88教案网

数系的扩充与复数的概念

俗话说,凡事预则立,不预则废。教师要准备好教案,这是教师需要精心准备的。教案可以让学生能够在教学期间跟着互动起来,帮助教师在教学期间更好的掌握节奏。教案的内容要写些什么更好呢?小编特地为大家精心收集和整理了“数系的扩充与复数的概念”,希望对您的工作和生活有所帮助。

3.1.1数系的扩充与复数的概念
【教学目标】
(1)在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用理解复数的基本概念
(2)理解复数的基本概念以及复数相等的充要条件
(3)了解复数的代数表示方法
【教学重难点】
重点:引进虚数单位i的必要性、对i的规定、复数的有关概念
难点:实数系扩充到复数系的过程的理解,复数概念的理解
【教学过程】
一、创设情景、提出问题
问题1:我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?

问题2:类比引进,就可以解决方程在有理数集中无解的问题,怎么解决在实数集中无解的问题呢?

问题3:把实数和新引进的数i像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数?
二、学生活动
1.复数的概念:
⑴虚数单位:数__叫做虚数单位,具有下面的性质:
①_________
②______________________________________________
⑵复数:形如__________叫做复数,常用字母___表示,全体复数构成的集合叫做______,常用字母___表示.
⑶复数的代数形式:_________,其中____叫做复数的实部,___叫做复数的虚部,复数的实部和虚部都是___数.
(4)对于复数a+bi(a,b∈R),
当且仅当_____时,它是实数;
当且仅当_____时,它是实数0;
当_______时,叫做虚数;
当_______时,叫做纯虚数;
2.学生分组讨论
⑴复数集C和实数集R之间有什么关系?

⑵如何对复数a+bi(a,b∈R)进行分类?

⑶复数集、实数集、虚数集、纯虚数集之间的关系,可以用韦恩图表示出来吗?
3.练习:
(1).下列数中,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么?
2+2i,0.618,2i/7,0,
5i+8,3-9i
(2)、判断下列命题是否正确:
(1)若a、b为实数,则Z=a+bi为虚数
(2)若b为实数,则Z=bi必为纯虚数
(3)若a为实数,则Z=a一定不是虚数
三、归纳总结、提升拓展
例1实数m分别取什么值时,复数
z=m+1+(m-1)i
是(1)实数?(2)虚数?(3)纯虚数?
解:

归纳总结:
确定复数z=a+bi是实数、虚数、纯虚数的条件是:练习:实数m分别取什么值时,复数
z=m2+m-2+(m2-1)i
是(1)实数?(2)虚数?(3)纯虚数?
两个复数相等,即两个复数相等的充要条件是它们的实部与虚部分别对应相等.也就是
a+bi=c+di_______________________(a、b、c、d为实数)
由此容易出:a+bi=0_______________________
例2已知x+2y+(2x+6)i=3x-2,其中,x,y为实数,求x与y.

四、反馈训练、巩固落实
1、若x,y为实数,且2x-2y+(x+y)i=x-2i
求x与y.

2、若x为实数,且(2x2-3x-2)+(x2-5x+6)i=0,求x的值.

相关阅读

数系的扩充与复数的引入


数系的扩充与复数的引入

1、了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用.
2、理解复数的基本概念以及复数相等的充要条件
3、了解复数的代数表示法及其几何意义,能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.

重视复数的概念和运算,注意复数问题实数化.
第1课时复数的有关概念

1.复数:形如的数叫做复数,其中a,b分别叫它的和.
2.分类:设复数:
(1)当=0时,z为实数;
(2)当0时,z为虚数;
(3)当=0,且0时,z为纯虚数.
3.复数相等:如果两个复数相等且相等就说这两个复数相等.
4.共轭复数:当两个复数实部,虚部时.这两个复数互为共轭复数.(当虚部不为零时,也可说成互为共轭虚数).
5.若z=a+bi,(a,bR),则|z|=;z=.
6.复平面:建立直角坐标系来表示复数的平面叫做复平面,x轴叫做,叫虚轴.
7.复数z=a+bi(a,bR)与复平面上的点建立了一一对应的关系.
8.两个实数可以比较大小、但两个复数如果不全是实数,就比较它们的大小.

例1.m取何实数值时,复数z=+是实数?是纯虚数?
解:①z是实数
②z为纯虚数
变式训练1:当m分别为何实数时,复数z=m2-1+(m2+3m+2)i是(1)实数?(2)虚数?(3)纯虚数?(4)零?
解:(1)m=-1,m=-2;(2)m≠-1,m≠-2;(3)m=1;(4)m=-1.
例2.已知x、y为共轭复数,且,求x.
解:设代入由复数相等的概念可得
变式训练2:已知复数z=1+i,如果=1-i,求实数a,b的值.
由z=1+i得
==(a+2)-(a+b)i
从而,解得.
例3.若方程至少有一个实根,试求实数m的值.
解:设实根为,代入利用复数相等的概念可得=
变式训练3:若关于x的方程x2+(t2+3t+tx)i=0有纯虚数根,求实数t的值和该方程的根.
解:t=-3,x1=0,x2=3i.提示:提示:设出方程的纯虚数根,分别令实部、虚部为0,将问题转化成解方程组.
例4.复数满足,试求的最小值.
设,则,
于是
变式训练4:已知复平面内的点A、B对应的复数分别是、,其中,设对应的复数为.
(1)求复数;
(2)若复数对应的点P在直线上,求的值.
解:(1)
(2)将代入
可得.

1.要理解和掌握复数为实数、虚数、纯虚数、零时,对实部和虚部的约束条件.
2.设z=a+bi(a,bR),利用复数相等和有关性质将复数问题实数化是解决复数问题的常用方法.
第2课时复数的代数形式及其运算

1.复数的加、减、乘、除运算按以下法则进行:
设,则
(1)=;
(2)=;
(3)=().
2.几个重要的结论:

⑵==.
⑶若z为虚数,则=
3.运算律
⑴=.
⑵=.
⑶=.

例1.计算:
解:提示:利用
原式=0
变式训练1:求复数
(A)(B)(C)(D)
解:故选C;
例2.若,求
解:提示:利用
原式=
变式训练2:已知复数z满足z2+1=0,则(z6+i)(z6-i)=▲.
解:2
例3.已知,问是否存在复数z,使其满足(aR),如果存在,求出z的值,如果不存在,说明理由
解:提示:设利用复数相等的概念有
变式训练3:若,其中是虚数单位,则a+b=__________
解:3
例4.证明:在复数范围内,方程(为虚数单位)无解.
证明:原方程化简为
设、y∈R,代入上述方程得
将(2)代入(1),整理得无实数解,∴原方程在复数范围内无解.
变式训练4:已知复数z1满足(1+i)z1=-1+5i,z2=a-2-i,其中i为虚数单位,a∈R,若,求a的取值范围.
解:由题意得z1==2+3i,
于是==,=.
由,得a2-8a+70,1a7.

1.在复数代数形式的四则运算中,加减乘运算按多项式运算法则进行,除法则需分母实数化,必须准确熟练地掌握.
2.记住一些常用的结果,如的有关性质等可简化运算步骤提高运算速度.
3.复数的代数运算与实数有密切联系但又有区别,在运算中要特别注意实数范围内的运算法则在复数范围内是否适用.
复数章节测试题
一、选择题
1.若复数(,为虚数单位)是纯虚数,则实数的值为()
A、-6B、13C.D.
2.定义运算,则符合条件的复数对应的点在()
A.第一象限;B.第二象限;C.第三象限;D.第四象限;
3.若复数是纯虚数(是虚数单位),则实数()
A.-4;B.4;C.-1;D.1;
4.复数=()
A.-IB.IC.2-iD.-2+i
6.若复数在复平面上对应的点位于第二象限,则实数a的取值范围是()
A.B.C.D.
7.已知复数z满足,则z=()
(A)-1+i(B)1+i(C)1-i(D)-1-i
8.若复数,且为纯虚数,则实数为()
A.1B.-1C.1或-1D.0
9.如果复数的实部和虚部相等,则实数等于()
(A)(B)(C)(D)
10.若z是复数,且,则的一个值为()
A.1-2B.1+2C.2-D.2+
11.若复数为纯虚数,其中为虚数单位,则=()
A.B.C.D.
12.复数在复平面中所对应的点到原点的距离为()
A.12B.22C.1D.2
二、填空题
13.设,a,b∈R,将一个骰子连续抛掷两次,第一次得到的点数为a,第二次得到的点数为b,则使复数z2为纯虚数的概率为.
14.设i为虚数单位,则.
15.若复数z满足方程,则z=.

16..已知实数x,y满足条件,(为虚数单位),则的最小值是.
17.复数z=,则|z|=.
18.虚数(x-2)+y其中x、y均为实数,当此虚数的模为1时,的取值范围是()
A.[-,]B.∪(
C.[-,]D.[-,0∪(0,
19.已知(a0),且复数的虚部减去它的实部所得的差等于,求复数的模.

20..复平面内,点、分别对应复数、,且,,
,若可以与任意实数比较大小,求的值(O为坐标原点).

复数章节测试题答案
一、选择题
1.A2.答案:A3.答案:B
4.答案:B
6.答案:A
7.A
8.B
9.B
10.B
11.D
12.B
二、填空题
13.
14.2i
15.
16.答案:22
17.答案:
18.答案:B∵,设k=,
则k为过圆(x-2)2+y2=1上点及原点
的直线斜率,作图如下,k≤,
又∵y≠0,∴k≠0.由对称性选B.
【帮你归纳】本题考查复数的概念,以及转化与化归的数学思维能力,利用复数与解析几何、平面几何之间的关系求解.虚数一词又强调y≠0,这一易错点.
【误区警示】本题属于基础题,每步细心计算是求解本题的关键,否则将会遭遇“千里之堤,溃于蚁穴”之尴尬.
19.解:
20.解:依题意为实数,可得

数系的扩充与复数的引入导学案及练习题


一、基础过关
1.“复数a+bi(a,b∈R)为纯虚数”是“a=0”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2.下列命题正确的是()
A.若a∈R,则(a+1)i是纯虚数
B.若a,b∈R且ab,则a+ib+i
C.若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1
D.两个虚数不能比较大小
3.以-5+2i的虚部为实部,以5i+2i2的实部为虚部的新复数是()
A.2-2iB.-5+5i
C.2+iD.5+5i
4.若(x+y)i=x-1(x,y∈R),则2x+y的值为()
A.12B.2C.0D.1
5.若复数z=(x2-1)+(x-1)i为纯虚数,则实数x的值为()
A.-1B.0C.1D.-1或1
二、能力提升
6.若sin2θ-1+i(2cosθ+1)是纯虚数,则θ的值为()
A.2kπ-π4(k∈Z)B.2kπ+π4(k∈Z)
C.2kπ±π4(k∈Z)D.k2π+π4(k∈Z)
7.z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i,且z1=z2,则实数m=______,n=______.
8.给出下列几个命题:
①若x是实数,则x可能不是复数;
②若z是虚数,则z不是实数;
③一个复数为纯虚数的充要条件是这个复数的实部等于零;
④-1没有平方根.
则其中正确命题的个数为________.
9.已知集合M={1,2,(a2-3a-1)+(a2-5a-6)i},N={-1,3},若M∩N={3},
则实数a=________.
10.实数m分别为何值时,复数z=2m2+m-3m+3+(m2-3m-18)i是(1)实数;(2)虚数;(3)纯虚数.

11.已知(2x-y+1)+(y-2)i=0,求实数x,y的值.

12.设z1=m2+1+(m2+m-2)i,z2=4m+2+(m2-5m+4)i,若z1z2,求实数m的取值范围.

高二文科数学选修1-2数系的扩充和复数的概念导学案


石油中学高二文科数学选修1-2导学案---复数
§3-1数系的扩充和复数的概念
学习目标:
1、了解引进复数的必要性;理解并掌握虚数的单位i
2、理解并掌握虚数单位与实数进行四则运算的规律
3、理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部)理解并掌握复数相等的有关概念
学习重点:
复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.
学习难点:
虚数单位i的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i并同时规定了它的两条性质之后,自然地得出的.在规定i的第二条性质时,原有的加、乘运算律仍然成立
自主学习
一、知识回顾:
数的概念是从实践中产生和发展起来的,由于计数的需要,就产生了1,2及表示“没有”的数0.自然数的全体构成自然数集N为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然NQ.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有ZQ、NZ.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集
有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集
因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数,叫做虚数单位.并由此产生的了复数
二、新课研究:
1、虚数单位:
(1)它的平方等于-1,即;
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.
2.与-1的关系:就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-!
2、的周期性:4n+1=i,4n+2=-1,4n+3=-i,4n=1
3、复数的定义:形如的数叫复数,叫复数的实部,叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示*
4、复数的代数形式:复数通常用字母z表示,即,把复数表示成a+bi的形式,叫做复数的代数形式
5、复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.
6、复数集与其它数集之间的关系:NZQRC.
7、两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等
这就是说,如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d
复数相等的定义是求复数值,在复数集中解方程的重要依据一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i与4+3i不能比较大小.
现有一个命题:“任何两个复数都不能比较大小”对吗?不对如果两个复数都是实数,就可以比较大小只有当两个复数不全是实数时才不能比较大小

例题讲解
例1请说出复数的实部和虚部,有没有纯虚数?
答:它们都是虚数,它们的实部分别是2,-3,0,-;虚部分别是3,,-,-;-i是纯虚数.
例2复数-2i+3.14的实部和虚部是什么?
答:实部是3.14,虚部是-2.
易错为:实部是-2,虚部是3.14!
例3实数m取什么数值时,复数z=m+1+(m-1)i是:
(1)实数?(2)虚数?(3)纯虚数?
[分析]因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实数、虚数和纯虚数的条件可以确定m的值.
解:(1)当m-1=0,即m=1时,复数z是实数;
(2)当m-1≠0,即m≠1时,复数z是虚数;
(3)当m+1=0,且m-1≠0时,即m=-1时,复数z是纯虚数.
例4已知(2x-1)+i=y-(3-y)i,其中x,y∈R,求x与y.
解:根据复数相等的定义,得方程组,所以x=,y=4
课堂巩固
1、设集合C={复数},A={实数},B={纯虚数},若全集S=C,则下列结论正确的是()
A.A∪B=CB.A=BC.A∩B=D.B∪B=C
2、复数(2x2+5x+2)+(x2+x-2)i为虚数,则实数x满足()
A.x=-B.x=-2或-C.x≠-2D.x≠1且x≠-2
3、复数z1=a+|b|i,z2=c+|d|i(a、b、c、d∈R),则z1=z2的充要条件是______.
4、已知m∈R,复数z=+(m2+2m-3)i,当m为何值时,(1)z∈R;(2)z是虚数;(3)z是纯虚数;(4)z=+4i.
归纳反思

课后探究
1、设复数z=log2(m2-3m-3)+ilog2(3-m)(m∈R),如果z是纯虚数,求m的值.

2、若方程x2+(m+2i)x+(2+mi)=0至少有一个实数根,试求实数m的值.

2019年选修1-2数学第3章数系的扩充与复数的引入学案(苏教版)


俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是高中教师需要精心准备的。教案可以更好的帮助学生们打好基础,帮助高中教师营造一个良好的教学氛围。优秀有创意的高中教案要怎样写呢?下面是小编精心收集整理,为您带来的《2019年选修1-2数学第3章数系的扩充与复数的引入学案(苏教版)》,欢迎大家阅读,希望对大家有所帮助。

3.1数系的扩充
问题1:方程2x2-3x+1=0.试求方程的整数解?方程的实数解?
提示:方程的整数解为1,方程的实数解为1和.
问题2:方程x2+1=0在实数范围内有解吗?
提示:没有解.
问题3:若有一个新数i满足i2=-1,试想方程x2+1=0有解吗?
提示:有解,x=i.
问题4:实数a与实数b和i相乘的结果相加,结果记作a+bi,这一新数集形式如何表示?
提示:C={a+bi|a,bR}.
1.虚数单位i
我们引入一个新数i,叫做虚数单位,并规定:
(1)i2=-1.
(2)实数可以与i进行四则运算,进行四则运算时,原有的加法、乘法运算律仍然成立.
2.复数的概念
形如a+bi(a,bR)的数叫做复数.全体复数所组成的集合叫做复数集,记作C.
3.复数的代数形式
复数通常用字母z表示,即z=a+bi(a,bR),其中a与b分别叫做复数z的实部与虚部.
问题1:复数z=a+bi(a,bR),当b=0时,z是什么数?
提示:当b=0时,z=a为实数.
问题2:复数z=a+bi(a,bR),当a=0时,z是什么数?
提示:当a=b=0时,z=0为实数;当a=0,b0,z=bi为纯虚数.
1.复数z=a+bi
2.两个复数相等的充要条件是它们的实部和虚部分别相等.
1.注意复数的代数形式z=a+bi中a,bR这一条件,否则a,b就不一定是复数的实部与虚部.
2.复数集是实数集的扩充,两个实数可以比较大小,但若两个复数不全为实数,则不能比较大小.在复数集里,一般没有大小之分,但却有相等与不相等之分.
[例1]实数m为何值时,复数z=+(m2+2m-3)i是(1)实数?(2)虚数?(3)纯虚数?
[思路点拨]分清复数的分类,根据实部与虚部的取值情况进行判断.
[精解详析](1)要使z是实数,m需满足m2+2m-3=0,且有意义,即m-10,解得m=-3.
(2)要使z是虚数,m需满足m2+2m-30,且有意义,即m-10,解得m1且m-3.
(3)要使z是纯虚数,m需满足=0,且m2+2m-30,解得m=0或m=-2.
[一点通]z=a+bi(a,bR)是复数的基本定义,由a,b的取值来确定z是实数、虚数、纯虚数还是零.在解题时,关键是确定复数的实部和虚部.
1.若复数z=(x2-1)+(x-1)i为纯虚数,则实数x的值为________.
解析:∵z=(x2-1)+(x-1)i是纯虚数,
x=-1.
答案:-1
2.已知复数2+,i,0i,5i+8,i(1-),i2,其中纯虚数的个数为________.
解析:∵0i=0,i2=-1,
纯虚数有i,i.
答案:2
3.当实数m为何值时,复数z=+(m2-2m)i为
(1)实数?(2)虚数?(3)纯虚数?
解:(1)当
即m=2时,
复数z是实数;
(2)当m2-2m0,
即m0.
且m2时,
复数z是虚数;
(3)当
即m=-3时,复数z是纯虚数.
[例2]已知M={1,(m2-2m)+(m2+m-2)i},P={-1,1,4i},若MP=P,求实数m的值.
[思路点拨]因为MP=P,所以M?P,从而可建立关于m的关系式,进而求得m的值.
[精解详析]∵M={1,(m2-2m)+(m2+m-2)i},
P={-1,1,4i},且MP=P.
M?P,即(m2-2m)+(m2+m-2)i=-1,
或(m2-2m)+(m2+m-2)i=4i.

m=1或m=2.
[一点通](1)一般地,两个复数只能相等或不相等,不能比较大小.
(2)复数相等的充要条件是求复数及解方程的主要依据,是复数问题实数化的桥梁纽带.
(3)必须在代数形式下确定实部、虚部后才可应用.
4.当关于x的方程x2+(1+2i)x+3m+i=0有实根,则实数m=________.
解析:设实根为x0,则x+x0+2x0i+3m+i=0.
即x+x0+3m+(2x0+1)i=0.
m=.
答案:
5.已知2x-1+(y+1)i=x-y+(-x-y)i,求实数x、y的值.
解:∵x,y为实数,
2x-1,y+1,x-y,-x-y均为实数,由复数相等的定义,

6.已知m是实数,n是纯虚数,且2m+n=4+(3-m)i,求m,n的值.
解:设n=bi(bR且b0)
由2m+n=4+(3-m)i得2m+bi=4+(3-m)i,
m的值为2,n的值为i.
[例3]若不等式m2-(m2-3m)i(m2-4m+3)i+10成立,求实数m的值.
[思路点拨].
[精解详析]∵m2-(m2-3m)i(m2-4m+3)i+10,
解上式得:m=3.
[一点通]不全为实数的两个复数没有大小的关系,只有相等或不等.由两个复数可以比较大小,知两个数必全为实数,进而根据复数的分类法列实数m的方程(组)求解.
7.已知复数x2-1+(y+1)i大于复数2x+2+(y2-1)i,试求实数x,y的取值范围.
解:∵x2-1+(y+1)i2x+2+(y2-1)i,(x,yR),
8.已知复数z=k2-3k+(k2-5k+6)i(kR),且z0,求实数k.
解:∵z0,zR.
k2-5k+6=0.
k=2或k=3.但当k=3时,z=0不符合题意.
k=2时,z=-20符合题意.
k=2.
1.区分实数、虚数、纯虚数与复数的关系,特别要明确:实数也是复数,要把复数与实数加以区别.对于纯虚数bi(b0,bR)不要只记形式,要注意b0.
2.应用两复数相等的充要条件时,首先要把等号左右两边的复数写成代数形式,即分离实部与虚部,然后列出等式求解.
3.若两个复数全是实数,则可以比较大小,反之,若两个复数能比较大小,则它们必是实数.即a+bi0(a,bR).
一、填空题
1.下列命题中,
①若aR,则(a+1)i是纯虚数;
②若a,bR且a>b,则a+i>b+i;
③若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=1;
④两个虚数不能比较大小.
其中正确的命题是________.
解析:①若a=-1,则(a+1)i=0,①错;②复数中的虚数只能说相等或不相等,不能比较大小.②错;③中x=-1则x2+3x+2=0,x=-1不适合,③错;④是正确的.
答案:④
2.若4-3a-a2i=a2+4ai,则实数a的值为________.
解析:由复数相等的充要条件可知
解得a=-4.
答案:-4
3.复数(a2-a-2)+(|a-1|-1)i(aR)是纯虚数,则a的取值为________.
解析:∵复数(a2-a-2)+(|a-1|-1)i是纯虚数,
解之得a=-1.
答案:-1
4.已知M={1,2,(a2-3a-1)+(a2-5a-6)i},N={-1,3},MN={3},则实数a=________.
解析:∵MN={3},(a2-3a-1)+(a2-5a-6)i=3,即解之得a=-1.
答案:-1
5.已知z1=-4a+1+(2a2+3a)i,z2=2a+(a2+a)i,其中aR,z1z2,则a的值为________.
解析:∵z1z2,

故a=0.
答案:0
二、解答题
6.已知复数(2k2-3k-2)+(k2-k)i,实部小于零,虚部大于零,求实数k的取值范围.
解:由题意得即
即解得-k0或1k2.
7.求适合方程xy-(x2+y2)i=2-5i的实数x,y的值.
解:由复数相等的条件可知:
解得或或或
8.设复数z=lg(m2-2m-14)+(m2+4m+3)i,试求实数m的值,使(1)z是实数;(2)z是纯虚数.
解:(1)∵z为实数,
虚部m2+4m+3=0,
则m=-1或m=-3.
而当m=-1时,m2-2m-14=1+2-140(舍去);
当m=-3时,m2-2m-14=10.
当m=-3时z为实数.
(2)∵z为纯虚数,
实部lg(m2-2m-14)=0,
且m2+4m+30,即解得m=5.
当m=5时z为纯虚数.

文章来源:http://m.jab88.com/j/38052.html

更多

最新更新

更多