88教案网

2012届高考数学知识梳理复习三角恒等变换教案

学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,大家开始动笔写自己的教案课件了。用心制定好教案课件的工作计划,才能更好地安排接下来的工作!你们会写教案课件的范文吗?请您阅读小编辑为您编辑整理的《2012届高考数学知识梳理复习三角恒等变换教案》,欢迎大家阅读,希望对大家有所帮助。

教案42三角恒等变换
一、课前检测
1.若为第三象限角,且,则等于__________。答案:

2.函数的最大值是____________。答案:3

3.函数的值域是___________。答案:

二、知识梳理
1.基本公式
解读:

2.二倍角切化弦公式

解读:

3.降幂公式

解读:

三、典型例题分析
例1.已知tan(α-β)=,β=-,且α、β∈(0,),求2α-β的值.
解:由tanβ=-β∈(0,π)
得β∈(,π)①
由tanα=tan[(α-β)+β]=α∈(0,π)
得0<α<∴0<2α<π
由tan2α=>0∴知0<2α<②
∵tan(2α-β)==1
由①②知2α-β∈(-π,0)
∴2α-β=-
(或利用2α-β=2(α-β)+β求解)

变式训练:在△ABC中,,,,求A的值和△ABC的面积.
解:∵sinA+cosA=①
∵2sinAcosA=-
从而cosA<0A∈()
∴sinA-cosA=
=②
据①②可得sinA=cosA=
∴tanA=-2-
S△ABC=

小结与拓展:

例2.求证:=
证明:左边=
==右边

变式训练:化简sin2sin2+cos2cos2-cos2cos2.
解方法一(复角→单角,从“角”入手)
原式=sin2sin2+cos2cos2-(2cos2-1)(2cos2-1)
=sin2sin2+cos2cos2-(4cos2cos2-2cos2-2cos2+1)
=sin2sin2-cos2cos2+cos2+cos2-
=sin2sin2+cos2sin2+cos2-
=sin2+cos2-=1-=.
方法二(从“名”入手,异名化同名)
原式=sin2sin2+(1-sin2)cos2-cos2cos2
=cos2-sin2(cos2-sin2)-cos2cos2
=cos2-sin2cos2-cos2cos2
=cos2-cos2
=-cos2
=-cos2=.
方法三(从“幂”入手,利用降幂公式先降次)
原式=+-cos2cos2
=(1+cos2cos2-cos2-cos2)+(1+cos2cos2+cos2+cos2)-cos2cos2=.

方法四(从“形”入手,利用配方法,先对二次项配方)
原式=(sinsin-coscos)2+2sinsincoscos-cos2cos2
=cos2(+)+sin2sin2-cos2cos2
=cos2(+)-cos(2+2)
=cos2(+)-[2cos2(+)-1]=.

小结与拓展:

四、归纳与总结(以学生为主,师生共同完成)

1.知识:

2.思想与方法:

3.易错点:

4.教学反思(不足并查漏):

相关阅读

2012届高考数学备考复习三角变换与解三角形教案


作为杰出的教学工作者,能够保证教课的顺利开展,教师要准备好教案,这是教师需要精心准备的。教案可以更好的帮助学生们打好基础,帮助教师在教学期间更好的掌握节奏。那么,你知道教案要怎么写呢?下面的内容是小编为大家整理的2012届高考数学备考复习三角变换与解三角形教案,但愿对您的学习工作带来帮助。

专题二:三角函数、三角变换、解三角形、平面向量
第二讲三角变换与解三角形
【最新考纲透析】
1.会用向量的数量积推导出两角差的余弦公式。
2.能利用两角差的余弦公式导出两角差的正弦、正切公式。
3.能利用两角差的余弦公式导出两角各的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系。
4.能运用和与差、二倍角的三角函数公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)。
5.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
6.能够运用正弦定理、余弦定理等知识和方法解决一些测量和几何计算有关的实际问题。

【核心要点突破】
要点考向1:三角变换及求值
考情聚焦:1.利用两角和差的三角函数公式进行三角变换、求值是高考必考内容。
2.该类问题出题背景选择面广,解答题中易出现与新知识的交汇题。
3.该类题目在选择、填空、解答题中都有可能出现,属中、低档题。
考向链接:1.在涉及两角和与差的三角函数公式的应用时,常用到如下变形
(1);
(2)角的变换;
(3)。
2.利用两角和与差的三角函数公式可解决求值求角问题,常见有以下三种类型:
(1)“给角求值”,即在不查表的前提下,通过三角恒等变换求三角函数式的值;
(2)“给值求值”,即给出一些三角函数值,求与之有关的其他三角函数式的值;
(3)“给值求角”,即给出三角函数值,求符合条件的角。
例1:已知向量,且
(Ⅰ)求tanA的值;
(Ⅱ)求函数R)的值域
解析:(Ⅰ)由题意得mn=sinA-2cosA=0,
因为cosA≠0,所以tanA=2.
(Ⅱ)由(Ⅰ)知tanA=2得
因为xR,所以.当时,f(x)有最大值,
当sinx=-1时,f(x)有最小值-3
所以所求函数f(x)的值域是
要点考向2:正、余弦定理的应用
考情聚焦:1.利用正、余弦定理解决涉及三角形的问题,在近3年新课标高考中都有出现,预计将会成为今后高考的一个热点。
2.该类问题多数是以三角形或其他平面图形为背景,考查正、余弦定理及三角函数的化简与证明。
3.多以解答题的形式出现,有时也在选择、填空题中出现。
考向链接:1.在三角形中考查三角函数式变换,是近几年高考的热点,它是在新的载体上进行的三角变换,因此要时刻注意它重要性:一是作为三角形问题,它必然要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,及时进行边角转化,有利于发现解决问题的思路;其二,它毕竟是三角形变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的,注意“三统一”,即“统一角、统一函数、统一结构”,是使问题获得解决的突破口。
2.在解三角形时,三角形内角的正弦值一定为正,但该角不一定是锐角,也可能为钝角(或直角),这往往造成有两解,应注意分类讨论,但三角形内角的余弦为正,该角一定为锐角,且有惟一解,因此,在解三角形中,若有求角问题,应尽量避免求正弦值。
例2:(2010辽宁高考理科T17)在△ABC中,a,b,c分别为内角A,B,C的对边,且
(Ⅰ)求A的大小;
(Ⅱ)求的最大值.
【命题立意】考查了正弦定理,余弦定理,考查了三角函数的恒等变换,三角函数的最值。
【思路点拨】(I)根据正统定理将已知条件中角的正弦化成边,得到边的关系,再由余弦定理求角
(II)由(I)知角C=60°-B代入sinB+sinC中,看作关于角B的函数,进而求出最值
【规范解答】(Ⅰ)由已知,根据正弦定理得

由余弦定理得
故,A=120°
(Ⅱ)由(Ⅰ)得:
故当B=30°时,sinB+sinC取得最大值1。
【方法技巧】
(1)利用正弦定理,实现角的正弦化为边时只能是用a替换sinA,用b替换sinB,用c替换sinC。sinA,sinB,sinC的次数要相等,各项要同时替换,反之,用角的正弦替换边时也要这样,不能只替换一部分。
(2)以三角形为背景的题目,要注意三角形的内角和定理的使用。象本例中B+C=60°
要点考向3:三角函数的实际应用
考情聚焦:1.有关解三角形及实际应用在高考中有时出现。
2.该类问题以实际问题为背景,其建模后为解三角形问题,与三角函数及三角变换等知识交汇。
3.多以解答题的形式出现,题目不会太难。
例3:(2010江苏高考T17)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=,∠ADE=。
(1)该小组已测得一组、的值,算出了tan=1.24,tan=1.20,请据此算出H的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,-最大?
【命题立意】本题主要考查解三角形的知识、两角差的正切及不等式的应用。
【思路点拨】(1)分别利用表示AB、AD、BD,然后利用AD—AB=DB求解;
(2)利用基本不等式求解.
【规范解答】(1),同理:,。
AD—AB=DB,故得,解得:。
因此,算出的电视塔的高度H是124m。
(2)由题设知,得,
,(当且仅当时,取等号)
故当时,最大。
因为,则,由的单调性可知:当时,-最大。
故所求的是m。

【高考真题探究】
1.(2010福建高考文科T2)计算的结果等于()
A.B.C.D.
【命题立意】本题考查利用余弦的倍角公式的逆用,即降幂公式,并进行三角的化简求值。
【思路点拨】直接套用倍角公式的逆用公式,即降幂公式即可。
【规范解答】选B,。
【方法技巧】对于三角公式的学习,要注意灵活掌握其变形公式,才能进行灵活的恒等变换。如倍角公式:,的逆用公式为“降幂公式”,即为,,在三角函数的恒等变形中,降幂公式的起着重要的作用。
2.(2010海南宁夏高考理科T16)在中,D为边BC上一点,BD=DC,=120°,AD=2,若的面积为,则=.
【命题立意】本题主要考查了余弦定理及其推论的综合应用.
【思路点拨】利用三角形中的余弦定理极其推论。列出边与角满足的关系式求解.
【规范解答】设,则,由的面积为可知
,可得,由余弦定理可知
,所以
,所以
由,及
可求得
【答案】60°
【方法技巧】熟练三角形中隐含的角的关系,利用余弦定理或正弦定理找边与角的关系,列出等式求解.
3.(2010天津高考理科T7)在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则A=()
(A)(B)(C)(D)
【命题立意】考查三角形的有关性质、正弦定理、余弦定理以及分析问题、解决问题的能力。
【思路点拨】根据正、余弦定理将边角互化。
【规范解答】选A,根据正弦定理及得:


【方法技巧】根据所给边角关系,选择使用正弦定理或余弦定理,将三角形的边转化为角。
4.(2010北京高考理科T10)在△ABC中,若b=1,c=,,则a=。
【命题立意】本题考查解三角形中的余弦定理。
【思路点拨】对利用余弦定理,通过解方程可解出。
【规范解答】由余弦定理得,,即,解得或(舍)。
【答案】1
【方法技巧】已知两边及一角求另一边时,用余弦定理比较好。
5.(2010天津高考理科T17)已知函数
(Ⅰ)求函数的最小正周期及在区间上的最大值和最小值;
(Ⅱ)若,求的值。
【命题立意】本小题主要考查二倍角的正弦与余弦、两角和的正弦公式、函数的性质、同角三角函数的基本关系、两角差的余弦等基础知识,考查基本运算能力。
【思路点拨】化成一个角的三角函数的形式;变角,
【规范解答】(1)由,得
所以函数的最小正周期为
因为在区间上为增函数,在区间上为减函数,又
,所以函数在区间上的最大值为2,最小值为-1
(Ⅱ)由(1)可知又因为,所以
由,得从而
所以
6.(2010陕西高考理科T17)如图,A,B是海面上位于东西方向相距
海里的两个观测点,现位于A点北偏东45°,B点北偏西60°
的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?
【命题立意】本题考查了三角恒等变换、已知三角函数值求角以及正、余弦定理,考查了解决三角形问题的能力,属于中档题。
【思路点拨】解三角形
【规范解答】
【跟踪模拟训练】
一、选择题(本大题共6个小题,每小题6分,总分36分)
1.(2010届山东省实验高三一诊(文))已知点在第四象限,则角的终边在()
A.第一象限B.第二象限C.第三象限D.第四象限
2.若,则的值为()
A.B.C.D.
3.函数的最小正周期T=()
(A)2π(B)π(C)(D)
4.若函数y=f(x)同时具有下列三个性质:(1)最小正周期为π,(2)图象关于直线对称;(3)在区间上是增函数,则y=f(x)的解析式可以是()
A.B.
C.D.
5.(2010届广东高三六校联考(理))如图,Rt△ABC中,AC⊥BC,D在边AC上,已知BC=2,CD=1,∠ABD=45°,则AD=()
A.2B.5C.4D.1

二、填空题(本大题共3个小题,每小题6分,总分18分)
7.在中,角,,所对的边分别是,,,若,且,则的面积等于_____
8.若定义在区间上的函数对上的任意个值,,…,,总满足≤,则称为上的凸函数.已知函数在区间上是“凸函数”,则在△中,的最大值是____.
9.已知△ABC的三个内角A,B,C满足cosA(sinB+cosB)+cosC=0,则A=_______.
三、解答题(10、11题每小题15分,12题16分,总分46分)
10.(本小题满分12分)已知.
(1)求;
(2)求的值.
11.已知函数的最小正周期为.
(1)求在区间上的最大值和最小值;
(2)求函数图象上与坐标原点最近的对称中心的坐标.
12.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且
(Ⅰ)确定角C的大小
(Ⅱ)若c=,且△ABC的面积为,求a+b的值。
参考答案
1.C
2.C
3.B
4.C
5.B
6.【解析】选A.依题意,画出图形.
△CAO是等腰三角形,
∴∠DCO=∠COA=π-2θ.
在Rt△COD中,
CD=COcos∠DCO
=cos(π-2θ)=-cos2θ,
过O作OH⊥AC于H点,则
CA=2AH=2OAcosθ=2cosθ.
∴f(θ)=AC+CD=2cosθ-cos2θ.
7.
8.
9.【解析】∵cosA(sinB+cosB)+cosC=0,
∴cosAsinB+cosAcosB+cos[π-(A+B)]=0,
∴cosAsinB+cosAcosB-cos(A+B)=0,
cosAsinB+cosAcosB-cosAcosB+sinAsinB=0,
即cosAsinB+sinAsinB=0.
又∵sinB≠0,∴cosA+sinA=0,
又A是三角形的内角,∴A=.
答案:
10.解析:(1),
(2)原式=
=.

11.解析:(1)
当时,
当时,取得最大值为,最小值为
(2)令,得
当时,,当时,,满足要求的对称中心为
12.解析:(1)由及正弦定理得,
……………………………………3分
是锐角三角形,……………………………………6分
(2)解法1:由面积公式得
……………………9分
由余弦定理得
由②变形得……………………………………12分
解法2:前同解法1,联立①、②得
……………………………………9分
消去b并整理得解得
所以故……………………………………12分

【备课资源】

高考数学复习三角函数的性质及其变换教案


三角函数的性质及其变换
多年来,三角函数试题在全国高考中的题量及其分数都没有较大的变动,每年的分数一般在二十分左右。试题难度都为中低档题。主要考察的内容有:三角函数的定义和基本关系式.
关于今后几年全国高考对三角函数的命题趋向,我们认为:
1.试题数量及其分数在试卷中所占比例将基本保持稳定。
2.所有试题都是中低档难度试题,而解答题的难度还将略有下降,原因有三个:一是需用时将列出有关公式,这实际上是对解题的关键步骤给出了提示;二是“简单的三角方程”已经改为不作高考要求的选学内容,因而需用解简单的三角不等式的试题将会更加简单;三是新的教学大纲中规定删去了“三角函数中较复杂得恒等变形”,因此,即使在新大纲实施之前,高考命题也会受到它的影响。
3.涉及积化和差与和差化积公式的试题在三角试题中的比例将会明显下降,而同时涉及这两组公式的试题已几乎不可能再出现,因此这两组公式已不再是高考的热点。
4.倍角公式的变形——半角公式、升幂公式与降幂公式考查的可能性较大,掌握这几个公式对解决一些相对复杂的三角变换有好处.
即:sin2α=,……
5.由于解斜三角形需要较多的应用平面几何知识,因而今后几年涉及这一类中的高考题,仍将会像1998年的三角解答题那样,仅限于简单的应用正弦定理和余弦定理。另外,这两个定理也很可能在解答几何或结合实际的应用题中使用。由于2000年的三角解答题的难度已经“略有下降”,因此,今后几年此类试题的难度也将“基本保持稳定”。
在本讲的复习中,我们将注意以下几点:
1.以小题为主,中低档题为主,并注重三角函数与其他知识的交汇点处的习题
2.适当增大复习题中的求值与求范围的题目的比例
3.对正、余弦定理的应用力求熟练,并避免繁杂的近似计算
本讲分三个部分:第一部分是三角函数的变换,第二部分是三角函数的图像和性质,第三部分是三角形中的三角函数问题,主要是正弦定理和余弦定理的应用
第一部分
例1.已知sinθcosθ=,且,那么cosθ-sinθ的值为
A.B.C.-D.-
分析:由于,所以cosθ<sinθ,于是cosθ-sinθ=-,选D
例2.若tanθ=-2,则=______________
提示:将分子中的2θ化为单角,分母中的1用sin2θ+cos2θ替换,然后分子分母同除以cos2θ即可。结论为
例3.化简(0<α<π)
提示:将分子分母全部化为的表达式,然后注意0<,即可得结论:cosα
例4.求tan9°+cot117°-tan243°-cot351°的值
解:原式=tan9°-tan27°-cot27°+cot9°
=(tan9°+cot9°)-(tan27°+cot27°)
例5.已知α、β∈(0,π)且tan(α-β)=,tanβ=-,求2α-β的值
解:∵α=(α-β)+β
∴tanα=tan[(α-β)+β]=
∴tan(2α-β)=tan[α+(α-β)]==1
又∵β∈(0,π),且tanβ=-<0,∴β∈(,π),同理可得α∈(0,)
∴-π<2α-β<0
于是2α-β=-
例6.已知θ∈(0,),sinθ-cosθ=,求的值
解:由已知得:sin2θ=,且2θ∈(,π)
∴cos2θ=-,tanθ==2,带入所求式

练习一
一、选择题
1.若cos2α=-,且α∈[,π],则sinα=
A.B.C.D.
提示:注意α是钝角,所以sinα>0,由半角公式可得:sinα=,选A
2.已知tan159°=m,则sin2001°=
A.B.C.-D.-
解:由已知得tan21°=-tan159°=-m
2001°=-sin21°=-tan21°cos21°=-.选B
3.已知180°<α<270°,且sin(270°+α)=,则tan=
A.3B.2C.-2D.-3
解:由已知cosα=-,而180°<α<270°,∴sinα=-
∴tan=-3.选D
4.已知tan(α+β)=,tan(α-,那么tan(β+)=
A.B.C.D.
提示:注意到β+=(α+β)—(α-),则直接使用正切差角公式即可得结论.选B
5.若sinα+sinβ=(cosβ-cosα),α、β∈(0,π),则α-β的值为
A.-πB.-C.D.π
解:已知等式两边和差化积得:2sin
∵0<α+β<2π,∴sin≠0,于是tan
又注意到cosβ-cosα>0,∴β<α,且β-α∈(-π,π)
∴,α-β=.选D
6.已知α∈(0,),lg(1-sinα)=m,lg=n,则lgcosα=
A.m-nB.m+C.(m-n)D.(m+)
解:lgcosα=lg[lg(1-sinα)+lg(1+sinα)]=(m-n).选C
二、填空题
7.若(sinθ+cosθ)2=2x+2-x,θ∈(0,),则tanθ=_______________
解:由三角函数定义(sinθ+cosθ)2≤2,而由基本不等式2x+2-x≥2
于是只有(sinθ+cosθ)2=2.由此推得锐角α=
8.已知sinθ+cosθ=,则sin3θ+cos3θ=_______________
解:已知等式平方可得sinθcosθ=-
于是:sin3θ+cos3θ=(sinθ+cosθ)(1-sinθcosθ)=
9.=____________________
解:原式=
10.f(x)=2tanx-,则f()=________________
解:化简f(x)=2(tanx+),利用半角公式计算可得tan=2-
∴=2+
∴f()=8
三、解答题
11.已知tan,求cos(α-)的值
解:cos(α-)=cosα+sinα
∵tan
由万能公式可得sinα=-4/5cosα=3/5
∴cos(α-)=
12.求[2cos40°+sin10°(1+tan10°)]的值
解:原式=cos10°(2cos40°+sin10°)
=2[cos10°cos40°+sin10°(cos10°+sin10°)]
=2(cos10°cos40°+sin10°sin40°)=2cos30°=
13.已知cos(α-)=-,sin(-β)=,且<α<2π,<β<π,求cos(α+β)的值
解:∵(α-)-(-β)=
<α<2π,<β<π,
∴α<α-
又cos(α-)=-,sin(-β)=,
∴sin(α-)=-,cos(-β)=
cos=cos[(α-)-(-β)]=……=
14.若tanα=2log3x,tanβ=3logx,且α-β=,求x
解:∵α-β=,∴tan(α-β)=1
又tan(α-β)==1
∴6logx+5log3x-1=0
x=或x=
已知sinα+sinβ=sin165°,cosα+cosβ=cos165°,求cos(α-β)及cos(α+β)的值
解:已知两式平方相加得2+2cos(α-β)=1,即cos(α-β)=-
已知两式平方相减得cos2α+cos2β+2cos(α+β)=cos330°
∴2cos(α+β)cos(α-β)+3cos(α+β)=cos30°
∴2cos(α+β)(-)+2cos(α+β)=
∴cos(α+β)=

2012届高考数学知识梳理函数性质复习教案


教案19函数性质综合运用
一、课前检测
1.函数的定义域是_____________________.答案:或

2.已知,
则的最大值为.答案:6

3.函数的单调递增区间是___________________.答案:

4.表示、、三个数中的最大值,则在区间上的最大值和最小值分别是(C)
A.,B.,C.,D.,

二、典型例题分析
例1(东城期末15)已知函数,且.
(Ⅰ)求的定义域;
(Ⅱ)判断的奇偶性并予以证明;
(Ⅲ)当时,求使的的取值范围.
解:(Ⅰ),则
解得.
故所求定义域为.………………………………………………4分
(Ⅱ)由(Ⅰ)知的定义域为,
且,
故为奇函数.………………………………………………………………9分
(Ⅲ)因为当时,在定义域内是增函数,
所以.
解得.
所以使的的取值范围是.………………………………13分
小结与拓展:解决对数函数问题,首先要注意函数的定义域,在定义域内研究函数的相关性质。

例2已知函数f(x)=x2+|x-a|+1,a∈R.?
(1)试判断f(x)的奇偶性;?
(2)若-≤a≤,求f(x)的最小值.
解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),?
此时,f(x)为偶函数.当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,?
f(a)≠f(-a),f(a)≠-f(-a),此时,f(x)为非奇非偶函数.?
(2)当x≤a时,f(x)=x2-x+a+1=(x-)2+a+,?
∵a≤,故函数f(x)在(-∞,a]上单调递减,?
从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1.?
当x≥a时,函数f(x)=x2+x-a+1=(x+)2-a+,?
∵a≥-,故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的
最小值为f(a)=a2+1.?
综上得,当-≤a≤时,函数f(x)的最小值为a2+1.

小结与拓展:注意对参数的讨论

例3(2006重庆)已知定义域为的函数是奇函数。
(1)求的值;
(2)若对任意的,不等式恒成立,求的取值范围;
解:(1)因为是R上的奇函数,所以
从而有又由,解得
(2)解法一:由(1)知
由上式易知在R上为减函数,又因是奇函数,从而不等式
等价于
因是R上的减函数,由上式推得
即对一切从而
解法二:由(1)知
又由题设条件得

整理得,因底数21,故
上式对一切均成立,从而判别式

变示训练:已知是定义在上的奇函数,且当时,为增函数,则不等式
的解集为.答案:

小结与拓展:本题是一个综合题,需灵活运用函数的性质来解决。

四、归纳与总结(以学生为主,师生共同完成)
1.知识:
2.思想与方法:
3.易错点:
4.教学反思(不足并查漏):

高二数学下册《三角恒等变换》复习学案


高二数学下册《三角恒等变换》复习学案

三角恒等变换知识点:

知识结构:

1.两角和与差的正弦、余弦和正切公式

重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。

难点:两角差的余弦公式的探索和证明。

2.简单的三角恒等变换

重点:掌握三角变换的内容、思路和方法,体会三角变换的特点.

难点:公式的灵活应用.

三角函数几点说明:

1.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.

2.用同角三角函数基本关系证明三角恒等式和求值计算,熟练配角和sin和cos的计算.

3.已知三角函数值求角问题,达到课本要求即可,不必拓展.

4.熟练掌握函数y=Asin(wx+j)图象、单调区间、对称轴、对称点、特殊点和最值.

5.积化和差、和差化积、半角公式只作为练习,不要求记忆.

6.两角和与差的正弦、余弦和正切公式

练习题:

1.已知sin2α=-2425,α∈-π4,0,则sinα+cosα=()

A.-15

B.15

C.-75

D.75

解析∵α∈-π4,0,∴cosα0sinα且cosα|sinα|,则sinα+cosα=1+sin2α=1-2425=15.

答案B

2.若sinπ4+α=13,则cosπ2-2α等于()

A.429

B.-429

C.79

D.-79

解析据已知可得cosπ2-2α=sin2α

=-cos2π4+α=-1-2sin2π4+α=-79.

答案D

文章来源:http://m.jab88.com/j/51662.html

更多

最新更新

更多