成一行,若婴儿能使得排成的顺序为“2008北京”或“北京2008”,则受到父母的夸奖,那么婴儿受到夸奖的概率为________.
解:由题意,知婴儿受到夸奖的概率为P=.
(6)在2004年8月18日雅典奥运会上,两名中国运动员和4名外国运动员进入双多向飞蝶射击决赛.若每名运动员夺得奖牌(金、银、铜牌)的概率相等,则中国队在此项比赛中夺得奖牌的概率为________.
解:由题意可知中国队在此项比赛中不获得奖牌的概率为P1=.
则中国队获得奖牌的概率为P=1-P1=1-.
3.解答题
(1)在10枝铅笔中,有8枝正品和2枝次品,从中任取2枝,求:
①恰好都取到正品的概率;
②取到1枝正品1枝次品的概率;
③取到2枝都是次品的概率.
解:①.
②.
③.
(2)某球队有10人,分别穿着从1号到10号的球衣,从中任选3人记录球衣的号码,求:
①最小的号码为5的概率;
②最大的号码为5的概率.
解:①.
②.
(3)一车间某工段有男工9人,女工5人,现要从中选3个职工代表,求3个代表中至少有一名女工的概率.
解:.
(4)从-3,-2,-1,0,5,6,7这七个数中任取两数相乘而得到积,求:
①积为零的概率;
②积为负数的概率;
③积为正数的概率.
解:①;
②;
③.
(5)甲袋内有m个白球,n个黑球;乙袋内有n个白球,m个黑球,从两个袋子内各取一球.求:
①取出的两个球都是黑球的概率;
②取出的两个球黑白各一个的概率;
③取出的两个球至少一个黑球的概率.
解:①;
②;
③.
●备课资料?
一、参考例题
[例1]一个均匀的正方体玩具,各个面上分别标以数1,2,3,4,5,6.求:
(1)将这个玩具先后抛掷2次,朝上的一面数之和是6的概率.
(2)将这个玩具先后抛掷2次,朝上的一面数之和小于5的概率.
分析:以(x1,x2)表示先后抛掷两次玩具朝上的面的数,x1是第一次朝上的面的数,x2是第二次朝上的面的数,由于x1取值有6种情况,x2取值也有6种情况,因此先后两次抛掷玩具所得的朝上面数共有6×6=36种结果,且每一结果的出现都是等可能性的.
解:设(x1,x2)表示先后两次抛掷玩具后所得的朝上的面的数,其中x1是第一次抛掷玩具所得的朝上的面的数,x2是第二次抛掷玩具所得的朝上的面的数.
∵先后两次抛掷这个玩具所得的朝上的面的数共有6×6=36种结果,且每一结果的出现的可能性都相等.
(1)设事件A为“2次朝上的面的数之和为6”,
∵事件A含有如下结果:
(1,5)(2,4),(3,3),(4,2),(5,1)共5个,
∴P(A)=.
(2)设事件B为“2次朝上的面上的数之和小于5”,
∵事件B含有如下结果:
(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个,
∴P(B)=.
[例2]袋中有硬币10枚,其中2枚是伍分的,3枚是贰分的,5枚是壹分的.现从中任取5枚,求钱数不超过壹角的概率.
分析:由于从10枚硬币中,任取5枚所得的钱数结果出现的可能性都相等.
记事件A:“取出的5枚对应的钱数不超过壹角”,
∴事件A含有结果有:
①1枚伍分,1枚贰分,3枚壹分共种取法.
②1枚伍分,4枚壹分,共种取法.
③3枚贰分,2枚壹分,共种取法.
④2枚贰分,3枚壹分,共种取法.
⑤1枚贰分,4枚壹分,共种取法.
⑥5枚壹分共C种取法.
∴P(A)==.
[例3]把10个足球队平均分成两组进行比赛,求两支最强队被分在:(1)不同组的概率;(2)同一组的概率.
分析:由于把10支球队平均分成两组,共有种不同的分法,而每种分法出现的结果的可能性都相等.
(1)记事件A:“最强两队被分在不同组”,这时事件A含有种结果.
∴P(A)=.
(2)记事件B:“最强的两队被分在同一组”,这时事件B含有种.
∴P(B)=.
[例4]已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8}在平面直角坐标系中,点(x,y)的坐标x∈A,
y∈A,且x≠y,计算:
(1)点(x,y)不在x轴上的概率;
(2)点(x,y)正好在第二象限的概率.
分析:由于点(x,y)中,x、y∈A,且x≠y,所以这样的点共有个,且每一个结果出现的可能性都相等.
解:∵x∈A,y∈A,x≠y时,点(x,y)共有个,且每一个结果出现的可能性都相等,
(1)设事件A为“点(x,y)不在x轴上”,
∴事件A含有的结果有个.
∴P(A)=.
(2)设事件B为“点(x,y)正好在第二象限”,
∴x<0,y>0.
∴事件B含有个结果.
∴P(B)=.
[例5]从一副扑克牌(共52张)里,任意取4张,求:
(1)抽出的是J、Q、K、A的概率;
(2)抽出的是4张同花牌的概率.
解:∵从一副扑克牌(52张)里,任意抽取4张,共有种抽法.每一种抽法抽出的结果出现的可能性都相等,
(1)设事件A:“抽出的4张是J,Q,K,A”,
∵抽取的是J的情况有种,
抽取的是Q的情况有种,
抽取的是K的情况有种,
抽取的是A的情况有种,
∴事件A含有的结果共有44个.
∴P(A)==.
(2)设事件B:“抽出的4张是同花牌”,
∴事件B中含个结果.
∴P(B)=.
二、参考练习
1.选择题
(1)某一部四册的小说,任意排放在书架的同一层上,则各册自左到右或自右到左的顺序恰好为第1,2,3,4册的概率等于
A.B.
C.D.
答案:C
(2)在100件产品中,合格品有96件,次品有4件,从这100件产品中任意抽取3件,则抽取的产品中至少有两件次品的概率为
A.B.
C.D.
答案:C
(3)从3台甲型彩电和2台乙型彩电中任选3台,其中两种品牌的彩电都齐全的概率是
A.B.
C.D.
答案:D
(4)正三角形各顶点和各边中点共有6个点,从这6个点中任意取出3个点构成的三角形恰为正三角形的概率是
A.B.
C.D.
答案:D
(5)在由1,2,3组成的不多于三位的自然数(可以有重复数字)中任意抽取一个,正好抽出两位自然数的概率是
A.B.
C.D.
答案:A
2.填空题
(1)设三位数a、b、c,若b<a,c>a,则称此三位数为凹数.现从0,1,2,3,4,5这六个数字中任取三个数字,组成三位数,其中是凹数的概率是________.
答案:
(2)将一枚硬币连续抛掷5次,则有3次出现正面的概率是________.
答案:
(3)正六边形的各顶点和中心共有7个点,从这7个点中任意取3个点构成三角形,则构成的三角形恰为直角三角形的概率是________.
解:P=.
答案:
(4)商品A、B、C、D、E在货架上排成一列,A、B要排在一起,C、D不能排在一起的概率是________.
解:P===.
答案:
(5)在平面直角坐标系中,点(x,y)的x、y∈{0,1,2,3,4,5}且x≠y,则点(x,y)在直线y=x的上方的概率是________.
解:P===.
答案:
3.解答题
(1)已知集合A={a,b,c,d,e},任意取集合A的一个子集B,计算:
①B中仅有3个元素的概率;
②B中一定含有a、b、c的概率.
解:①P=.
②P=.
(2)某号码锁有六个拨盘,每个拨盘上有从0到9共十个数字,当6个拨盘上的数字组成某一个六位数号码(开锁号码)时,锁才能打开.如果不知道开锁号码,试开一次就能打开锁的概率是多少?如果未记准开锁号码的最后两位数字,在使用时随意拨下最后两位数字,正好把锁打开的概率是多少?
解:①P=.
②P=.
(3)9国乒乓球队内有3国是亚洲国家,抽签分成三组进行预赛(每组3队),试求:
①三个组中各有一个亚洲国家球队的概率;
②三个亚洲国家集中在某一组的概率.
解:①P=[]÷[]=.
②P=÷[]=.
(4)将m个编号的球放入n个编号的盒子中,每个盒子所放的球数k满足0≤k≤m,在各种放法的可能性相等的条件,求:
①第一个盒子无球的概率;
②第一个盒子恰有一球的概率.
解:①P=()m.
②P=()n-1.

随机现象和随机事件的概率


总课题概率总课时第21课时
分课题随机现象和随机事件的概率分课时第1课时
教学目标了解必然事件,不可能事件及随机事件的意义;了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义及概率与频率的区别;通过对概率的学习,使学生对对立统一的辩证规律有进一步认识.
重点难点必然事件、不可能事件,随机事件的含义;根据统计定义计算概率的方法.
引入新课
1.观察下列现象:
(1)在标准大气压下,把水加热到100°C,沸腾;(2)导体通电,发热;
(3)实心铁块丢入水中,铁块浮起;(4)同性电荷,互相吸引;(5)买一张福到彩票,中奖;(6)掷一枚硬币,正面向上;
这些现象各有什么特点?

2.(1)确定性现象与随机现象:

(2)试验与事件:

(3)事件的分类与事件的符号表示:

3.概率的定义及频率与概率的关系:

4.求事件的概率的基本方法:

注意:概率的取值范围是__________________________________.
例题剖析
例1试判断下列事件是随机事件、必然事件还是不可能事件.
(1)我国东南沿海某地明年将次受到热带气旋的侵袭;
(2)若为实数,则;
(3)某人开车通过个路口都将遇到绿灯;
(4)抛一石块,石块下落;
(5)一个正六面体的六个面分别写有数字1,2,3,4,5,6,将它抛掷两次,向上的面的数字之和大于12.

例2下面表中列出10次抛掷硬币的试验结果,为每次试验抛掷硬币的次数,
为硬币正面向上的次数,计算每次试验中“正面向上”这一事件的频
率,并考查其概率.
试验序号抛掷的次数
正面向上的次数
“正面向上”出现的频率
1500251
2500249
3500256
4500253
5500251
6500246
7500244
8500258
9500262
10500247

例3某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:
时间1999年2000年2001年2002年
出生婴儿数21840230702009419982
出生男婴数11453120311029710242
(1)试计算男婴各年出生的频率(精确到);
(2)该市男婴出生的概率约为多少?
巩固练习
1.某班进行一次数学测验,其中及格的人数为47人,不及格的人数为3人,
请据此列出一些不可能事件,必然事件,随机事件.

2.在10个学生中,男生有x个,现从中任选6人去参加某项活动.
①至少有1个女生;②5个男生,1个女生;③3个男生,3个女生.
当x为何值时,使得①为必然事件;②为不可能事件;③为随机事件.

3.某医院治疗一种疾病治愈率为%,如果前个病人都没有治愈,那么第十个病人
就一定能治愈吗?

课堂小结
随机现象和随机事件的概率的简单计算.
课后训练
班级:高二()班姓名:____________
一基础题
1.从15名学生中(其中男生10人,女生5人),任意选出6人的必然事件是()
A.6人都是男生;B.至少有1人是女生;
C.6人都是女生;D.至少有1人是男生.

2.从1,2,3,…,10这10个数字中,任取3个数字,那么“这3个数字之和小于27”这一事件是()
A.必然事件B.不可能事件C.随机事件D.以上选项均不正确

3.给出下列事件:
①对非零向量,,若,则⊥;
②直线()与函数的图象有两个不同的交点;
③若,,则;
④过空间任意三点,有且只有一个平面.
在以上事件中随机事的个数是()
A.1B.2C.3D.4

4.抛掷一枚硬币,连续5次正面向上,则有()
A.抛掷一枚硬币,出现正面向上,概率为1;
B.第6次出现正面向上的概率大于;
C.第6次出现正面向上的概率等于;
D.第6次出现正面向上的概率小于.
5.设某种产品的合格率约为99%,估算10000件该产品中次品的件数可能是______件.

6.对某批种子的发芽情况统计,在统计的5000粒种子中共有4520粒发芽,
则“种子发芽”事件的频率为______________.

二提高题
7.已知,,给出事件:.
(1)当为必然事件时,求的取值范围;
(2)当为不可能事件时,求的取值范围.

三能力题
8.某射击运动负进行双向飞碟射击训练,各次训练的成绩记录如下:
射击次数100120150100150160150
击中飞碟数819512382119127121
击中飞碟频率
(1)将各次记录击中飞碟的频率填入表中.
(2)这个运动员击中飞碟的概率约为多少?

《随机事件的概率》教案


《随机事件的概率》教案
一、教学目标

知识与技能目标:了解生活中的随机现象;了解必然事件,不可能事件,随机事件的概念;理解随机事件的频率与概率的含义。

过程与方法目标:通过做实验的过程,理解在大量重复试验的情况下,随机事件的发生呈现规律性,进而理解频率和概率的关系;通过一系列问题的设置,培养学生独立思考、发现问题、分析问题和解决问题的能力。

情感、态度、价值观目标:渗透偶然寓于必然,事件之间既对立又统一的辩证唯物主义思想;增强学生的科学素养。

二、教学重点、难点

教学重点:根据随机事件、必然事伯、不可能事件的概念判断给定事件的类型,并能用概率来刻画生活中的随机现象,理解频率和概率的区别与联系。

教学难点:理解随机事件的频率定义与概率的统计定义及计算方法,理解频率和概率的区别与联系。

三、教学准备

多媒体课件

四、教学过程

(一)情境设置,引入课题

相传古代有个国王,由于崇尚迷信,世代沿袭着一条奇特的法规:凡是死囚,在临刑时要抽一次“生死签”,即在两张小纸片上分别写着“生”和“死”的字样,由执法官监督,让犯人当众抽签,如果抽到“死”字的签,则立即处死;如果抽到“生”字的签,则当场赦免。

有一次国王决定处死一个敢于“犯上”的大臣,为了不让这个囚臣得到半点获赦机会,他与几个心腹密谋暗议,暗中叮嘱执法官,把两张纸上都写成“死”。

但最后“犯上”的大臣还是获得赦免,你知道他是怎么做的吗?

相信聪明的同学们应该知道“犯上”的大臣的聪明之举:将所抽到的签吞毁掉,为证明自己抽到“生”字的签,只需验证所剩的签为“死”签。

我们如果学习了随机事件的概率,便不难用数学的角度来解释“犯上”的大臣的聪明之举。下面中公资深讲师跟大家来认识一下事件的概念。(二)探索研究,理解事件

问题1:下面有一些事件,请同学们从这些事件发生与否的角度,分析一下它们各有什么特点?

①“导体通电后,发热”;

②“抛出一块石块,自由下落”;

③“某人射击一次,中靶”;

④“在标准大气压下且温度高于0℃时,冰自然融化”;

⑦“某地12月12日下雨”;

⑧“从标号分别为1,2,3,4,5的5张标签中,得到1号签”。

给出定义:

事件:是指在一定条件下所出现的某种结果。它分为必然事件、不可能事件和随机事件。

问题2:列举生活中的必然事件,随机事件,不可能事件。

问题3:随机事件在一次试验中可能发生,也可能不发生,在大量重复试验下,它是否有一定规律?

实验1:学生分组进行抛硬币,并比较各组的实验结果,引发猜想。

给出频数与频率的定义
问题4:猜想频率的取值范围是什么?

实验2:计算机模拟抛硬币,并展示历史上大量重复抛硬币的结果。

问题5:结合计算机模拟抛硬币与历史上大量重复抛硬币的结果,判断猜想正确与否。

频率的性质:

1.频率具有波动性:试验次数n不同时,所得的频率f不一定相同。

2.试验次数n较小时,f的波动性较大,随着试验次数n的不断增大,频率f呈现出稳定性。

概率的定义

事件A的概率:在大量重复进行同一试验时,事件A发生的频率m/n总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。

概率的性质

由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0。

频率与概率的关系

①一个随机事件发生于否具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性,而频率的稳定性又是必然的,因此偶然性和必然性对立统一。

②不可能事件和确定事件可以看成随机事件的极端情况。③随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率。

④概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果。

⑤概率是频率的稳定值,频率是概率的近似值。

例某射手在同一条件下进行射击,结果如下表所示:

(1)填写表中击中靶心的频率;

(2)这个射手射击一次,击中靶心的概率约是什么?

问题6:如果某种彩票中奖的概率为1/1000,那么买1000张彩票一定能中奖吗?请用概率的意义解释。

(三)课堂练习,巩固提高

1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()

A.必然事件B.随机事件

C.不可能事件D.无法确定

2.下列说法正确的是()

A.任一事件的概率总在(0.1)内

B.不可能事件的概率不一定为0

C.必然事件的概率一定为1

D.以上均不对

3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。

(1)完成上面表格:

(2)该油菜子发芽的概率约是多少?4.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?

(四)课堂小节

概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。

五、板书设计

六、教学反思

略。

文章来源:http://m.jab88.com/j/28644.html

更多

最新更新

更多