老师会对课本中的主要教学内容整理到教案课件中,大家在认真准备自己的教案课件了吧。只有写好教案课件计划,才能够使以后的工作更有目标性!你们到底知道多少优秀的教案课件呢?下面是小编精心收集整理,为您带来的《实际问题与一元一次方程探索》,希望能为您提供更多的参考。
实际问题与一元一次方程探索探索实际问题与一元一次方程河北省迁安市扣庄中学兰义元
一、教材分析
(一)教材的地位和作用
本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.
(二)教材的重难点
本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.
二、教学目标分析
(一)知识技能目标
1.目标内容
(1)结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.
(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.
2.目标分析
(1)本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.
(2)七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.
(二)过程目标
1.目标内容
在活动中感受方程思想在数学中的作用,进一步增强应用意识.
2.目标分析
利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决.
(三)情感目标
1.目标内容
(1)在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.
(2)通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想.
2.目标分析
七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.
三、教材处理与教法分析
本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.
四、教学过程分析
(一)教学过程流程图
探究Ⅰ
(二)教学过程Ⅰ
(以探究为主线、形式多样化)
1.问题情境
(1)多媒体展示有关盈亏的新闻报道,感受生活实际.
(2)据此生活实例,展示探究Ⅰ,引入新课.
考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ.
2.讨论交流
(1)学生结合自己的生活实际,交流对“盈利”、“亏损”含义的理解.
(2)学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)
(3)要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由.在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识.
(4)师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价.
让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫.
3.建立模型
(1)学生自主探索,寻找已知量与未知量之间的关系,确定相等关系.
(2)学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价.
(3)师生互动:①两件衣服的进价和为________;②两件衣服的售价和为________;③由于进价________售价,由此可知两件衣服的盈亏情况.
(教师及时给出完整的解答过程)
学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得
3.4实际问题与一元一次方程
【本讲教育信息】
一.教学内容:
1.体会数学建模思想.
2.进一步探究如何用一元一次方程解决实际问题.
二.知识要点:
1.数学建模
这里所讲的数学建模是利用数学方法(一元一次方程)解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式(一元一次方程)表达,建立起数学模型,然后运用数学方法进行求解.建立数学模型的这个过程就称为数学建模.
2.用一元一次方程解决实际问题的几个注意事项
(1)先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再找出含有未知数的代数式,再找相等关系更为合理.
(2)所列方程两边的代数式的意义必须一致,单位要统一,数量关系一定要相等.
(3)要养成“验”的好习惯,即所求结果要使实际问题有意义.
(4)不要漏写“答”、“设”和“答”都不要丢掉单位名称.
(5)分析过程可以只写在草稿纸上,但一定要认真.
三.重点难点:
1.重点:进一步体现一元一次方程与实际的密切联系,渗透数学建模思想,培养运用一元一次方程分析和解决实际问题的能力.
2.难点:本讲问题的背景和表达都比较贴近实际,其中有些数量关系比较隐蔽,所以在探究过程中正确地列方程是主要难点.突破难点的关键是弄清问题背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系.
【典型例题】
例1.墙上钉着一根彩绳围成的梯形形状的饰物,如图中实线所示.小明将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图中虚线所示.小明所钉长方形的长、宽各为多少厘米?
分析:饰物形状变化前后有两个不变的量,一个是周长,另一个是变化前梯形的上底和变化后长方形的宽.根据题意可设长方形的长为x,则长方形的周长为2x+2×10,梯形的周长为10+10+10+6+10+6=52.则2x+20=52,从而解得x=16.
解:设小明所钉长方形的长为x,根据题意得:
2x+2×10=10+10+6+10+6+10
整理得,2x+20=52
解得,x=16
由于饰物变化前后长度为10的边没有变化,所以长方形的一边长为10厘米.
答:长方形的长为16厘米,宽为10厘米.
评析:图形变化问题的等量关系往往是变化前后的周长相等、面积相等、体积相等.
例2.一批货物,甲把原价降低10元卖出,用售价的10%做积累,乙把原价降低20元,用售价的20%做积累,若两种积累一样多,则这批货物的原售价是多少?
分析:设这批货物的原售价为x元,则甲的积累是(x-10)×10%元,乙的积累是(x-20)×20%,相等关系是:甲的积累=乙的积累.
解:设这批货物的原售价为x元,根据题意得:
(x-10)×10%=(x-20)×20%
化简得:x-10=2(x-20)
即x-10=2x-40
解得x=30
答:这批货物的原售价为30元.
评析:这个问题的相等关系比较简单,难点是对两个百分数的处理.
例3.(2008年广东湛江)某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?
分析:根据题意,所得的19分是踢胜的场数和踢平的场数所得的积分,而踢胜的场数和踢平的场数共14-5=9场,如果设胜了x场,那么踢平的场数就是9-x场.分别乘它们的分值,和为19.
解:设胜了x场,根据题意得:
3x+1×(14-x-5)=19
即3x+9-x=19
解得x=5
答:这个队胜了5场.
评析:积分多少与胜、平、负的场数相关,同时也与比赛积分规定有关,如果对体育比赛有一定了解,会有助于理解题意.
例4.(2008年安徽)某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率.
分析:数量关系如下表:
上个月
这个月
石油进口量
1
1-5%
进口石油费用
1
1+14%
石油价格
1
1+x解:设这个月的石油价格相对上个月的增长率为x.根据题意得:
(1+x)(1-5%)=1+14%
解得x==20%
答:这个月的石油价格相对上个月的增长率为20%.
评析:借助表格来分析较复杂的数量关系.这道题所用的相等关系是:数量×价格=费用.
例5.(2007年上海)2001年以来,我市药店积极实施药品降价,累计降价的总金额为269亿元.五次药品降价的年份与相应降价金额如下表所示,表中缺失了2003年,2007年的相关数据.已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中信息,求2003年和2007年的药品降价金额.
年份
2001
2003
2004
2005
2007
降价金额(亿元)
54
35
40分析:相等关系较为明显,可以根据累计降价的总金额为269亿元列方程,结合表格如果设2003年降价金额为x亿元,则2007年降价金额为6x亿元,有54+x+35+40+6x=269.
解:设2003年降价金额为x亿元,根据题意得:
54+x+35+40+6x=269
整理得,7x=140
解得,x=20
6x=6×20=120
答:2003年和2007年药品降价金额分别是20亿元和120亿元
评析:这个问题是以表格形式传递信息的,这种形式在现实中很普遍,重点培养从不同形式获取有关数据信息,是值得注意的问题.
例6.(2008年希望杯初一第1试)初一(1)班有学生60人,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少5人,并且这两个小组都不参加的人数比两个小组都参加的人数的多2人,则同时参加这两个小组的人数是()
A.16B.12C.10D.8
分析:数量关系如下:①全班共60人;②参加数学小组的36人;③参加英语小组的是36-5=31人;④设同时参加两个小组的人数是x人;⑤两个小组都不参加的人数是(x+2)人.如图所示,可以得另外两个数量关系:⑥只参加数学小组的(36-x)人;⑦只参加英语小组的(31-x)人.图中四部分相加和为60.即(x+2)+(36-x)+(36-5-x)+x=60.解得:x=12.
解:B
评析:这道题的数量关系非常复杂,但是结合图形可以使其变得很明朗.
【方法总结】
应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一.
【模拟试题】(答题时间:60分钟)
一.选择题
1.实验中学七年级(2)班有学生56人,已知男生人数比女生人数的2倍少11人,求男生和女生各多少人?下面设未知数的方法,合适的是()
A.设总人数为x人B.设男生比女生多x人
C.设男生人数是女生人数的x倍D.设女生人数为x人
2.甲厂的年产值为7450万元,比乙厂的年产值的5倍还多420万元,若设乙厂的年产值为x万元,下列所列方程中错误的是()
A.5x+420=7450B.7450-5x=420
C.7450-(5x+420)=0D.5x-420=7450
3.某种品牌的彩电降价30%后,每台售价为a元,则该品牌彩电每台原价应为()
A.0.7a元B.0.3a元C.元D.元
4.A、B两城相距720km,普快列车从A城出发120km后,特快列车从B城开往A城,6h后两车相遇.若普快列车是特快列车速度的,且设普快列车速度为xkm/h,则下列所列方程错误的是()
A.720-6x=6×x+120B.720+120=6(x+x)
C.6x+6×x+120=720D.6(x+x)+120=720
5.用两根长12cm的铁丝分别围成正方形和长与宽之比为2∶1的长方形,则长方形和正方形的面积依次为()
A.9cm2和8cm2B.8cm2和9cm2C.32cm2和36cm2D.36cm2和32cm2
*6.有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则他的飞机票价格应是()
A.800元B.1000元C.1200元D.1500元
二.填空题
1.(2006年河北)一件运动衣按原价的八折出售时,售价是40元,则原价为_____元.
2.买4本练习本与3枝铅笔一共用了4.7元.已知铅笔每枝0.5元,则练习本每本_____元.
*3.一个长方形鸡场的一边靠墙,墙的对面有一个2m宽的门,另三边(门除外)用篱笆围成,篱笆总长33m,若鸡场的长∶宽=3∶2(尽量用墙),则鸡场的长为__________m,宽为__________m.
4.某市居民2007年末的储蓄存款达到9079万元,比2006年末的储蓄存款的15倍还多4万元,则2006年末的存款为__________.
5.(2008年甘肃省白银)某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是__________.
**6.(2008年广东茂名)依法纳税是每个公民应尽的义务,新的《中华人民共和国个人所得税法》规定,从2008年3月1日起,公民全月工薪不超过2000元的部分不必纳税,超过2000元的部分应缴纳个人所得税,此项税款按下表分段累进计算.黄先生4月份缴纳个人所得税税金55元,那么黄先生该月的工薪是__________元.
全月应纳税所得税额
税率
不超过500元的部分
5%
超过500元至2000元的部分
10%
…
…三.列方程解应用题
1.(2006年吉林)据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?
*2.甲、乙两个工人接受了加工一批服装的任务,规定两人各加工这批服装的一半,已知乙的工作效率相当于甲的,工作了8小时,甲完成了自己的任务,这时乙还差24件服装没有完成.这批服装共有多少件?
3.如图所示,小红将一个正方形剪去一个宽为4cm的长条后,再从剩下的长方形纸片上沿平行短边的方向剪去一个宽为5cm的长条.若两次剪下的长条面积正好相等,那么每一长条的面积为多少?原正方形的面积为多少?
**4.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节约用水的目的.该市规定了如下的用水标准:每户每月的用水不超过6m3时,水费按每立方米a元收费;超过6m3时,不超过部分每立方米仍按a元收费,超过部分每立方米按b元收费.
该市居民张大爷一家今年3、4月份的用水量和水费如下表:
月份
用水量/m3
水费/元
3
5
7.5
4
9
27设该户每月用水量为x(m3),应缴水费y(元).
(1)求a、b的值,写出用水不超过6m3和超过6m3时,y与x之间的代数表达式;
(2)若张大爷一家今年5月份的用水量为8m3,该户5月份应缴的水费是多少?
**5.振华中学为进一步推进素质教育,把素质教育落到实处,利用课外兴趣小组活动开展棋类教学活动,以提高学生的思维能力,开发智力,七年级一班有50名同学,通过活动发现只有1人象棋、围棋都不会下,有30人象棋、围棋都会下,且会下象棋的学生比会下围棋的学生多7人.
(1)若设会下围棋的有x个人,你能列出方程并证明x是35、36、37三个数中的哪一个吗?
(2)你知道只会下象棋不会下围棋的人数吗?
【试题答案】
一.选择题
1.D2.D3.D4.B5.B6.C
二.填空题
1.50
2.0.8
3.1510(提示:可设长为3x,宽为2x,则3x+2x+2x-2=33)
4.605万元
5.x+20=0.8×150
6.2800提示:设黄先生4月份的工薪是x元,如果x在2000元~2500元,则5%(x-2000)=55,解得x=3100,不符合题意;如果x在2500元~4000元,则10%(x-2000-500)+5%×500=55,解得x=2800.所以黄先生4月份的工薪是2800元.
三.列方程解应用题
1.解:设严重缺水城市有x座,根据题意得:
4x-50+2x+x=664
解得,x=102
答:严重缺水城市有102座.
2.解:设甲每小时加工服装x件,则乙的工作效率是每小时加工x件,根据题意得:
8x=x×8+24
去分母整理得:8x=120
8x正好是甲完成的工作量,这个工作量又是总数的一半,所以这批服装有120×2=240件.
答:这批服装共有240套.
另解:设这批服装共有2x件,则x×=(x-24),解得x=120,2x=240.
3.解:设原正方形的边长为xcm,列方程为:
4x=5(x-4)
解得,x=20
4×20=80(cm2),20×20=400(cm2)
答:每一长条的面积为80cm2,原正方形的面积为400cm2.
4.解:(1)3月份用水5m3不超过6m3,所以水费按每立方米a元收取,所以5a=7.5,所以a=1.5;
4月份用水9m3,所以7.5+(9-6)·b=27,解得:b=6.5.
不超过6m3时,y=1.5x;
超过6m3时,y=7.5+6.5(x-6)
(2)由(1)可得当x=8时,y=7.5+6.5(x-6)
即y=7.5+6.5×2=20.5(元)
答:略
5.(1)设会下围棋的学生有x人,则会下象棋的学生为(x+7)人,那么只会下围棋的学生有(x-30)人,只会下象棋的学生为(x+7-30)人,根据题意得:
x+x+7-30=50-1,
把x=35,x=36,x=37分别代入方程,有x=36成立,
所以会下围棋的有36人.
(2)会下象棋不会下围棋的有x+7-30=36+7-30=13(人).
每个老师上课需要准备的东西是教案课件,规划教案课件的时刻悄悄来临了。是时候对自己教案课件工作做个新的规划了,接下来的工作才会更顺利!你们了解多少教案课件范文呢?考虑到您的需要,小编特地编辑了“探究实际问题与一元一次方程”,希望对您的工作和生活有所帮助。
数学教学设计
授课教师:授课时间:课型:新授
课题:3.4探究实际问题与一元一次方程主备人
教
学
目
标基础知识:掌握一元一次方程得解法,了解销售中的数量关系。
基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。
基本思想
方法:通过将实际问题转化成数学问题,培养学生的建模思想;
基本活动经验体会解决实际问题的一般步骤及盈亏中的关系
教学
重点探索并掌握列一元一次方程解决实际问题的方法,
教学
难点找出已知量与未知量之间的关系及相等关系。
教具资料准备教师准备:课件
学生准备:书、本
教学过程自备
补充集备
补充
一、创设情景引入新课
观察图片引课(见大屏幕)
二、探究
探究销售中的盈亏问题:
1、商品原价200元,九折出售,卖价是元.
2、商品进价是30元,售价是50元,则利润
是元.
2、某商品原来每件零售价是a元,现在每件降价10%,降价后每件零售价是元.
3、某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为元.
4、某商品按定价的八折出售,售价是14.8元,则原定售价是.
(学生总结公式)
熟悉各个量之间的联系有助于熟悉利润、利润率售价进价之间联系
三、探究一
某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25﹪,另一件亏损25﹪,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
分析:售价=进价+利润
售价=(1+利润率)×进价
练习:(1)随州某琴行同时卖出两台钢琴,每台售价为960元。其中一台盈20%,另一台亏损20%。这次琴行是盈利还是亏损,或是不盈不
亏?
(2)某文具店有两个进价不同的计算器都卖64元,
其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?
(3)某商场把进价为1980元的商品按标价的八折出售,仍
获利10%,则该商品的标价为元.
注:标价×n/10=进(1+率)
(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的
价格,某种药品在2005年涨价30%后,2007降价70%至a元,
则这种药品在2005年涨价前价格为元.
四、小结
通过本节课的学习你有哪些收获?你还有哪些疑惑?
亏损还是盈利对比售价与进价的关系才能加以判断
小组研究解决提出质疑
优生展示讲解质疑
五、作业布置:
板
书
设
计一元一次方程的应用-----盈亏问题
相关的关系式:例题
课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。
文章来源:http://m.jab88.com/j/16120.html
更多