湘教版九年级上册数学导学案
4.4解直角三角形的应用(3)
【学习目标】
1.巩固直角三角形中锐角的三角函数,学会解关于触礁的问题.会利用方程帮助解直角三角形.
2.逐步培养学生分析问题解决问题的能力,进一步渗透数形结合的数学思想和方法.
3.培养学生用数学的意识.
重点:理解触礁问题的实质.
难点:利用方程帮助解直角三角形.
【预习导学】
学生通过自主预习教材P128-P129完成下列各题(培养学生自主学习的良好习惯和能力).
1.直角三角形中,五个元素之间的关系是什么?
2.在实际问题中,怎样用解直角三角形的知识来解决问题?
用锐角三角函数解决实际问题要注意些什么?
【探究展示】
(一)合作探究
如图,一艘船以40km/h的速度向正东航行,在A处测得灯塔C在北偏东600方向上,继续航行1h到达B处,这时测得灯塔C在北偏东300方向上.已知在灯塔C的四周30km内有暗礁.问这艘船继续向东航行是否安全?
学法指导:要判断船有没有触礁的危险,就是看船距灯塔的最近的距离与30km相比较的结果.若最近的距离超过30km,则船是安全的,若最近的距离小于或等于30km,则船有触礁的危险.船距灯塔的最近的距离即过点C向航线AB作垂线CD,所以先得求出CD的长.
但CD在RtACD中不能直接求出,而且在RtBCD中也不能直接求出,怎么办?
解:作CD⊥AB,交AB延长线于点D,设CD=.
在RtACD中,因为tan∠CAD=,
所以AD=
同理,在RtBCD中,BD=,
因为AB=AD-BD
所以
解得=
又因为30,所以
(二)展示提升
某次军事演习中,有三艘船在同一时刻向指挥所报告:A船说B船在它的正东方向,C船在它的北偏东550方向;B船说C船在它的北偏西350方向;C船说它到A船的距离比它到B船的距离远40km.求A,B两船的距离(结果精确到0.1km).
【知识梳理】
本节课我们学到了什么?
在一个直角三角形中,要求的边不能直接用锐角三角函数求出时,可以利用方程。
【当堂检测】
如图,塔AD的高度为30m,塔的底部D与桥BC位于同一水平直线上,由塔顶A测得B和C的俯角∠EAB,∠EAC分别为600和300.求BD.BC的长(结果精确到0.01m)
【学后反思】
通过本节课的学习,
1.你学到了什么?
2.你还有什么样的困惑?
3.你对自己本节课的表现满意的地方在哪儿?哪些地方还需改进?
湘教版九年级上册数学导学案
4.4解直角三角形的应用(1)
【学习目标】
1.使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.
2.逐步培养学生分析问题.解决问题的能力.
3.渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识.
重点:善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.
难点:根据实际问题构造合适的直角三角形.
【预习导学】
在RtABC中,∠C=900
1.若∠A=600,b=,求a.
2.若∠B=350,c=8,用计算器求a的值(结果精确到0.1)
【探究展示】
(一)合作探究
某探险者某天到达点A处时,他准备估算出离他的目的地——海拔为3500m的山峰顶点B处的水平距离(图见课本125页的图4-15).你能帮他想出一个可行的办法吗?
探究讨论:
先把图4-15抽象,并构造出直角三角形.
如图,BD表示点B的海拔,AE表示点A的海拔,过点A作AC⊥BD即可以构造出直角三角形.
在RtABC中,AC表示A处离B处的水平距离,要求AC,只需测出仰角∠BAC和A.B的相对高度AC即可.
如果测得点A的海拔AE=1600m,仰角∠BAC=400,求A.B两点之间的水平距离AC(结果保留整数).
学生上台展示因为BD=,AE=,AC⊥BD,BAC=400,
所以BC=
在RtABC中,tan∠BAC=
AC=
(二)展示提升
1.在离上海东方明珠塔底部1000m的A处,用仪器测得塔顶的仰角∠BAC为250,仪器距地面高AE为1.7m,求上海东方明珠塔的高度BD(结果精确到1m).
2.某厂家新开发的一种电动车的大灯A射出的光线AB.AC与地面MN所成的夹角∠ABN.∠ACN分别为80和150,大灯A与地面的距离为1m,求该车大灯照亮地面的宽度BC(不考虑其他因素,结果精确到0.1m).
【知识梳理】
求某些不便直接测量的物体的高或距离时,可以根据实际问题构造直角三角形,再利用解直角三角形的方法来求.
解直角三角形的应用题一般步骤:
(1)。
(2)。
(3)。
(4)。
【当堂检测】
1.一艘游船在离开码头A后,以和河岸成300角的方向行驶了500m到达B处,求B处与河岸的距离BC.
2.有一段斜坡BC长为10m,坡角∠CBD=120,为方便残疾人的轮椅通行,现准备把坡角降为50.
求坡高CD(结果精确到0.1m);
求斜坡新起点A与原起点B的距离(结果精确到0.1m).
【学后反思】
1.你学到了什么?
2.你还有什么样的困惑?
3.你对自己本节课的表现满意的地方在哪儿?哪些地方还需加油?
作为老师的任务写教案课件是少不了的,大家在认真写教案课件了。各行各业都在开始准备新的教案课件工作计划了,我们的工作会变得更加顺利!你们知道哪些教案课件的范文呢?为此,小编从网络上为大家精心整理了《解直角三角形》,供大家参考,希望能帮助到有需要的朋友。
21.4解直角三角形文章来源:http://m.jab88.com/j/75721.html
更多