88教案网

高二数学上册《算法与程序框图》教学设计

一名优秀的教师在教学时都会提前最好准备,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生们有一个良好的课堂环境,帮助高中教师掌握上课时的教学节奏。关于好的高中教案要怎么样去写呢?为了让您在使用时更加简单方便,下面是小编整理的“高二数学上册《算法与程序框图》教学设计”,仅供参考,希望能为您提供参考!

高二数学上册《算法与程序框图》教学设计

教学目标:

1、知识与技能

(1)了解算法的含义,体会算法的思想;

(2)能够用自然语言叙述算法;

(3)掌握正确的算法应满足的要求;

(4)会写出解线性方程(组)的算法;

(5)会写出一个求有限整数序列中的最大值的算法.

2、过程与方法

(1)通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法;

(2)同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法.

3、情感与价值观

通过本节的学习,对计算机的算法语言有一个基本的了解;明确算法的要求,认识到计算机是人类征服自然的一个有力工具,进一步提高探索、认识世界的能力.

教学重点、难点:

重点:算法的含义,解二元一次方程组、判断一个数为质数和利用“二分法”求方程近似解的算法设计.

难点:把自然语言转化为算法语言.

教学过程:

(一)创设情景、导入课题

问题1:把大象放入冰箱分几步?

第一步:把冰箱门打开;

第二步:把大象放进冰箱;

第三步:把冰箱门关上.

问题2:指出在家中烧开水的过程分几步?(略)

问题3:如何求一元二次方程的解?

第一步:计算;

第二步:如果,;

如果,方程无解

第三步:下结论.输出方程的根或无解的信息.

注意:在以上三个问题的求解过程中,老师要紧扣算法定义,带领学生总结,反复强调,使学生体会以下几点:

①有穷性:步骤是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。

②确定性:每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。

③逻辑性:从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。

④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。

⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。

注:其他还有输入性、输出性等特征,结论不固定.

提问:算法是如何定义?

(二)师生互动、讲解新课

x-2y=-1①

回顾(课本P2内容):写出解二元一次方程组2x+y=1②的算法.

解:第一步,②×2+①,得5x=1;③

第二步,解③,得x=;

第三步,②-①×2得5y=3;④

第四步,解④,得y=;

第五步,得到方程组的解为x=;

y=。

思考1:你能写出求解一般的二元一次方程组的步骤吗?

上题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法.

对于一般的二元一次方程组可以写出类似的求解步骤:

第一步,①×b2-②×b1,得;③

第二步,解③,得.

第三步,②×a1-①×a2,得;④

第四步,解④,得;

第五步,得到方程组的解为

(高斯消去法)

思考2:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”.我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?

思考3:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的.

你认为:

(1)这些步骤的个数是有限的还是无限的?

(2)每个步骤是否有明确的计算任务?

总结:在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.

算法(algorithm)一词出现于12世纪,源于算术(algorism),即算术方法.指的是用阿拉伯数字进行算术运算的过程.在数学中,算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法.

广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法.在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序.比如解方程的算法、函数求值的算法、作图的算法,等等.

(三)例题剖析,巩固提高

例1(课本P3例1):如果让计算机判断7是否为质数,如何设计算法步骤?

算法:

第一步,用2除7,得到余数1,所以2不能整除7.

第二步,用3除7,得到余数1,所以3不能整除7.

第三步,用4除7,得到余数3,所以4不能整除7.

第四步,用5除7,得到余数2,所以5不能整除7.

第五步,用6除7,得到余数1,所以6不能整除7.

因此,7是质数.

课堂练习1:

整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?

思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.

(1)用i表示2~88中的任意一个整数,并从2开始取数;

(2)用i除89,得到余数r.若r=0,则89不是质数;若r≠0,将i用i+1替代,再执行同样的操作;

(3)这个操作一直进行到i取88为止.

你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?

算法设计:

第一步,令i=2;

第二步,用i除89,得到余数r;

第三步,若r=0,则89不是质数,结束算法;若r≠0,将i用i+1替代;

第四步,判断“i88”是否成立?若是,则89是质数,结束算法;否则,返回第二步.

探究:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计?

在中央电视台幸运52节目中,有一个猜商品价格的环节,竟猜者如在规定的时间内大体猜出某种商品的价格,就可获得该件商品.现有一商品,价格在0~8000元之间,采取怎样的策略才能在较短的时间内说出比较接近的答案呢?

例2、一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少只小兔多少只鸡?

算法1:S1首先计算没有小兔时,小鸡的数为:17只,腿的总数为34条。

S2再确定每多一只小兔、减少一只小鸡增加的腿数2条。

S3再根据缺的腿的条数确定小兔的数量:(48-34)/2=7只

S4最后确定小鸡的数量:17-7=10只.

算法2:S1首先设只小鸡,只小兔。

S2再列方程组为:

S3解方程组得:

S4指出小鸡10只,小兔7只。

算法3:S1首先设只小鸡,则有只小兔

S2列方程

S3解方程得,则

S4指出小鸡10只,小兔7只.

算法4:S1“请一名驯兽师”所有小鸡抬一条腿,所有小兔抬两条腿

S2有小兔只

S3有小鸡只

S4指出小鸡10只,小兔7只.

算法5:S1有小兔只

S2有小鸡只

二分法:

对于区间[a,b]上连续不断,且f(a)f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,而得到零点近似值的方法叫做二分法.

例3(课本P4例2):写出用“二分法”求方程的近似解的算法.

算法分析:

令f(x)=,则方程的解就是函数f(x)的零点.

第一步,令f(x)=,给定精确度d.

第二步,确定区间[a,b],满足f(a)·f(b)0.

第三步,取区间中点.

第四步,若f(a)·f(m)0,则含零点的区间为[a,m],否则,含零点的区间为[m,b].

将新得到的含零点的区间仍记为[a,b];

第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.
(四)课堂小结,巩固反思

1、算法的主要特点:

(1)有限性:一个算法在执行有限步后必须结束;

(2)确切性:算法的每一个步骤和次序必须是确定的;

(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.

(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.

2、计算机解决任何问题都要依赖算法,算法是建立在解法基础上的操作过程,算法不一定要有运算结果.设计一个解决某类问题的算法的核心内容是将解决问题的过程分解为若干个明确的步骤,即算法,它没有一个固定的模式,但有以下几个基本要求:

(1)符合运算规则,计算机能操作;

(2)每个步骤都有一个明确的计算任务;

(3)对重复操作步骤作返回处理;

(4)步骤个数尽可能少;

(5)每个步骤的语言描述要准确、简明.

(五)布置作业

1.有A、B、C三个相同规格的玻璃瓶,A装着酒精,B装着醋,C为空瓶,请设计一个算法,把A、B瓶中的酒精与醋互换.

2.一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法.

解:算法或步骤如下:

S1人带两只狼过河;

S2人自己返回;

S3人带一只羚羊过河;

S4人带两只狼返回;

S5人带两只羚羊过河;

S6人自己返回;

S7人带两只狼过河;

S8人自己返回;

S9人带一只狼过河.

3.“鸡兔同笼”是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:

“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”

4.有人对歌德巴赫猜想“任何大于4的偶数都能写成两个奇质数之和”设计了如下操作步骤:

第一步:检验6=3+3

第二步:检验8=3+5

第三步:检验10=5+5

……

利用计算机无穷地进行下去!请问,利用这种程序能够证明猜想的正确性吗?这是一个算法吗?

精选阅读

程序框图


1.1.2程序框图
教学目标:理解程序框图的概念,学会画程序框图的规则
教学重点:理解程序框图的概念,学会画程序框图的规则
教学过程:
一、复习回顾
1、算法的概念:算法是解决某个特定问题的一种方法或一个有限过程。
2、算法的描述
(1)自然语言
(2)形式语言
(3)框图
二、程序框图的概念
1、通过例子:对任意三个实数a、b、c求出最大值。写出算法(两种方法)
2、程序框图也叫流程图,是人们将思考的过程和工作的顺序进行分析、整理,用规定的文字、符号、图形的组合加以直观描述的方法
3、程序框图的基本符号
起止框

输入输出框

处理框

判断框

连接点

循环框

用带有箭头的流程线连接图形符号

注释框

三、读图
例1、读如下框图分析此算法的功能

四、画流程图的基本规则
1、使用标准的框图符号
2、从上倒下、从左到右
3、开始符号只有一个退出点,结束符号只有一个进入点,判断符号允许有多个退出点
4、判断可以是两分支结构,也可以是多分支结构
5、语言简练
6、循环框可以被替代
五、例子
1、输入3个实数按从大到小的次序排序
2、用二分法求方程的近似解
课堂练习:第10页,练习A,练习B
小结:本节介绍程序框图的概念,学习了画程序框图的规则
课后作业:第19页,习题1-1A第1、2题

高中数学必修三《算法与程序框图》教案


一名爱岗敬业的教师要充分考虑学生的理解性,高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生更好的吸收课堂上所讲的知识点,帮助高中教师更好的完成实现教学目标。您知道高中教案应该要怎么下笔吗?为满足您的需求,小编特地编辑了“高中数学必修三《算法与程序框图》教案”,仅供参考,欢迎大家阅读。

高中数学必修三《算法与程序框图》教案设计

学习目标:

1.明确算法的含义,熟悉算法的三种基本结构:顺序、条件和循环,以及基本的算法语句.

2.能熟练运用辗转相除法与更相减损术、秦九韶算法、进位制等典型的算法知识解决同类问

题.

重点:

算法的基本知识与算法对应的程序框图的设计.

难点:

与算法对应的程序框图的设计及算法程序的编写.

要点梳理

知识点一:算法与程序框图

1.算法的定义:广义的算法是指完成某项工作的方法和步

骤,现代意义的算法是指可以用计算机来解决的某一类问

题的程序和步骤,这些程序或步骤必须是明确和有效的,

而且能够在有限步之内完成.

2.四种基本的程序框

3.三种基本逻辑结构

(1)顺序结构

(2)条件结构

(3)循环结构

要点诠释:

1.对于算法的理

解不能仅局限于解决

数学问题的方法,解

决任何问题的方法和

步骤都应该是算法.算法具有概括性、抽象性、

正确性等特点,要通过具体问题的过程和步骤

的分析去体会算法的思想,了解算法的含义.

2.在学习程序框图时要掌握各程序框的

作用,准确应用三种基本逻辑结构,即顺序结

构、条件分支结构、循环结构来画程序框图,

准确表达算法.

画程序框图是用基本语句来编

程的前提.知识点二:基本算法语句

1、输入语句

2、输出语句

3、赋值语句

4、条件语句

IF-THEN-ELSE格式

IF-THEN格式

5、循环语句

(1)WHILE语句

(2)UNTIL语句

要点诠释:

基本算法语句是程序设

计语言的组成部分,注意各语

句的作用,准确理解赋值语

句,灵活表达条件语句.计算机

能够直接或间接理解的程序语

言都包含输入语句、输出语句、

赋值语句、条件语句和循环语句

等基本算法语句.输入语句、输

出语句和赋值语句贯穿于大多

数算法的结构中,而算法中的条

件结构由条件语句来表述,循环

结构由循环语句来实现.学习中

要熟练掌握这些基本算法语句.知

识点三:算法案例

案例1、辗转相除法与更相减损术

1.利用辗转相除法求最大公

约数的步骤如下:

(1)用较大的数m

除以较小的

数n得到一个商(2)若

商和一个余数;≠0,则用除数n除以余数得到一个=0,则n为m,n的最大公约数;若;

为m,n的最大公约数;若

;„„

=0,此时所得到的和一个余数=0,则(3)若商≠0,则用除数除以余数得到一个和一个余数依次计算直至即为所求的最大公约数.2.更相减损术

(1)任意给出两个正数;判断它们是否都是偶数.若是,用2约简;若不是,执行第二步.

(2)以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.

案例2、秦九韶算法

用秦九韶算法求一般多项式f(x)=anxn+an-1xn-1+„.+a1x+a0当x=x0时的值.

把n次多项式的求值问题转化成求n个一次多项式的值的问题,即求

v1=anx+an-1

v2=v1x+an-2

v3=v2x+an-3

„„..

vn=vn-1x+a0

的值的过程.案例3、进位制

进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值.可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制.现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行计数.

要点诠释:

我国古代数学发展的主导思想,就是构造“算法”解决实际问题.通过对这些案例的阅读、理解,同学们可以体会它们蕴含的算法及其思想.

方法指导

1、在理解算法的基础上,掌握算法的基本思想,发展有条理的思考与表达能力,提高逻辑思维能力.会用算法的思想和方法解决实际问题.从熟知的问题出发,体会算法的程序化思想,通过实践,主动思维,经历不断的从具体到抽象,从特殊到一般的抽象概括活动来理解和掌握.

2、涉及具体问题的算法时,要根据题目进行选择,以简单、程序短、易于在计算机上执行为原则.

3、注意条件语句的两种基本形式及各自的应用范围以及对应的程序框图.条件语句与算法中的条件结构相对应,语句形式较为复杂,要会借助框图写出程序.

4、利用循环语句写算法时,要分清步长、变量初值、终值,必须分清循环次数是否确定,若确定,两种语句均可使用,当循环次数不确定时用while语句.

5、复习算法案例时,要体会其中蕴含的算法思想,并能利用它解决具体问题.对课本涉及到的几种算法,同学们要在理解的基础上掌握其程序,并深刻体会古代数学中的算法思想.

高中数学必修三1.1.2程序框图与算法的基本逻辑结构(2)导学案


1.1.2程序框图与算法的基本逻辑结构(2)
【学习目标】
1.理解算法的三个基本逻辑结构.
2.掌握画程序框图的基本规则,会画一个算法的程序框图.
【新知自学】
知识回顾:
1.程序框图的定义?
2.程序框图中的顺序结构的示意图?

新知梳理:
1.条件结构的程序框图
算法的流程根据有不同的流向,处理这种过程的结构就是条件结构.它有入口和出口,但最后只有一个终结口.
试画出条件结构的示意图:

2.循环结构的程序框图
在一些算法中,经常会出现从某处开始,按照
反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为.
试画出循环结构的示意图:

循环结构有两种主要结构形式,
和.你能说出它们的特征吗?

对点练习:
1.算法的三种基本结构是().
A.顺序结构、条件结构、循环结构
B.顺序结构、流程结构、循环结构
C.顺序结构、分支结构、流程结构
D.流程结构、循环结构、分支结构
2.算法有三种结构,下列说法正确的是().
A.一个算法只能含有一种逻辑结构
B.一个算法最多可以包含两种逻辑结构
C.一个算法必须含有上述三种逻辑结构
D.一个算法可以含有三种逻辑结构的任意组合
3.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构().
A.顺序结构
B.条件结构和循环结构
C.顺序结构和条件结构
D.没有任何结构
【合作探究】
典例精析
例题1、已知函数设计一个算法,输入自变量的值,输出对应的函数值.请写出算法步骤,并画出程序框图.

变式训练1、已知函数,试写出求该函数值的算法,并画出程序框图.

例题2、设计一个计算1+2+…+100的值的算法,并画出程序框图.

变式训练2、用程序框图表示:求

的值的一个算法.

例题3、求满足的最小正整数的程序框图.
给出以下一个程序框图,判断是否正确,若都不正确,请你给出一个正确的程序框图.

【课堂小结】

【当堂达标】
1.如图,阅读程序框图,则输出的=()
A.26B.35C.40D.57
2.如图所示的程序框图能判断任意输入的整数的奇偶性,则判断框内的条件是()
A.B.C.D.
3.如图所示的程序框图,输出的结果是,则输入的值为

【课时作业】
1.如图所示的是一个算法的程序框图,已知,输出的结果为7,则的值是()

A.9B.10C.11D.12
2.下列算法中,含有条件结构的是()
(A)1(B)2(C)3(D)4
A.求两个数的积
B.求点到直线的距离
C.解一元二次不等式
D.已知梯形两底和高求面积
3.如图所示的程序框图,其功能是()
A.输入的值,按从小到大的顺序输出它们的值
B.输入的值,按从大到小的顺序输出它们的值C.求的最大值
D.求的最小值

3.执行如图所示的程序框图,输出的T=

4.设计求的一个算法,并画出相应的程序框图.

高中数学必修3程序框图和算法的逻辑结构精品教案


作为优秀的教学工作者,在教学时能够胸有成竹,作为教师就要在上课前做好适合自己的教案。教案可以让学生能够听懂教师所讲的内容,帮助教师能够井然有序的进行教学。关于好的教案要怎么样去写呢?下面是小编精心收集整理,为您带来的《高中数学必修3程序框图和算法的逻辑结构精品教案》,欢迎大家阅读,希望对大家有所帮助。

高中数学必修三《程序框图和算法的逻辑结构》教案设计

第课时

一、教学目标:

知识与技能:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。

过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。

情感态度与价值观:通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。

二、重点与难点:

重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构

难点:能综合运用这些知识正确地画出程序框图。。

三,教学过程及教学情境设计:

第课时

问题

问题设计意图

师生活动

程序框图的概念

掌握程序框图的概念

生:阅读课本并给出课本中相应的概念表达

师:程序框图也叫流程图,是人们将思考的过程和工作的顺序进行分析、整理,用规定的文字、符号、图形的组合加以直观描述的方法

程序框图的图形符号及其名称和功能

培养学生的自学能力,识记程序框图的图形符号及其名称和功能

师:讲解课本P6表1-2并以提问的形式使学生识记各图形符号的名称和功能

生:能准确地作答

阅读图1.1-2观察程序框图的作法及各图形符号在作图中的方式

掌握程序框图的图形符号及初步掌握其作法

师:通过对图1.1-2的讲解,给出程序框图作法的规则:

(1)使用标准的图形符号。

(2)框图一般按从上到下、从左到右的方向画。

(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的惟一符号。

(4)判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

(5)在图形符号内描述的语言要非常简练清楚。

算法的基本逻辑结构有哪些?他们各自有什么特点?有什么区别和联系?

引入概念

生:通过阅读课本,能回答:顺序结构,条件结构和循环结构

师:通过对图1.1-3.4.5的讲解,使学生明白三种基本逻辑结构的图形特征

顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的

基本程序框图:P1.1-6

例3讲解

巩固顺序结构知识点

师:例3:已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。

算法分析:这是一个简单的问题,只需先算出p的值,再将它代入公式,最后输出结果,只用顺序结构就能够表达出算法。

程序框图:P1.1-7

课堂小结:

1,这节课主要介绍了三种基本逻辑结构及初步了解程序框图的作法

2,这节课重点通过例题介绍了顺序结构的应用

作业:

课后小结:

文章来源:http://m.jab88.com/j/28217.html

更多

最新更新

更多