88教案网

一元二次方程复习教案

老师工作中的一部分是写教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,才能使接下来的工作更加有序!你们到底知道多少优秀的教案课件呢?下面是小编为大家整理的“一元二次方程复习教案”,供您参考,希望能够帮助到大家。

九年级数学《第三章一元二次方程》复习案人教新课标版

课型复习课授课时间年月日

执笔人审稿人总第课时

学习内容学习随记

一、复习目标:

1、能说出一元二次方程及其相关概念,;

2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。

3、能灵活应用一元二次方程的知识解决相关问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。

二、复习重难点:

重点:一元二次方程的解法和应用.

难点:应用一元二次方程解决实际问题的方法.

三、知识回顾:

1、一元二次方程的定义:

2、一元二次方程的常用解法有:

配方法的一般过程是怎样的?

3、一元二次方程在生活中有哪些应用?请举例说明。

4、利用方程解决实际问题的关键是。

在解决实际问题的过程中,怎样判断求得的结果是否合理?请举例说明。

四、例题解析:

例1、填空

1、当m时,关于x的方程(m-1)+5+mx=0是一元二次方程.

2、方程(m2-1)x2+(m-1)x+1=0,当m时,是一元二次方程;当m时,是一元一次方程.

3、将一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.

4、用配方法解方程x2+8x+9=0时,应将方程变形为()

A.(x+4)2=7B.(x+4)2=-9

C.(x+4)2=25D.(x+4)2=-7

学习内容学习随记

例2、解下列一元二次方程

(1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)

(3)(x+1)(2-x)=1(选择适当的方法解)

例3、1、新竹文具店以16元/支的价格购进一批钢笔,根据市场调查,如果以20元/支的价格销售,每月可以售出200支;而这种钢笔的售价每上涨1元就少卖10支.现在商店店主希望销售该种钢笔月利润为1350元,则该种钢笔该如何涨价?此时店主该进货多少?

2、如图,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,点P、Q同时由A、B两点出发分别沿AC,BC方向向点C匀速运动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半?

相关推荐

一元二次方程应用复习教案


老师会对课本中的主要教学内容整理到教案课件中,大家应该开始写教案课件了。我们制定教案课件工作计划,才能对工作更加有帮助!你们会写多少教案课件范文呢?为了让您在使用时更加简单方便,下面是小编整理的“一元二次方程应用复习教案”,仅供您在工作和学习中参考。

一元二次方程应用复习教案

教学

目标

知识与能力:1.理解一元二次方程根的判别式。

2.掌握一元二次方程的根与系数的关系

3.同学们掌握一元二次方程的实际应用.了解一元二次方程的分式方程。

过程与方法:培养学生的逻辑思维能力以及推理论证能力。

情感与价值观:渗透分类的数学思想和数学的简洁美;培养学生的协作精神。

重、难点

重点:根的判别式和根与系数的关系及一元二次方程的应用。

难点:一元二次方程的实际应用。

一、导入新课、揭示目标

1.理解一元二次方程根的判别式。

2.掌握一元二次方程的根与系数的关系

3.掌握一元二次方程的实际应用.

二、自学提纲:

一.主要让学生能理解一元二次方程根的判别式:

1.判别式在什么情况下有两个不同的实数根?

2.判别式在什么情况下有两个相同的实数根?

3.判别式在什么情况下无实数根?

二.ax2+bx+c=o(a≠0)的两个根为x1.x2那么

X1+x2=-x1x2=

三.一元二次方程的实际应用。根据不同的类型的问题.列出不同类型的方程.

三.合作探究.解决疑难

例1已知关于x的方程x2+2x=k-1没有实数根.试判别关于x的方程x2+kx=1-k的根的情况。

巩固提高:

已知在等腰中,BC=8.AB.AC的长是关于x的方程x2-10x+m=0的两个实数根.求的周长

例题2:

.已知:x1.x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根.且(x1+2)(x2+2)=11.求a的值。

.巩固提高:

已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.

(1)求证:不论m为任何实数.方程总有两个不相等的实数根;

(2)若方程两根为x1.x2.且满足

求m的值。。

例3某电脑销售商试销一品牌电脑(出厂为3000元/台),以4000元/台销售时,平均每月销售100台.现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.已知电脑价格每台下降100元,月销售量将上升10台,

(1)求1月份到3月份销售额的平均增长率:

(2)求3月份时该电脑的销售价格.

练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加利润,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

1)若商场平均每天要赢利1200元,则每件衬衫应降价多少元?

则降价多少元?

四、小结这节课同学有什么收获?同学互相交流?

五、布置作业:课前课后P10-12

一元二次方程教案


每个老师上课需要准备的东西是教案课件,大家在认真写教案课件了。只有写好教案课件计划,未来工作才会更有干劲!你们会写一段优秀的教案课件吗?小编特地为大家精心收集和整理了“一元二次方程教案”,欢迎您参考,希望对您有所助益!

一元二次方程
22.1一元二次方程
【知识与技能】
1.知道一元二次方程的意义,能熟练地把一元二次方程整理成一般形式ax2+bx+c=0(a≠0).
2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.
【过程与方法】
通过解决实际问题,把实际问题转化为数学模型,引入一元二次方程的概念,让学生认识一元二次方程及其相关概念,提高学生利用方程思想解决实际问题的能力.
【情感态度】
通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.
【教学重点】
判定一个数是否是方程的根.
【教学难点】
由实际问题列出的一元二次方程解出根后,还要考虑这些根是否确定是实际问题的根.
一、情境导入,初步认识
问题1绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?
【分析】设长方形绿地的宽为x米,不难列出方程x(x+10)=900,整理可得x2+10x-900=0.(1)
问题2学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.
解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册,同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)(1+x)=5(1+x)2万册.可列得方程5(1+x)2=7.2,整理可得5x2+10x-2.2=0(2)
【教学说明】教师引导学生列出方程,解决问题.
二、思考探究,获取新知
思考、讨论
问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元二次方程.那么这两个方程与一元二次方程的区别在哪里?它们有什么共同特点呢?
共同特点:
(1)都是整式方程
(2)只含有一个未知数
(3)未知数的最高次数是2
【归纳总结】上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.通常可写成如下的一般形式:ax2+bx+c=0(a、b、c是已知数,a≠0).其中ax2叫做二次项,a叫做二次项系数,bx叫做一次项系数,c叫做常数项.
例1判断下列方程是否为一元二次方程:
解:①是;②不是;③是;④不是;⑤不是;⑥是.
【教学说明】(1)一元二次方程为整式方程;(2)类似⑤这样的方程要化简后才能判断.
例2将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数.一次项系数及常数项.
解:2x2-13x+11=0;2,-13,11.
【教学说明】将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.
三、运用新知,深化理解
1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
(1)5x2-1=4x
(2)4x2=81
(3)4x(x+2)=25
(4)(3x-2)(x+1)=8x-3
解:(1)5x2-4x-1=0;5,-4,-1;
(2)4x2-81=0;4,0,-81
(3)4x2+8x-25=0;4,8,-25
(4)3x2-7x+1=0;3,-7,1.
2.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式.
(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;
(2)一个长方形的长比宽多2,面积是100,求长方形的长x;
(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.
解:(1)4x2=25;4x2-25=0;
(2)x(x-2)=100;x2-2x-100=0;
(3)x=(1-x)2;x2-3x+1=0.
3.若x=2是方程ax2+4x-5=0的一个根,求a的值.
解:∵x=2是方程ax2+4x-5=0的一个根.
∴4a+8-5=0解得:a=-.
四、师生互动,课堂小结
1.只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.
2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的.
3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.
1.布置作业:从教材相应练习和“习题22.1”中选取.
2.完成练习册中本课时练习的“课时作业”部分.
学习本课时,可让学生先自主探索再合作交流,小组内,小组之间充分交流后概括所得结论,从而强化学生对一元二次方程的有关概念的认识,掌握建模思想,利用一元二次方程解决实际问题.

解一元二次方程


每个老师在上课前需要规划好教案课件,是时候写教案课件了。只有规划好新的教案课件工作,才能更好的在接下来的工作轻装上阵!你们会写适合教案课件的范文吗?为了让您在使用时更加简单方便,下面是小编整理的“解一元二次方程”,仅供参考,大家一起来看看吧。

28.2解一元二次方程
教学目的知识技能认识形如x2=p(p≥0)或(mx+n)2=p(p≥0)类型的方程,并会用直接开平方法解.
配方法解一元二次方程x2+px+q=0.
数学思考用直接开平方法解一元二次方程的依据是用平方根的定义来进行降次的,直接开平方法解一元二次方程,必须化成形如x2=p(p≥0)或(mx+n)2=p(p≥0)的形式来求解.
配方法是把方程x2+px+q=0转化为(mx+n)2=p(p≥0)形式的方程再应用直接开平方法求解
解决问题通过两边同时开平方,将二次方程转化为一次方程,向学生渗透数学新知识的学习往往由未知(新知识)向已知(旧知识)转化,这是研究数学问题常用的方法,化未知为已知.
情感态度通过本节学习,使学生感觉到由未知向已知的转化美.
教学难点用配方法解一元二次方程
知识重点选择适当的方法解一元二次方程
教学过程设计意图





问题一:填空
如果,那么.
教师活动:引导学生运用开平方的方法,解x2=p(p≥0)形式的方程.
学生活动:在老师的引导下,初步了解一元二次方程的直接开平方法.
问题二:解方程
教师活动:与学生一起探究此种形式的方程的解法.
学生活动:仿照上题,解此问题,并总结出形如(mx+n)2=p(p≥0)方程的解法.
练习:解下列方程:
(1)(2)
问题三:解方程:
师生一起探究解法,通过配方把该方程转化为(mx+n)2=p(p≥0)形式的方程,再用直接开平方法求解.
做一做
把下列方程化成的形式.
例题1:解方程
教师活动:给学生作出配方法解方程的示范.重点在配方的方法:在方程的两边都加上一次项系数一半的平方,配方法是为了降次,把一个一元二次方程转化成两个一元一次方程来解.
学生总结配方法解形如x2+px+q=0的一元二次方程的方法.

从学生已知的知识入手,解决形如x2=p(p≥0)类型的方程,引导进入直接开平法法.

解决并练习形如(mx+n)2=p(p≥0)类型的方程,

在解决形如x2=p(p≥0)和(mx+n)2=p(p≥0)类型的方程的基础上,给学生设置悬念,探究这个方程的解法.
引出配方法.

在转化的同时,给学生讲解配方的方法,为配方法解一元二次方程作准备.

提高学生的总结归纳能力.
课堂练习解下列方程:
课本24页习题2
学生完成后,交流结果,交流配方法解一元二次方程的步骤、方法

使学生体会在解决问题的过程中与他人合作的重要性.

小结与作业
课堂
小结引导学生对直接开平方法和配方法进行总结.

本课
作业34页习题1、3把学习延伸到课外,巩固课上所学.

课后随笔(课堂设计理念,实际教学效果及改进设想)

文章来源:http://m.jab88.com/j/76514.html

更多

最新更新

更多