坐标平面内的图形变换(2)〖教学目标〗
◆1、从点的运动的过程,培养学生由特例发现问题一般规律性的能力.
◆2、在点的运动到线段平移到图形的变换的过程中,学会有条理的思考并进行演绎推理.
◆3通过对问题的共同探讨,培养学生的合作精神、.
〖教学重点与难点〗
◆教学重点:点平移时坐标的变化规律.
◆教学难点:由点的平移到图形的变换的演绎过程.
〖教学过程〗
一、创设情境,引入新课
多媒体显示:(1)机器人位于坐标系中的A(-3,3),若作以下平移变换,向右(左)平移5个单位,请画出机器人所在位置,并写出坐标。(2)机器人位于B(4,5),向上(下)平移3个单位,则机器人位于什么位置,并写出坐标。二、合作交流,探求新知坐标变化
(1)课件显示:图示机器人变换点横坐标纵坐标A(-3,3)Aˊ(2,3)加5不变A(-3,3)Aˊˊ(-8,3)减5不变B(4,5)Bˊ(4,8)不变加3B(4,5)Bˊˊ(4,2)不变减3(交流探索,总结规律)左右平移时,纵坐标不变,横坐标右加,左减上下平移时,横坐标不变,纵坐标上加,下减(2)巩固新知①课本练习“做一做”1,2
②由(2,3)(-3,3)(4,8)(4,5)各经过怎样变换?由(-7,3)(-3,3)(4,3)(4,5)呢?二、应用新知,演绎推理
1.引例:若将(一)中机器人走过的路线标成红色,则得到线段AAˊ,BBˊ,现将AAˊ向下平移4个单位,BBˊ向左平移5个单位,请作出平移后的像。(多媒体显示)2.例2教学(让学生想一想:1<X≤5,例2的三个问题怎样解决)例2教学其实是先通过作平移变换,然后经看图以后解题的,这是解决数学问题的好方法,在以后教学中我们应该引导学生用这种方法解决数学问题。例3教学注意:(1)图形的变换其实就是点的变换,因此上两例就是特殊点的变换确定图形的变换。(2)一般情况下,讨论的是图形的一般变换(左右、上下)3.想一想:例3中,从图甲到图乙可以看作只经过一次平移变换吗?请描述这个平移变换。四、巩固练习(P143页1、2)
五、小结
(1)点的变换规律(2)由点的变换到线段的变换到图形变换的演绎推理六、作业(P143,144页A,B组)
每个老师需要在上课前弄好自己的教案课件,规划教案课件的时刻悄悄来临了。只有制定教案课件工作计划,未来的工作就会做得更好!你们了解多少教案课件范文呢?小编特地为您收集整理“刹车距离与二次函数”,相信能对大家有所帮助。
§2.3刹车距离与二次函数
学习目标:
1.经历探索二次函数y=ax2和y=ax2+c的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.
2.会作出y=ax2和y=ax2+c的图象,并能比较它们与y=x2的异同,理解a与c对二次函数图象的影响.
3.能说出y=ax2+c与y=ax2图象的开口方向、对称轴和顶点坐标.
4.体会二次函数是某些实际问题的数学模型.
学习重点:[
二次函数y=ax2、y=ax2+c的图象和性质,因为它们的图象和性质是研究二次函数y=ax2+bx+c的图象和性质的基础.我们在学习时结合图象分别从开口方向、对称轴、顶点坐标、最大(小值)、函数的增减性几个方面记忆分析.
学习难点:
由函数图象概括出y=ax2、y=ax2+c的性质.函数图象都由(1)列表,(2)描点、连线三步完成.我们可根据函数图象来联想函数性质,由性质来分析函数图象的形状和位置.
学习方法:
类比学习法。
学习过程:
一、复习:
二次函数y=x2与y=-x2的性质:
抛物线y=x2y=-x2
对称轴
顶点坐标
开口方向
位置
增减性
最值[
二、问题引入:
你知道两辆汽车在行驶时为什么要保持一定距离吗?
刹车距离与什么因素有关?
有研究表明:汽车在某段公路上行驶时,速度为v(km/h)汽车的刹车距离s(m)可以由公式:
晴天时:;雨天时:,请分别画出这两个函数的图像:
三、动手操作、探究:
1.在同一平面内画出函数y=2x2与y=2x2+1的图象。
2.在同一平面内画出函数y=3x2与y=3x2-1的图象。
比较它们的性质,你可以得到什么结论?
四、例题:[
【例1】已知抛物线y=(m+1)x开口向下,求m的值.
【例2】k为何值时,y=(k+2)x是关于x的二次函数?
【例3】在同一坐标系中,作出函数①y=-3x2,②y=3x2,③y=x2,④y=-x2的图象,并根据图象回答问题:(1)当x=2时,y=x2比y=3x2大(或小)多少?(2)当x=-2时,y=-x2比y=-3x2大(或小)多少?
【例4】已知直线y=-2x+3与抛物线y=ax2相交于A、B两点,且A点坐标为(-3,m).
(1)求a、m的值;
(2)求抛物线的表达式及其对称轴和顶点坐标;
(3)x取何值时,二次函数y=ax2中的y随x的增大而减小;
(4)求A、B两点及二次函数y=ax2的顶点构成的三角形的面积.
【例5】有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为k的函数表达式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.
五、课后练习
1.抛物线y=-4x2-4的开口向,当x=时,y有最值,y=.
2.当m=时,y=(m-1)x-3m是关于x的二次函数.
3.抛物线y=-3x2上两点A(x,-27),B(2,y),则x=,y=.
4.当m=时,抛物线y=(m+1)x+9开口向下,对称轴是.在对称轴左侧,y随x的增大而;在对称轴右侧,y随x的增大而.
5.抛物线y=3x2与直线y=kx+3的交点为(2,b),则k=,b=.
6.已知抛物线的顶点在原点,对称轴为y轴,且经过点(-1,-2),则抛物线的表达式为.
7.在同一坐标系中,图象与y=2x2的图象关于x轴对称的是()
A.y=x2B.y=-x2C.y=-2x2D.y=-x2
8.抛物线,y=4x2,y=-2x2的图象,开口最大的是()
A.y=x2B.y=4x2C.y=-2x2D.无法确定
9.对于抛物线y=x2和y=-x2在同一坐标系里的位置,下列说法错误的是()
A.两条抛物线关于x轴对称B.两条抛物线关于原点对称
C.两条抛物线关于y轴对称D.两条抛物线的交点为原点
10.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的图象大致为()
11.已知函数y=ax2的图象与直线y=-x+4在第一象限内的交点和它与直线y=x在第一象限内的交点相同,则a的值为()
A.4B.2C.D.
12.求符合下列条件的抛物线y=ax2的表达式:
(1)y=ax2经过(1,2);
(2)y=ax2与y=x2的开口大小相等,开口方向相反;
(3)y=ax2与直线y=x+3交于点(2,m).
13.如图,直线ι经过A(3,0),B(0,3)两点,且与二次函数y=x2+1的图象,在第一象限内相交于点C.求:
(1)△AOC的面积;
(2)二次函数图象顶点与点A、B组成的三角形的面积.
14.自由落体运动是由于地球引力的作用造成的,在地球上,物体自由下落的时间t(s)和下落的距离h(m)的关系是h=4.9t2.求:
(1)一高空下落的物体下落时间3s时下落的距离;
(2)计算物体下落10m,所需的时间.(精确到0.1s)
15.有一座抛物线型拱桥,桥下面在正常水位AB时宽20m.水位上升3m,就达到警戒线CD,这时,水面宽度为10m.
(1)在如图2-3-9所示的坐标系中求抛物线的表达式;
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
文章来源:http://m.jab88.com/j/75476.html
更多