88教案网

有理数的减法(1)导学案

教案课件是老师工作中的一部分,大家在着手准备教案课件了。将教案课件的工作计划制定好,这样我们接下来的工作才会更加好!你们知道适合教案课件的范文有哪些呢?下面的内容是小编为大家整理的有理数的减法(1)导学案,欢迎阅读,希望您能够喜欢并分享!

1.3有理数的加减法(3)有理数的减法(1)导学案设计
题目1.3有理数的加减法(3)有理数的减法(1)课时1
学校星火
一中教者年级七年学科数学
设计
来源自我设计教学
时间9月18日



标1.理解有理数减法法则,能熟练进行减法运算.
2.会将减法转化为加法,进行加减混合运算,体会化归思想.

点有理数的减法法则的理解,将有理数减法运算转化为加法运算.

点有理数的减法法则的理解,将有理数减法运算转化为加法运算.
学习方法讲授




程一、情境引入:
1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)
2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少?
探索新知:
(一)有理数的减法法则的探索
1.我们不妨看一个简单的问题:(-8)-(-3)=?
也就是求一个数“?”,使(?)+(-3)=-8
根据有理数加法运算,有(-5)+(-3)=-8
所以(-8)-(-3)=-5①
2.这样做减法太繁了,让我们再想一想有其他方法吗?
试一试
做一个填空:(-8)+()=-5
容易得到(-8)+(+3)=-5②
思考:比较①、②两式,我们有什么发现吗?
3.验证:
(1)如果某天A地气温是3℃,B地气温是-5℃,A地比B地气温高多少?
3-(-5)=3+;
(2)如果某天A地气温是-3℃,B地气温是-5℃,A地比B地气温高多少?
(-3)-(-5)=(-3)+;
(2)如果某天A地气温是-3℃,B地气温是5℃,A地比B地气温高多少?
(-3)-5=(-3)+;
(二)有理数的减法法则归纳
1.说一说:两个有理数减法有多少种不同的情形?
2.议一议:在各种情形下,如何进行有理数的减法计算?
3.试一试:你能归纳出有理数的减法法则吗?
由此可推出如下有理数减法法则:
减去一个数,等于加上这个数的相反数。
字母表示:
由此可见,有理数的减法运算可以转化为加法运算。
【思考】:两个有理数相减,差一定比被减数小吗?
说明:(1)被减数可以小于减数。如:1-5;
(2)差可以大于被减数,如:(+3)-(-2);
(3)有理数相减,差仍为有理数;
(4)大数减去小数,差为正数;小数减大数,差为负数;
(三)问题:
问题1.计算:
①15-(-7)②(-8.5)-(-1.5)③0-(-22)
④(+2)-(+8)⑤(-4)-16⑥
问题2.(1)-13.75比少多少?
(2)从-1中减去-与-的和,差是多少?
(四)课堂反馈:
1.求出数轴上两点之间的距离:
(1)表示数10的点与表示数4的点;
(2)表示数2的点与表示数-4的点;
(3)表示数-1的点与表示数-6的点。
归纳总结:
1.有理数减法法则2.有理数减法运算实质是一个转化过程



评【知识巩固】
1.下列说法中正确的是()
A减去一个数,等于加上这个数.B零减去一个数,仍得这个数.
C两个相反数相减是零.D在有理数减法中,被减数不一定比减数或差大.
2.下列说法中正确的是()
A两数之差一定小于被减数.
B减去一个负数,差一定大于被减数.
C减去一个正数,差不一定小于被减数.
D零减去任何数,差都是负数.
3.若两个数的差不为0的是正数,则一定是()
A被减数与减数均为正数,且被减数大于减数.
B被减数与减数均为负数,且减数的绝对值大.
C被减数为正数,减数为负数.
4.下列计算中正确的是()
A(—3)-(—3)=—6B0-(—5)=5
C(—10)-(+7)=—3D|6-4|=—(6-4)
5.(1)(—2)+________=5;(—5)-________=2.
(2)0-4-(—5)-(—6)=___________.
(3)月球表面的温度中午是1010C,半夜是-153oC,则中午的温度比半夜高____.
(4)已知一个数加—3.6和为—0.36,则这个数为_____________.
(5)已知b0,则a,a-b,a+b从大到小排列________________.
(6)0减去a的相反数的差为_______________.
(7)已知|a|=3,|b|=4,且ab,则a-b的值为_________.
6.计算
(1)(—2)-(—5)(2)(—9.8)-(+6)
(3)4.8-(—2.7)(4)(—0.5)-(+)

(5)(—6)-(—6)(6)(3-9)-(21-3)

(7)|—1-(—2)|-(—1)

(8)(—3)-(—1)-(—1.75)-(—2)

7.已知a=8,b=-5,c=-3,求下列各式的值:
(1)a-b-c;(2)a-(c+b)

8.若a0,b0,则a,a+b,a-b,b中最大的是()
A.aB.a+bC.a-bD.b

9.请你编写符合算式(-20)-8的实际生活问题。

教学反思:
1、本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生学习的引导者、伙伴的新型师生关系.
2、在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力.另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的。

扩展阅读

有理数的减法


老师会对课本中的主要教学内容整理到教案课件中,大家在认真准备自己的教案课件了吧。只有写好教案课件计划,才能够使以后的工作更有目标性!你们到底知道多少优秀的教案课件呢?下面是小编精心收集整理,为您带来的《有理数的减法》,希望能为您提供更多的参考。

1.4.2有理数的减法(2)
教学目标:
1、知识与技能
进一步理解有理数加法法则和减法法则,能熟练地进行有理数加减的混合运算,提高运算能力。
2、过程与方法
经过探索有理数的加减混合运算,使学生弄清加法和减法的运算可以统一成加法运算。加法运算可以省略括号及括号前的“+”号。
重点、难点:1、重点:有理数加减法的混合运算。
2、难点:有理数加减法的混合运算。
教学过程:
一、创设情景,导入新课
1、(小黑板)一架飞机作特技表演,起飞后的高度变化如下表:
高度变化记作
上升4.5千米+4.5千米
下降3.2千米-3.2千米
上升1.1千米+1.1千米
下降1.4千米-1.4千米
此时飞机比起飞点高多少千米?
2、学生分小组讨论这个总量,学生根据表中右表赢余的有理数相加求和,易得此时飞机比起飞点高的高度为:
(+4.5)+(-3.2)+1.1+(-1.4)=1(千米)
3、教师引导学生根据高度变化情况,起点定为0,上升用加法运算,下降用减法运算,也可求出此时飞机比起飞点高的高度:
0+4.5-3.2+1.1-1.4
=1.3+1.1-1.4
=2.4-1.4
=1(千米)
二、合作交流,解读探究
1、教师提出问题:比较以上两种算法,你发现了什么?
2、师生共同分析:我们发现:
4.5-3.2+1.1-1.4=(+4.5)+(-3.2)+1.1+(-1.4)
这个等式左边是加减混合运算,等式右边只有加法运算,也就是说,对有理数的加减混合运算统一成了加法运算,反过来,等式
(+4.5)+(-3.2)+1.1+(-1.4)=4.5-3.2+1.1-1.4也成立,这就是说,如果式子是几个正数或负数的和的形式,加号可以省略,这个数的括号也可以省略。
三、应用迁移,巩固提高
1、计算:(1)(-8)-(-3)+7-2(2)3.12-3.08-(-4.88)
学生先在练习本上解答,然后分小组交流不同的解法并进行比较
2、计算:--(-)+(-)
教师引导学生运用用加法交换律和结合律来简化运算
解:原式=+(-)++(-)
=(+)+[(-)+(-)]
=1-

教师指出:此题交换-和的位置,目的是命名同分母的分数先相加,简化运算。但要注意在交换
数的位置时,要连同它前面的符号一起交换。
练习:课本P.26第1、2、3题
四、总结反思
本节课我们是在学习有理数加法和减法的基础上,进一步学习将有理数加减混合运算统一成加法运算,以及把式子写成省略加号和括号的形式。注意在有理数加减混合运算时,一般先应转换为加法运算,然后省略括号,再计算。
五、作业:P.27习题1.4A组经3、9、10题

教学后记

有理数的加法与减法(1)教学案


每个老师在上课前需要规划好教案课件,是时候写教案课件了。只有规划好新的教案课件工作,才能更好的在接下来的工作轻装上阵!你们会写适合教案课件的范文吗?为了让您在使用时更加简单方便,下面是小编整理的“有理数的加法与减法(1)教学案”,仅供参考,大家一起来看看吧。

2.5有理数的加法(1)
学习目标:
1、探索有理数加法法则,初步体验分类思想;
2、理解有理数的加法法则,能熟练进行整数加法运算;
学习重点:理解有理数加法法则并进行应用。
学习难点:师生共同合作探索有理数加法法则。
学习过程:
一、创设情境:
足球队甲、乙两队比赛,主场甲队4:1胜乙队,
赢了3球,客场甲队1:3负乙队,输了2球,A
队两场比赛累计净胜球1个,你能把这个结果用
算式表示出来吗?
议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:
赢球数净胜球算式
主场客场
3‐2
‐32
32
‐3‐2
30
0‐3

你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考:
例如:第一天水位下降了5厘米,第二天水位上涨了8厘米,两天水位变化情况是上涨了3厘米.用算式表示这个结果。
算式:_______________________
二、数学实验
1.把笔尖放在数轴的原点处,先向左移5个长度单位,再向右移3个长度单位,这时笔尖的位置在那个数上?用算式表示这个过程和结果。
算式:________________________

2.把笔尖放在数轴的原点处,先向正方向移3个长度单位,再向负方向移2个长度单位,这时笔尖的位置在那个数上?用算式表示这个过程和结果。

算式:________________________

3.把笔尖放在原点处,先向负方向移动3个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?请用算式表示以上过程及结果。

算式:________________________

仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.
3.观察、思考、讨论、交流并得出有理数加法法则。

讨论:两个有理数相加时,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?

有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
一个数与0相加,仍得这个数.

三.例题讲解
1.计算下列各题:
(1)(-15)+(-3)
(2)(-180)+(+20)
(3)5+(-5)
(4)0+(-2)

2.练一练
和的符号确定绝对值和
(+4)+(+7)
(-8)+(-3)
(-9)+(+5)
(-6)+(+6)
(-7)+0
8+(-1)
3.利用有理数加法解决问题.
某仓库原有粮食80吨,第一天运进粮食54吨,第二天又运出粮食32吨,现在仓库共有粮食多少吨?

四.练一练:
1.规定扑克牌中的黑色数字为正数,红色数字为负数,且J为11,Q为12,K为13,A为1,2张JOKER为0,计算下列各组两张牌面数字之和.

2.数学活动:
从一副扑克牌中任意抽出2张,请你的同桌计算两数之和,然后交换抽牌与计算。
五.课堂小结

思考:两个有理数相加,和一定比两个加数大吗?

【课后作业】
一、选择题:
1、一个正数与一个负数的和是
A、正数B、负数
C、零D、以上三种情况都有可能
2、绝对值不大于3的所有整数的和为
A、6,B、-6C、±6D、0
3、两个有理数的和
A、一定大于其中的一个加数B、一定小于其中的一个加数
C、大小由两个加数符号决定D、大小由两个加数的符号及绝对值而决定
二、判断
1.绝对值相等的两个数的和为0()
2.若两个有理数的和为负数,则这两个数至少有一个是负数()
3.如果某数比-5大2,则这个数的绝对值是3()
三、填空题:
1、⑴(+3)+(+7)=______⑵(+3)+(—8)=_______
⑶(—12)+(—5)=_________⑷(—37)+22=_________
⑸0+(—19)=___________⑹(—7)+|—5|=_________
2、若|m|=2,|n|=5,且m>n,则m+n=___________
四、计算;
⑴(+10)+(—4)⑵(—15)+(—32)⑶(—9)+0

⑷(—0.5)+4.4⑸(—1.25)+1⑹+(—1)

五、列式解答
(1)一个数与-5的差为-8,求这个数

(2)一个数与9的差为-5,求这个数

六、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?

七、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。

有理数的乘法(1)导学案


1.4有理数的乘除法(1)有理数的乘法(1)导学案设计
题目1.4有理数的乘除法(1)有理数的乘法(1)课时1
学校星火
一中教者刘占国年级七年学科数学
设计
来源自我设计教学
时间9月21日



标1.了解有理数乘法的实际意义,理解有理数的乘法法则;
2.能熟练地进行有理数的乘法运算.

点积的符号的确定

点积的符号的确定

学习方法



程一、情境引入:
什么叫乘法运算?
求几个相同加数的和的运算。如2+2+2+2+2=2×5;
(-2)+(-2)+(-2)+(-2)+(-2)=(-2)×5
像(-2)×5这样带有负数的式子怎么运算?

二、探究学习:
1、在水文观测中,常遇到水位上升与下降的问题,请根据日常生活经验,回答下列问题:
(1)如果水位每天上升4cm,那么3天后的水位比今天高还是低?高(或低)多少?

(2)如果水位每天上升4cm,那么3天前的水位比今天高还是低?高(或低)多少?

(3)如果水位每天下降4cm,那么3天后的水位比今天高还是低?高(或低)多少?

(4)如果水位每天下降4cm,那么3天前的水位比今天高还是低?高(或低)多少?

我们规定水位上升为正,水位下降为负;几天后为正,几天前为负;你能用正数或负数表示上述问题吗?你算的结果与经验一致吗?

2、两个有理数相乘,积的符号怎样确定?积的绝对值怎样确定?小组讨论,总结、归纳得出有理数乘法法则。
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与0相乘都得0。
问题1、计算(1)(-4)×5;(2)(-5)×(-7)
解:(1)(-4)×5;(2)(-5)×(-7)
=-(4×5)(异号得负,绝对值相乘)=+(5×7)(同号得正,绝对值相乘)
=-20=35
注:计算时,先定符号,再把绝对值相乘,切勿与加法混淆。
练一练:书38页
4、我们已经学会了两个有理数相乘,那多个有理数相乘又如何运算呢?
(-2)×3×4×5×6=-720
(-2)×(-3)×4×5×6=720
(-2)×(-3)×(-4)×5×6=-720
(-2)×(-3)×(-4)×(-5)×6=720
(-2)×(-3)×(-4)×(-5)×(-6)=-720
积的符号怎样确定?积的绝对值怎样确定?你发现规律了吗?
小组讨论,总结、归纳得:
多个有理数乘法法则:几个不等于0的数相乘,积的符号由负因数的个数来确定。当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;几个数相乘,有一个因数为0时,积就为0。
问题2、计算:
(1)-4×12×-0.5(2)-37×-45×-724

练一练:
(1)-15×2.5×-716×-8(2)-35×-56×-6




评1.填空
_______×(-2)=-6;(-3)×______=9;______×(-5)=0
2.选择:
1.一个有理数与它的相反数的积()
A.是正数B.是负数C.一定不大于0D.一定不小于0
2.下列说法中正确的是()
A.同号两数相乘,符号不变
B.异号两数相乘,取绝对值较大的因数的符号
C.两数相乘,积为正数,那么这两个数都为正数
D.两数相乘,积为负数,那么这两个数异号
3.两个有理数,它们的和为正数,积也为正数,那么这两个有理数()
A.都是正数B.都是负数C.一正一负D.符号不能确定
4.如果两个有理数的积小于零,和大于零,那么这两个有理数()
A.符号相反B.符号相反且绝对值相等
C.符号相反且负数的绝对值大D.符号相反且正数的绝对值大
5.若ab=0,则()
A.a=0B.b=0C.a=0或b=0D.a=0且b=0
6.两个有理数a,b满足下列条件,能确定a,b的正负吗()
A.a+b>0,ab<0B.a+b>0,ab>0
C.a+b<0,ab<0D.a+b<0,ab>0
3.判断
①同号两数相乘,取原来的符号,并把绝对值相乘。()
②两数相乘积为正,则这两个因数都为正。()
③两数相乘积为负,则这两个因数都为负。()
④一个数乘(-1),便得这个数的相反数。()
4、计算:
(1)-4×-7(2)6×-8(3)-524×-135
(4)-25×16(5)3×-5×-7×4

(6)15×-17×-2009×0

(7)-8×[――14](8)5×-1――4×-14

5、规定一种新的运算:a△b=a×b-a-b+1.如,3△4=3×4-3-4+1
(1)计算-5△6=;
(2)比较大小:-3△44△-3
6、初一年级共100名学生,在一次数学测试中以90分为标准,超过的记为正,不足的记为负,成绩如下:
人数10205141218104962
成绩-1+3-2+1+10+20-7+7-9-12
请你算出这次考试的平均成绩.
你有什么收获?

教学反思:
本节内容是学生在小学学习过的乘法以及初中学习了有理数的加法,减法及混合运算的基础上,进一步学习的基本运算,它既是对前面知识的延续,又是以后学习有理数除法等数学知识的铺垫,起了承上启下的作用.对经历有理数乘法法则的探索过程,使学生体验分类讨论的数学思想方法.在教学设计上,强调自主学习,注重交流合作,让学生在自主探索过程中理解和掌握有理数的乘法法则,并获得数学活动的经验,提高学习能力.
本节课在教学过程中有以下几个亮点,值得在以后的教学中加以借鉴:
1、本教学设计教学目标明确、重难点突出,符合新课程的要求。我在备课时,钻研教材,从学生的认知水平和基础出发,精心编写学案,力求让每个学生在数学课上都能学习有价值的数学。以一个生动的例子引入课题,使学生对有理数乘法有较好的认识,达到在观察中感受、在尝试中探索、在练习中发现、并自主归纳的目的。学生刚认识“负数”这个新朋友,在有理数加减混合运算后,学习有理数的乘法,会有一定的困扰。预期学生会在符号上出现问题,故在学案的编写中,注意这个环节的设计,让学生在课堂上最大限度的把问题呈现,我及时发现并纠正这些问题,体现为每一个学生着想的理念。一节课下来,学生从生动有趣的“蜗牛爬行”例子入手,初步掌握有理数乘法法则的关键所在——符号的确定,然后就都是小学的乘法知识,使学生在轻松愉快的氛围下自主学习。同时,根据学生的个别差异,有效地进行分层,完成强化练习,有效地开展课内技能训练。
2、本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意学生从“蜗牛爬行“的例子中发现有理数乘法区别,自主归纳出法则。对有理数相乘法则的探究过程中,运用了分类的数学思想和方法,体现了数学建摸的过程和数学与生活的密切关系,兼顾思想、方法和趣味。例题,练习以及思考探究题目的选择,兼顾了不同层次学生的思维水平,学生在讨论发言中的各种灵活方式成为课堂上的亮点。
3、教学要面向学生的生活世界和社会实践,教学活动必须尊重学生已有的知识与经验,学生原有的知识和经验是学习的基础,学生的学习是在原有知识和经验基础上的自我生成的过程。探索有理数乘法法则是本节课的重点,同时它又是一个具有探索性又有挑战性的问题,因此在这一教学环节花了大量的时间,精心设计了问题训练单,将学生分学习小组开展学习合作学习,使学生经历了法则的探索过程,获得了深层次的情感体验,建构知识,获得了解决问题的方法,培养了学生的探索精神和创新能力。为了让学生将获得的新知识纳入到原有的认知结构中去,便于记忆和提取,在教学的最后环节,我组织学生对有理数的乘法和有理数的加法进行对比,通过讨论、比较使知识系统化、条理化,从而使自己的认知结构不断地得以优化。采取分层作业的方式,让不同的人在数学学习中得到了不同的发展,使每个人的认识都得到完善,这正是新课程发展的核心理念──为了每一位学生的发展的具体体现。本节课在新课引入和法则探究两个教学环节中,我的设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习。
本节课主要不足体现在:
(1)在探究法则的过程中,尽管在情景中的实际含义是由学生完成的,但教师的教学痕迹还是比较明显,可以更加开发一些;探究的程度不够。
(2)在组织教材方面,显得完全抛弃了教材的导入法则的过程,在这方面处理的不适当。
(3)总体设计前轻后重,而且对学生字母表示数的掌握水平估计过高。
(4)课堂组织语言还有待加强,课堂组织的不够严谨,有点松弛。
(5)对学生灵活方法的鼓励和及时评价,还要进一步提高。

文章来源:http://m.jab88.com/j/16080.html

更多

最新更新

更多