古人云,工欲善其事,必先利其器。高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生们充分体会到学习的快乐,帮助高中教师提高自己的教学质量。我们要如何写好一份值得称赞的高中教案呢?以下是小编收集整理的“高二数学选修1-2复数的乘法和除法导学案”,欢迎您参考,希望对您有所助益!
石油中学高二数学选修1-2导学案---复数
§3-3复数的乘法和除法
学习目标:
掌握复数的乘法法与除法的运算法则,了解其几何意义,能用平行四边形法则和三角形法则解决一些简单的问题。
学习重点:复数的乘法与除法的运算法则。
学习难点:复数的乘法与除法的几何意义。
一、自主学习
一)合作探究
1、复数乘法运算法则:
z1=a+bi,z2=c+di(a,b,c,d∈R)
z1z2=(a+bi)(c+di)=ac+adi+bci+bdi2=(ac-bd)+(ad+bc)i
2、乘法运算律:(1)z1(z2z3)=(z1z2)z3(2)z1(z2+z3)=z1z2+z1z3
3、复数的乘方:
(1)zmzn=zm+n(2)(zm)n=zmn(3)(z1z2)m=z1mz2m(n、m∈N)
4、几个特殊结论:规定i0=1
(1)i的周期性:i4n+1=ii4n+2=-1i4n+3=-ii4n=1(n∈N)
(2)如果,则=,,,
1+,,,=。
(3)(1-i)2=,(1+i)2=。
5、复数的除法运算法则
(1)定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(a,b,c,d,x,y∈R)叫复数a+bi除以复数c+di的商,记为:(a+bi)÷(c+di)或者
(2)法则
==
(3)特殊结论:,,。
6、复数积与商的模:
(1)|z1z2|=|z1||z2|;(2)|zn|=|z|n(n∈N);(3)|z1/z2|=|z1|/|z2|(z2≠0);
(4)|z1|-|z2|≤≤|z1|+|z2|
7、(1);(2)(z2≠0)
8、复数的平方根与立方根
如果复数(c+di)和(a+bi)(a,b,c,d,x,y∈R)满足(a+bi)2=(c+di),那么称(a+bi)为复数c+di的一个平方根。同样-(a+bi)也是复数c+di的另一个平方根。
二)典例剖析
例1求(a+bi)(a-bi).
例2计算.
例3设=,求证:(1)1+;(2).
例4计算(1+2i)(3-4i)
例5已知,求
例6已知.
(1)若求;
(2)若,求的值。
例7求复数的平方根:(1)-3;(2)7-24i。
二、当堂检测
1、等于_____________.
2、设复数z=1+2i,则的值为________________.
3、若复数z满足z(1+i)=2,则z的实部是_________________.
三、课堂小结
四、课后探究
在复数范围内解方程(为虚数单位).
教师备课
学习资料
3.1.1数系的扩充与复数的概念
【教学目标】
(1)在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用理解复数的基本概念
(2)理解复数的基本概念以及复数相等的充要条件
(3)了解复数的代数表示方法
【教学重难点】
重点:引进虚数单位i的必要性、对i的规定、复数的有关概念
难点:实数系扩充到复数系的过程的理解,复数概念的理解
【教学过程】
一、创设情景、提出问题
问题1:我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?
问题2:类比引进,就可以解决方程在有理数集中无解的问题,怎么解决在实数集中无解的问题呢?
问题3:把实数和新引进的数i像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数?
二、学生活动
1.复数的概念:
⑴虚数单位:数__叫做虚数单位,具有下面的性质:
①_________
②______________________________________________
⑵复数:形如__________叫做复数,常用字母___表示,全体复数构成的集合叫做______,常用字母___表示.
⑶复数的代数形式:_________,其中____叫做复数的实部,___叫做复数的虚部,复数的实部和虚部都是___数.
(4)对于复数a+bi(a,b∈R),
当且仅当_____时,它是实数;
当且仅当_____时,它是实数0;
当_______时,叫做虚数;
当_______时,叫做纯虚数;
2.学生分组讨论
⑴复数集C和实数集R之间有什么关系?
⑵如何对复数a+bi(a,b∈R)进行分类?
⑶复数集、实数集、虚数集、纯虚数集之间的关系,可以用韦恩图表示出来吗?
3.练习:
(1).下列数中,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么?
2+2i,0.618,2i/7,0,
5i+8,3-9i
(2)、判断下列命题是否正确:
(1)若a、b为实数,则Z=a+bi为虚数
(2)若b为实数,则Z=bi必为纯虚数
(3)若a为实数,则Z=a一定不是虚数
三、归纳总结、提升拓展
例1实数m分别取什么值时,复数
z=m+1+(m-1)i
是(1)实数?(2)虚数?(3)纯虚数?
解:
归纳总结:
确定复数z=a+bi是实数、虚数、纯虚数的条件是:练习:实数m分别取什么值时,复数
z=m2+m-2+(m2-1)i
是(1)实数?(2)虚数?(3)纯虚数?
两个复数相等,即两个复数相等的充要条件是它们的实部与虚部分别对应相等.也就是
a+bi=c+di_______________________(a、b、c、d为实数)
由此容易出:a+bi=0_______________________
例2已知x+2y+(2x+6)i=3x-2,其中,x,y为实数,求x与y.
四、反馈训练、巩固落实
1、若x,y为实数,且2x-2y+(x+y)i=x-2i
求x与y.
2、若x为实数,且(2x2-3x-2)+(x2-5x+6)i=0,求x的值.
俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是高中教师需要精心准备的。教案可以更好的帮助学生们打好基础,帮助高中教师营造一个良好的教学氛围。优秀有创意的高中教案要怎样写呢?下面是小编精心收集整理,为您带来的《2019年选修1-2数学第3章数系的扩充与复数的引入学案(苏教版)》,欢迎大家阅读,希望对大家有所帮助。
3.1数系的扩充作为杰出的教学工作者,能够保证教课的顺利开展,教师要准备好教案,这是教师工作中的一部分。教案可以保证学生们在上课时能够更好的听课,使教师有一个简单易懂的教学思路。教案的内容要写些什么更好呢?急您所急,小编为朋友们了收集和编辑了“选修1-2第三章数系的扩充与复数的引入测试题及答案”,欢迎您阅读和收藏,并分享给身边的朋友!
第三章数系的扩充与复数的引入
一.选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。)
1.是复数为纯虚数的()
A.充分条件B.必要条件C.充要条件D.非充分非必要条件
2.设,则在复平面内对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
3.()
A.B.C.D.
4.复数z满足,那么=()
A.2+iB.2-iC.1+2iD.1-2i
5.如果复数的实部与虚部互为相反数,那么实数b等于()
A.2B.23C.2D.-23
6.集合{Z︱Z=},用列举法表示该集合,这个集合是()
A{0,2,-2}B.{0,2}
C.{0,2,-2,2}D.{0,2,-2,2,-2}
7.设O是原点,向量对应的复数分别为,那么向量对应的复数是()
8、复数,则在复平面内的点位于第()象限。
A.一B.二C.三D.四
9.复数不是纯虚数,则有()
10.设i为虚数单位,则的值为()
A.4B.-4C.4iD.-4i
二.填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上。)
11.设(为虚数单位),则z=;|z|=.
12.复数的实部为,虚部为。
13.已知复数z与(z+2)2-8i均是纯虚数,则z=
14.设,,复数和在复平面内对应点分别为A、B,O为原点,则的面积为。
三.解答题(本大题共6小题,每小题74分,共80分,解答应写出文字说明、证明过程或演算步骤。)
15.(本小题满分12分)
已知复数z=(2+)).当实数m取什么值时,复数z是:
(1)零;(2)虚数;(3)纯虚数;(4)复平面内第二、四象限角平分线上的点对应的复数。
(本小题满分13分)
17.(本小题满分13分)
设R,若z对应的点在直线上。求m的值。
18.(本小题满分14分)
已知关于的方程组有实数,求的值。
19.(本小题满分14分)
20(本小题满分13分)
若复数,求实数使。(其中为的共轭复数)
第三章数系的扩充与复数的引入
1.解析:B
2.解析:D点拨:。
3.解析:B点拨:原式==
4.解析:B点拨:化简得
5.解析:D点拨:,由因为实部与虚部互为相反数,即,解得。
6.解析:A点拨:根据成周期性变化可知。
7.解析:B点拨:
8.解析:D点拨:
9.解析:C点拨:需要,即。
10.解析:B点拨:=-4
11.解析:,点拨:
12.解析:1,点拨:
13.解析:点拨:设代入解得,故
14.解析:1点拨:
16.解:
将上述结果代入第二个等式中得
20.解析:由,可知,代入得:
,即
则,解得或。
文章来源:http://m.jab88.com/j/28119.html
更多