第二课时直线与平面平行的性质
(一)教学目标
1.知识与技能
掌握直线与平面平行的性质定理及其应用.
2.过程与方法
学生通过观察与类比,借助实物模型性质及其应用.
3.情感、态度与价值观
(1)进一步提高学生空间想象能力、思维能力.
(2)进一步体会类比的作用.
(3)进一步渗透等价转化的思想.
(二)教学重点、难点
重点:直线和平面平行的性质.
难点:性质定理的证明与灵活运用.
(三)教学方法
讲练结合
教学过程教学内容师生互动设计意图
新课导入1.直线与平面平行的判定定理
2.直线与平面的位置关系
3.思考:如果直线和平面平行、那么这条直线与这个平面内的直线是有什么位置关系?投影幻灯片,师生共同复习,并讨论思考题.复习巩固
探索新知直线与平面平行的性质
1.思考题:一条直线与一个平面平行,那么在什么条件下,平面内的直线与这条直线平行?
2.例1如图a∥a,=b.求证:a∥b.
证明:因为=b,所以.
因为a∥,所以a与b无公共点.
又因为,所以a∥b.
3.定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
简证为:线面平行则线线平行.
符号表示:
师:投影问题,学生回答.
生:当平面内的直线与这条直线共面时两条直线平行.
师:为什么?
生:由条件知两条直线没有公共点,如果它们共面,那么它们一定平行.
师投影例1并读题,学生分析,教师板书,得出定理.
师:直线与平面平行的性质定理揭示了直线与平面平行中蕴含直线与直线平行.通过直线与平面平行可得到直线与直线平行,这给出了一种作平行线的重要方法.通过讨论板书加深对知识的理解.培养学生书写的能力.
典例剖析例2如图所示的一块林料中,棱BC平行平面A′C′.
(1)要经过面A′C′内一的点P和棱BC将木料锯开,应怎样画线?
(2)所画的线与平面AC是什么位置关系?
解:(1)如图,在平面A′C′,过点P作直线EF,使EF∥B′C′,并分别交棱A′B′,C′D′于点E,F.连接BE,CF.则EF、BE、CF就是应画的线.
(2)因为棱BC平行于平面A′C′,平面BC′与平面A′C′交于B′C′,所以,BC∥B′C′.由(1)知,EF∥BC,因此
.
BE、CF显然都与平面AC相交.师投影例2并读题,学生思考.
师分析:经过木料表面A′C′内一点P和棱BC将木锯开,实际上是经过BC及BC外一点P作截面,也就是作出平面与平面的交线,现在请大家思考截面与平面A′C′的交线EF与BC的位置关系如何?怎样作?
生:由直线与平面平行的性质定理知BC∥EF,又BC∥B′C′,故只须过点P作EF∥B′C′即可.
教师板书第一问,学生完成第二问,教师给予点评.巩固所学知识培养学生空间想象能力,转化化归能力及书写表达能力.
例题剖析例3已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.
如图,已知直线a、b,平面,且a∥b,a∥,a、b都在平面外.
求证:b∥
证明:过a作平面,使它与平面相交,交线为c.
因为a∥,,=c,所以a∥c
因为a∥b,所以b∥c
又因为,所以b∥.教师投影例3并读题,师生共同画出图形,写出已知,求证.
师:要证,可转证什么问题.
生:转证直线b与平面内的一条直线平行.
师:但这种直线在已知图线中不存在,怎么办呢?
生:利用条件,先作一平面与相交c,则a与交线c平行,又a∥b∴b∥c
师表扬,并共同完成板书过程巩固所学知识培养学生空间想象能力,转化化归能力及书写表达能力.
随堂练习1.如图,正方体的棱长是a,C,D分别是两条棱的中点.
(1)证明四边形ABCD(图中阴影部分)是一个梯形;
(2)求四边形ABCD的面积.
2.如图,平面两两相交,a,b,c为三条交线,且a∥b.那么,a与c,b与c有什么关系?为什么?
学生独立完成
1.答案:
(1)如图,CD∥EF,EF∥AB,CD∥AB.又CD≠AB,所以四边形ABCD是梯形.
(2)
2.答案:因为且a∥b,由,得;又得a∥c,所以a∥b∥c.巩固所学知识
归纳总结
1.线线平行线面平行
2.在学习性质定时注意事项学生归纳后教师总结完善构建知识系统思维的严谨性.
课后作业2.2第二课时习案学生独立完成提高知识
整合能力
备选例题
例1如图,a∥,A是另一侧的点,B、C、D∈a,线段AB、AC、AD交a于E、F、G点,若BD=4,CF=4,AF=5,求EG.
解:∴A、a确定一个平面,设为.
∵B∈a,∴B∈,又A∈,
∴AB同理
∵点A与直线a在的异侧
∴与相交,
∴面ABD与面相交,交线为EG
∵BD∥,BD面BAD,面BAD=EG
∴BD∥EG,∴△AEG∽△ABD.∴(相似三角形对应线段成比例)
第一课时直线与平面平行、平面与平面平行的判定
(一)教学目标
1.知识与技能
(1)理解并掌握直线与平面平行、平面与平面平行的判定定理;
(2)进一步培养学生观察、发现的能力和空间想象能力;
2.过程与方法
学生通过观察图形,借助已有知识,掌握直线与平面平行、平面与平面平行的判定定理.
3.情感、态度与价值观
(1)让学生在发现中学习,增强学习的积极性;
(2)让学生了解空间与平面互相转换的数学思想.
(二)教学重点、难点
重点、难点:直线与平面平行、平面与平面平行的判定定理及应用.
(三)教学方法
借助实物,让学生通过观察、思考、交流、讨论等理解判定定理,教师给予适当的引导、点拔.
教学过程教学内容师生互动设计意图
新课导入1.直线和平面平行的重要性
2.问题(1)怎样判定直线与平面平行呢?
(2)如图,直线a与平面平行吗?教师讲述直线和平面的重要性并提出问题:怎样判定直线与平面平行?
生:直线和平面没有公共点.
师:如图,直线和平面平行吗?
生:不好判定.
师:直线与平面平行,可以直接用定义来检验,但“没有公共点”不好验证所以我们来寻找比较实用又便于验证的判定定理.复习巩固点出主题
探索新知一.直线和平面平行的判定
1.问题2:如图,将一本书平放在桌面上,翻动收的封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?
2.问题3:如图,如果在平面内有直线b与直线a平行,那么直线a与平面的位置关系如何?是否可以保证直线a与平面平行?
2.直线和平面平行的判定定理.
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.
符号表示:
教师做实验,学生观察并思考问题.
生:平行
师:问题2与问题1有什么区别?
生:问题2增加了条件:平面外.直线平行于平面内直线.
师投影问题3,学生讨论、交流教师引导,要讨论直线a与平面有没有公共点,可转化为下面两个问题:(1)这两条直线是否共面?(2)直线a与平面是否相交?
生1:直线a∥直线b,所以a、b共面.
生2:设a、b确定一个平面,且,则A为的公共点,又b为面的公共直线,所以A∈b,即a=A,但a∥b矛盾
∴直线a与平面不相交.
师:根据刚才分析,我们得出以下定理………
师:定理告诉我们,可以通过直线间的平行,推证直线与平面平行.这是处理空间位置关系一种常用方法,即将直线与平面平行关系(空间问题)转化为直线间平行关系(平面问题).通过实验,加深理解.通过讨论,培养学生分析问题的能力.
画龙点睛,加深对知识理解完善知识结构.
典例分析例1已知:空间四边形ABCD,E、F分别是AB、AD的中点.
求证EF∥平面BCD.
证明:连结BD.在△ABD中,
因为E、F分别是AB、AD的中点,
所以EF∥BD.
又因为BD是平面ABD与平面BCD的交线,平面BCD,
所以EF∥平面BCD.
师:下面我们来看一个例子(投影例1)
师:EF在面BCD外,要证EF∥面BCD,只要证明EF与面BCD内一条直线平行即可,EF与面BCD内哪一条直线平行?
生:连结BD,BD即所求
师:你能证明吗?
学生分析,教师板书
启发学生思维,培养学生运用知识分析问题、解决问题的能力.
探索新知二.平面与平面平行的判定
例2给定下列条件
①两个平面不相交
②两个平面没有公共点
③一个平面内所有直线都平行于另一个平面
④一个平面内有一条直线平行于另一个平面
⑤一个平面内有两条直线平行于另一个平面
以上条件能判断两个平面平行的有①②③
2.平面与平面平行的判定定理:
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行符号表示:
教师投影例2并读题,学生先独立思考,再讨论最后回答.
生:由两个平面的位置关系知①正确;由两个平面平行的定义知②③正确;两个平面相交,其中一个平面内有无数条直线与另一个平面平行,故④⑤错误,选①②③
师(表扬),如果将条件⑤改为两条相交直线呢?
如图,借助长方体模型,平面ABCD内两条相交直线AC,BD分别与平面A′B′C′D′内两条相交直线A′C′,B′D′平行,由直线与平面平行的判定定理可知,这两条直交直线AC,BD都与平面A′B′C′D′平行.此时,平面ABCD平行于平面A′B′C′D′.一方面复习巩固已学知识,另一方面通过开放性题目培养学生探索知识的积极性.
借助模型解决,一方面起到示范作用,另一方面给学生直观感受,有利定理的掌握.
典例分析例3已知正方体ABCD–A1B1C1D1证:平面AB1D1∥平面C1BD.
证明:因为ABCD–A1B1C1D1为正方体,
所以D1C1∥A1B1,D1C1=A1B1
又AB∥A1B1,AB=A1B1
所以D1C1BA为平行四边形.
所以D1A∥C1B.
又平面C1BD,平面C1BD
由直线与平面平行的判定定理得
D1A∥平面C1BD
同理D1B1∥平面C1BD
又
所以平面AB1D1∥平面C1BD.
点评:线线平行线面平行面面平行.教师投影例题3,并读题
师:根据面面平行的判定定理,结论可转化为证面AB1D内有两条相交直线平行于面C1BD,不妨取直线D1A、D1B1,而要证D1A∥面C1BD,证AD1∥BC1即可,怎样证明?
学生分析,老师板书,然后师生共同归纳总结.巩固知识,培养学生转化化归能力
随堂练习1.如图,长方体ABCD–A′B′C′D′中,
(1)与AB平行的平面是.
(2)与AA′平行的平面是.
(3)与AD平行的平面是.
2.如图,正方体,E为DD1的中点,试判断BD1与平面AEC的位置关系并说明理由.
3.判断下列命题是否正确,正确的说明理由,错误的举例说明:
(1)已知平面,和直线m,n,若则;
(2)一个平面内两条不平行直线都平行于另一平面,则;
4.如图,正方体ABCD–A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点.求证:平面AMN∥平面EFDB.
5.平面与平面平行的条件可以是()
A.内有无穷多条直线都与平行.
B.直线a∥,a∥,E且直线a不在内,也不在内.
C.直线,直线,且a∥,b∥
D.内的任何直线都与平行.学生独立完成
答案:
1.(1)面A′B′C′D′,面CC′DD′;(2)面DD′C′C,面BB′C′C;(3)面A′D′B′C′,面BB′C′C.
2.直线BD1∥面AEC.
3.(1)命题不正确;
(2)命题正确.
4.提示:容易证明MN∥EF,NA∥EB,进而可证平面AMN∥平面EFDB.
5.D巩固所学知识
归纳总结1.直线与平面平行的判定
2.平面与平面平行的判定
3.面面平行线面平行线线平行
4.借助模型理解与解题学生归纳、总结、教师点评完善反思、归纳所学知识,提高自我整合知识的能力.
作业2.2第一课时习案学生独立完成固化知识
提升能力
备选例题
例1在正方体ABCD–A1B1C1D1中,E、F分别为棱BC、C1D1的中点.求证:EF∥平面BB1D1D.
【证明】连接AC交BD于O,连接OE,则OE∥DC,OE=.
∵DC∥D1C1,DC=D1C1,F为D1C1的中点,
∴OE∥D1F,OE=D1F,四边形D1FEO为平行四边形.
∴EF∥D1O.
又∵EF平面BB1D1D,D1O平面BB1D1D,
∴EF∥平面BB1D1D.
例2已知四棱锥P–ABCD中,底面ABCD为平行四边形.点M、N、Q分别在PA、BD、PD上,且PM:MA=BN:ND=PQ:QD.求证:平面MNQ∥平面PBC.
【证明】∵PM∶MA=BN∶ND=PQ∶QD.
∴MQ∥AD,NQ∥BP,
而BP平面PBC,NQ平面PBC,∴NQ∥平面PBC.
又∵ABCD为平行四边形,BC∥AD,
∴MQ∥BC,
而BC平面PBC,MQ平面PBC,
∴MQ∥平面PBC.
由MQ∩NQ=Q,根据平面与平面平行的判定定理,
∴平面MNQ∥平面PBC.
【评析】由比例线段得到线线平行,依据线面平行的判定定理得到线面平行,证得两条相交直线平行于一个平面后,转化为面面平行.一般证“面面平面”问题最终转化为证线与线的平行.
1.5.2平面与平面平行的判定
一、教学目标:1、知识与技能:理解并掌握两平面平行的判定定理。2、过程与方法:让学生通过观察实物及模型,得出两平面平行的判定。3、情感、态度与价值观:进一步培养学生空间问题平面化的思想。
二、教学重点、难点:重点:两个平面平行的判定。难点:判定定理、例题的证明。
三、学法与教法
1、学法:学生借助实物,通过观察、类比、思考、探讨,教师予以启发,得出两平面平行的判定。2、教法:探究讨论法
四、教学过程
(一)创设情景、引入课题
引导学生观察、思考教材第57页的观察题,导入本节课所学主题。
(二)研探新知
问题提出:
1.空间两个不同平面的位置关系有哪几种情况?
2.两个平面平行的基本特征是什么?有什么简单办法判定两个平面平行呢?
知识探究(一):平面与平面平行的背景分析
思考1:根据定义,判定平面与平面平行的关键是什么?
思考2:若一个平面内的所有直线都与另一个平面平行,那么这两个平面的位置关系怎样?若一个平面内有一条直线与另一个平面有公共点,那么这两个平面的位置关系又会怎样呢?
思考3:三角板的一条边所在直线与桌面平行,这个三角板所在平面与桌面平行吗?
思考4:三角板的两条边所在直线分别与桌面平行,三角板所在平面与桌面平行吗?
思考5:一般地,如果平面α内有一条直线平行于平面β,那么平面α与平面β一定平行吗?如果平面α内有两条直线平行于平面β,那么平面α与平面β一定平行吗?
知识探究(二):平面与平面平行的判定定理
思考1:对于平面α、β,你猜想在什么条件,下可保证平面α与平面β平行?
思考2:设a,b是平面α内的两条相交直线,且a//β,b//β.在此条件下,若α∩β=l,则直线a、b与直线l的位置关系如何?
思考3:通过上述分析,我们可以得到判定平面与平面平行的一个定理,你能用文字语言表述出该定理的内容吗?
再通过长方体模型,引导学生观察、思考、交流,得出结论。
两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
符号表示:
aβ
bβ
a∩b=Pβ∥α
则a∥αb∥α
例1在正方体ABCD-A′B′C′D′中.求证:平面AB′D′∥平面BC′D.
(学生讨论自证,教师准对问题讲评)
例2在三棱锥P-ABC中,点D、E、F分别是△PAB、△PBC、△PAC的重心,求证:平面DEF//平面ABC.
(学生讨论自证,教师准对问题讲评)P
教师指出:判断两平面平行的方法有三种:
(1)用定义;F
(2)判定定理;DE
(3)垂直于同一条直线的两个平面平行。
2、例2引导学生思考后,教师讲授。AC
例子的给出,有利于学生掌握该定理的应用。B
(三)自主学习、加深认识:练习:教材第59页1、2、3题。学生先独立完成后,教师指导讲评。
(四)归纳整理、整体认识
1、判定定理中的线与线、线与面应具备什么条件?
2、在本节课的学习过程中,还有哪些不明白的地方,请向老师提出。
(五)作业布置:第65页习题2.2A组第7题。
五、教后反思:
1.5.1直线与平面平行的判定
一、教学目标
1、知识与技能:(1)理解并掌握直线与平面平行的判定定理;(2)进一步培养学生观察、发现的能力和空间想象能力;
2、过程与方法:学生通过观察图形,借助已有知识,掌握直线与平面平行的判定定理。
3、情感、态度与价值观:(1)让学生在发现中学习,增强学习的积极性;(2)让学生了解空间与平面互相转换的数学思想。
二、教学重点、难点
重点、难点:直线与平面平行的判定定理及应用。
三、学法与教法
1、学法:学生借助实例,通过观察、思考、交流、讨论等,理解判定定理。
2、教法:探究讨论法
四、教学过程
(一)创设情景、揭示课题
引导学生观察身边的实物,如教材第55页观察题:封面所在直线与桌面所在平面具有什么样的位置关系?如何去确定这种关系呢?这就是我们本节课所要学习的内容。
(二)研探新知
1、探究问题
直线a与平面α平行吗?
若α内有直线b与a平行,
那么α与a的位置关系如何?
是否可以保证直线a与平面α平行?
学生思考后,师生共同探讨,得出以下结论
直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。
符号表示:
aα
bβ=a∥α
a∥b
2、例1引导学生思考后,师生共同完成:该例是判定定理的应用,让学生掌握将空间问题转化为平面问题的化归思想。
例1求证::空间四边形相邻两边中点的连线平行于经过另外两边所在的平面.
证明:连结BD,在△ABD中,因为E、F,分别是AB、AD的中点,∴EF∥BD又EF平面BCD,
BD平面BCD,EF∥平面BCD
A
C
→改写:已知:空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF//平面BCD.
→分析思路→学生试板演
例2在正方体ABCD-A’B’C’D’中,E为DD’中点,试判断BD’与面AEC的位置关系,并说明理由.
→分析思路→师生共同完成→小结方法→变式训练:还可证哪些线面平行
(三)自主学习、发展思维(让学生独立完成,教师检查、指导、讲评。)
1、判断对错
直线a与平面α不平行,即a与平面α相交.(×)
直线a∥b,直线b平面α,则直线a∥平面α.(×)
直线a∥平面α,直线b平面α,则直线a∥b.(∨)
2、判断题
①一条直线平行于一个平面,这条直线就与这个平面内的任意直线不相交。(∨)
②过平面外一点有且只有一条直线与已知平面平行。(×)
③过直线外一点,有且只有一个平面与已知直线平行。(×)
④a、b是异面直线,则过b存在唯一一个平面与a平行。(∨)
⑤过直线外一点只能引一条直线与这条直线平行.(∨)
⑥如果一条直线不在平面内,则这条直线就与这个平面平行。(×)
⑦若两条直线都和第三条直线垂直,则这两条直线平行.(×)
⑧若两条直线都和第三条直线平行,则这两条直线平行.(∨)
3、如图,长方体的六个面都是矩形,则(1)与直线AB平行的平面是。
【平面A1C1与平面DC1】(2)与直线AD平行的平面是。【平面BC1与平面A1C1】
(3)与直线AA1平行的平面是。【平面BC1与平面DC1】
4、已知:E、F、G、H分别为空间四边形ABCD中各边的中点,求证:AC∥平面EFGH,BD∥平面EFGH。
(四)归纳整理:1、同学们在运用该判定定理时应注意什么?2、在解决空间几何问题时,常将之转换为平面几何问题。3、方法一根据定义判定;方法二根据判定定理判定:直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。线线平行线面平行
(五)作业
1、教材第64页习题2.2A组第3题;
2、预习:如何判定两个平面平行?
五、教后反思:
文章来源:http://m.jab88.com/j/14135.html
更多