88教案网

九年级数学竞赛一元二次方程的整数解讲座

老师工作中的一部分是写教案课件,大家在着手准备教案课件了。是时候对自己教案课件工作做个新的规划了,才能使接下来的工作更加有序!你们到底知道多少优秀的教案课件呢?下面是小编为大家整理的“九年级数学竞赛一元二次方程的整数解讲座”,供您参考,希望能够帮助到大家。

在数学课外活动中,在各类数学竞赛中,一元二次方程的整数解问题一直是个热点,它将古老的整数理论与传统的一元二次方程知识相结合,涉及面广,解法灵活,综合性强,备受关注,解含参数的一元二次方程的整数解问题的基本策略有:

从求根入手,求出根的有理表达式,利用整除求解;

从判别式手,运用判别式求出参数或解的取值范围,或引入参数(设△=),通过穷举,逼近求解;

从韦达定理入手,从根与系数的关系式中消去参数,得到关于两根的不定方程,借助因数分解、因式分解求解;

从变更主元入人,当方程中参数次数较低时,可考虑以参数为主元求解.

注:一元二次方程的整数根问题,既涉及方程的解法、判别式、韦达定理等与方程相关的知识,又与整除、奇数、偶数、质数、合数等整数知识密切相关.

【例题求解】

【例1】若关于的方程的解都是整数,则符合条件的整数是的值有个.

思路点拨用因式分解法可得到根的简单表达式,因方程的类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定是的值才能全面而准确.

注:系数含参数的方程问题,在没有指明是二次方程时,要注意有可能是一次方程,根据问题的题设条件,看是否要分类讨论.

【例2】已知、为质数且是方程的根,那么的值是()

A.B.C.D.

思路点拨由韦达定理、的关系式,结合整数性质求出、、的值.

【例3】试确定一切有理数,使得关于的方程有根且只有整数根.

思路点拨由于方程的类型未确定,所以应分类讨论.当时,由根与系数关系得到关于r的两个等式,消去r,利用因式(数)分解先求出方程两整数根.

【例4】当为整数时,关于的方程是否有有理根?如果有,求出的值;如果没有,请说明理由.

思路点拨整系数方程有有理根的条件是为完全平方数.

设△=(为整数)解不定方程,讨论的存在性.

注:一元二次方程(a≠0)而言,方程的根为整数必为有理数,而△=为完全平方数是方程的根为有理数的充要条件.

【例5】若关于的方程至少有一个整数根,求非负整数的值.

思路点拨因根的表示式复杂,从韦达定理得出的的两个关系式中消去也较困难,又因的次数低于的次数,故可将原方程变形为关于的一次方程.

学历训练

1.已知关于的方程的根都是整数,那么符合条件的整数有.

2.已知方程有两个质数解,则m=.

3.给出四个命题:①整系数方程(a≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程(a≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程(a≠0)的根只能是无理数;④若、、均为奇数,则方程没有有理数根,其中真命题是.

4.已知关于的一元二次方程(为整数)的两个实数根是、,则=.

5.设rn为整数,且4m40,方程有两个整数根,求m的值及方程的根.(山西省竞赛题)

6.已知方程(a≠0)至少有一个整数根,求的值.

7.求使关于的方程的根都是整数的值.

8.当为正整数时,关于的方程的两根均为质数,试解此方程.

9.设关于的二次方程的两根都是整数,试求满足条件的所有实数的值.

10.试求所有这样的正整数,使得方程至少有一个整数解.

参考答案

相关推荐

九年级数学竞赛转化—可化为一元二次方程的方程讲座


教案课件是老师上课中很重要的一个课件,大家应该在准备教案课件了。对教案课件的工作进行一个详细的计划,新的工作才会更顺利!有多少经典范文是适合教案课件呢?急您所急,小编为朋友们了收集和编辑了“九年级数学竞赛转化—可化为一元二次方程的方程讲座”,供您参考,希望能够帮助到大家。

【例题求解】

【例1】若,则的值为.

思路点拨视为整体,令,用换元法求出即可.

【例2】若方程有两个不相等的实数根,则实数的取值范围是()

A.B.C.D.

思路点拨通过平方有理化,将无理方程根的个数讨论转化为一元二次方程实根个数的讨论,但需注意注的隐含制约.

注:转化与化归是一种重要的数学思想,在数学学习与解数学题中,我们常常用到下列不同途径的转化:实际问题转化大为数学问题,数与形的转化,常量与变量的转化,一般与特殊的转化等.

解下列方程:

(1);

(2);

(3).

按照常规思路求解繁难,应恰当转化,对于(1),利用倒数关系换元;对于(2),从受到启示;对于(3),设,则可导出、的结果.

注:换元是建立在观察基础上的,换元不拘泥于一元代换,可根据问题的特点,进行多元代换.

【例4】若关于的方程只有一个解(相等的解也算作一个),试求的值与方程的解.

思路点拨先将分式方程转化为整式方程,把分式方程解的讨论转化为整式方程的解的讨论,“只有一个解”内涵丰富,在全面分析的基础上求出的值.

注:分式方程转化为整式方程不一定是等价转化,有可能产生增根,分式方程只有一个解,可能足转化后所得的整式方程只有一个解,也可能是转化后的整式方程有两个解,而其中一个是原方程的增根,故分式方程的解的讨论,要运用判别式、增根等知识全面分析.

【例5】已知关于的方程有两个根相等,求的值.

思路点拨通过换元可得到两个关于的含参数的一元二次方程,利用判别式求出的值.

注:运用根的判别式延伸到分式方程、高次方程根的情况的探讨,是近年中考、竞赛中一类新题型,尽管这种探讨仍以一元二次方程的根为基础,但对转换能力、思维周密提出了较高要求.

学历训练

1.若关于的方程有增根,则的值为;若关于的方程曾=一1的解为正数,则的取值范围是.

2.解方程得.

3.已知方程有一个根是2,则=.

4.方程的全体实数根的积为()

A.60B.一60C.10D.一10

5.解关于的方程不会产生增根,则是的值是()

A.2B.1C.不为2或一2D.无法确定

6.已知实数满足,那么的值为()

A.1或一2B.一1或2C.1D.一2

7.(1)如表,方程1、方程2、方程3、……,是按照一定规律排列的一列方程,解方程1,并将它的解填在表中的空格处;

(2)若方程()的解是=6,=10,求、的值.该方程是不是(1)中所给的一列方程中的一个方程?如果是,它是第几个方程?

(3)请写出这列方程中的第个方程和它的解,并验证所写出的解适合第个方程.

序号方程方程的解

1==

2=4=6

3=5=8

…………

8.解下列方程:

(1);

(2);

(3);

(4).

9.已知关于的方程,其中为实数,当m为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.

10.方程的解是.

11.解方程得.

12.方程的解是.

13.若关于的方程恰有两个不同的实数解,则实数的取值范围是.

14.解下列方程:

(1);

(2);

(3);

(4).

15.当取何值时,方程有负数解?

16.已知,求的值.

17.已知:如图,四边形ABCD为菱形,AF⊥上AD交BD于E点,交BC于点F.

(1)求证:AD2=DE×DB;

(2)过点E作EG⊥AE交AB于点G,若线段BE、DE(BEDE)的长为方程(m0)的两个根,且菱形ABCD的面积为,求EG的长.

参考答案

配方法解一元二次方程


公开课教案

授课人:henao6202授课时间:2007-3-27

授课地点:xx中学八(1)班公开范围:数学组

授课内容:20.2一元二次方程解法(3)---配方法

教学目标:理解配方法的意义,会用配方法解简单的数字系数的一元二次方程。

教学重点:配方法解一元二次方程

教学过程:

一、复习旧知导入新课

1、因式分解的完全平方公式内容。[a2±2ab+b2=(a±b)2]

2、填空:

(1)x2-8x+()2=(x-)2(2)y2+5y+()2=(y+)2

(3)x2-x+()2=(x-)2(4)x2+px+()2=(x+)2

说明:配方的关键是两边同加上一次项系数一半的平方,前提是二次项系数是1。

二、讲解新课

1、解方程(1)(x+3)2=2

解:x+3=±

x=-3±

即:x1=-3+x2=-3-

(2)x2+6x+7=0

这个方程显然不能用直接开平方法解,能否把这个方程化成可用开平方法来解的形式?即(x+m)2=n的形式。

我们可以这样变形:

把常数项移到右边,得

x2+6x=-7

对等号左边进行配方,得

x2+6x+32=-7+32

(x+3)2=2

这样,就把原方程化为与上面方程一样的形式了。像这种先对原一元二次方程配方,使它出现完全平方式后(即化为(x+m)2=n形式),再用开平方来解的方法叫配方法。

(板书)(一)、一元二次方程解法二:配方法

2、例1用配方法解下列方程:

(1)x2-4x-1=0(2)2x2-3x-1=0
说明:第(1)小题引导学生自己完成,第二小题引导学生将二次项系数化为1,再让学生自己完成。

解:(1)移项,得

x2-4x=1

配方,得

x2-4x+22=1+22

(x-2)2=5

开方,得

x-2=±

∴x1=2+x2=2-

(2)化二次项系数为1,得

x2-x-=0

移项,得

x2-x=

下面的过程由学生补充完整:

----------------------------------------

----------------------------------------

三、归纳小结

配方法的一般步骤(让学生总结,在黑板上板书)

1、化二次项系数为1

2、移项

3、配方(两边同加上一次项系数一半平方)

4、开方

其中“化、移、配、开”及“一半平方”用彩色粉笔标出。

四、练习

P40练习1、2

五、课外作业

P451、2

六、板书设计

20.2一元二次方程解法

(一)一元二次方程解法二--配方法例1解方程

(二)配方法的一般步骤(1)x2-4x-1=0

1、化二次项系数为1(2)2x2-3x-1=0

2、移项解:------------------------

3、配方(两边同加一次项系数一半平方)------------------------

4、开方------------------------

一元二次方程


每个老师不可缺少的课件是教案课件,大家在仔细设想教案课件了。教案课件工作计划写好了之后,这样我们接下来的工作才会更加好!你们会写一段适合教案课件的范文吗?下面是小编帮大家编辑的《一元二次方程》,仅供参考,大家一起来看看吧。

第二十二章一元二次方程
教材内容
本单元教学的主要内容:
1.一元二次方程及其有关概念,一元二次方程的解法(开平方法、配方法、公式法、分解因式法),
一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.
2.本单元在教材中的地位和作用:
教学目标
1.一分析实际问题中的等量关系并求解其中未知数为背景,认识一元二次方程及其有关概念。
2.根据化归思想,抓住“降次”这一基本策略,熟练掌握开平方法、配方法、公式法和分解因式法等一元二次方程的基本解法.
3.经历分析和解决问题的过程,体会一元二次方程的教学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。
教学重点、难点
重点:
1.一元二次方程及其有关概念
2.一元二次方程的解法(开平方法、配方法、公式法、分解因式法)
3.一元二次方程根与系数的关系以及运用一元二次方程分析和解决实际问题。
难点:
1.一元二次方程及其有关概念
2.一元二次方程的解法(配方法、公式法、分解因式法),
3.一元二次方程根与系数的关系以及灵活运用
课时安排
本章教学时约需课时,具体分配如下(供参考)
22.1一元二次方程1课时
22.2降次7课时
22.3实际问题与一元二次方程3课时
教学活动、习题课、小结
22.1一元二次方程
教学目的
1.使学生理解并能够掌握整式方程的定义.
2.使学生理解并能够掌握一元二次方程的定义.
3.使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式.
教学重点、难点
重点:一元二次方程的定义.
难点:一元二次方程的一般形式及其二次项系数、一次项系数和常数项的识别.
教学过程
复习提问
1.什么叫做方程?什么叫做一元一次方程?
2.指出下面哪些方程是已学过的方程?分别叫做什么方程?
(l)3x+4=l;(2)6x-5y=7;
3.结合上述有关方程讲解什么叫做“元”,什么叫做“次”.
引入新课
1.方程的分类:(通过上面的复习,引导学生答出)
学过的几类方程是
没学过的方程有x2-70x+825=0,x(x+5)=150.
这类“两边都是关于未知数的整式的方程,叫做整式方程.”像这样,我们把“只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程.”
据此得出复习中学生未学过的方程是
(4)一元二次方程:x2-70x+825=0,x(x+5)=150.
同时指导学生把学过的方程分为两大类:
2.一元二次方程的一般形式
注意引导学生考虑方程x2-70x+825=0和方程x(x+5)=150,即x2+5x=150,
可化为:x2+5x-150=0.
从而引导学生认识到:任何一个一元二次方程,经过整理都可以化为
ax2+bx+c=0(a≠0)的形式.并称之为一元二次方程的一般形式.
其中ax2,bx,c分别称为二次项、一次项、常数项;a,b分别称为二次项系数、一次项系数.
【注意】二次项系数a是不等于0的实数(a=0时,方程化为bx+c=0,不再是二次方程了);b,c可为任意实数.
例把方程5x(x+3)=3(x-1)+8化成一般形式.并写出它的二次项系数、一次项系数及常数项.
课堂练习P271、2题
归纳总结
1.方程分为两大类:
判别整式方程与分式方程的关键是看分母中是否含有未知数;判别一元一次方程,一元二次方程的关键是看方程化为一般形式后,未知数的最高次数是一次还是二次.
2.一元二次方程的定义:一个整式方程,经化简形成只含有一个未知数且未知数的最高次数是2,则这样的整式方程称一元二次方程.
其一般形式是ax2+bx+c=0(a≠0),其中b,c均可为任意实数,而a不能等于零.
布置作业:习题22.11、2题.
达标测试
1.在下列方程中,一元二次方程的个数是()
①3x2+7=0,②ax2+bx+c=0,③(x+2)(x-3)=x2-1,④x2-+4=0,
⑤x2-(+1)x+=0,⑥3x2-+6=0
A.1个B.2个C.3个D.4个
2.关于x的一元二次方程3x2=5x-2的二次项系数,一次项和常数项,下列说法完全正确的是()
A.3,-5,-2B.3,-5x,2
C.3,5x,-2D.3,-5,2
3.方程(m+2)+3mx+1=0是关于x的一元二次方程,则()
A.m=±2B.m=2C.m=-2D.m≠±2
4.若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是
5.方程4x2=3x-+1的二次项是,一次项是,常数项是
课后反思:

22.2解一元二次方程
第一课时
直接开平方法
教学目的
1.使学生掌握用直接开平方法解一元二次方程.
2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax2+c=0(a>0,c<0)的方法.
教学重点、难点
重点:准确地求出方程的根.
难点:正确地表示方程的两个根.
教学过程
复习过程
回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据.
求下列各式中的x:
1.x2=225;2.x2-169=0;3.36x2=49;4.4x2-25=0.
一元二次方程的解也叫做一元二次方程的根.
解题的依据是:一个正数有两个平方根,这两个平方根互为相反数.
即一般地,如果一个数的平方等于a(a≥0),那么这样的数有两个,它们是互为相反数.
引入新课
我们已经学过了一些方程知识,那么上述方程属于什么方程呢?
新课
例1解方程x2-4=0.
解:先移项,得x2=4.
即x1=2,x2=-2.
这种解一元二次方程的方法叫做直接开平方法.
例2解方程(x+3)2=2.
练习:P281、2
归纳总结
1.本节主要学习了简单的一元二次方程的解法——直接开平方法.
2.直接法适用于ax2+c=0(a>0,c<0)型的一元二次方程.
布置作业:习题22.14、6题
达标测试
1.方程x2-0.36=0的解是
A.0.6B.-0.6C.±6D.±0.6
2.解方程:4x2+8=0的解为
A.x1=2x2=-2B.
C.x1=4x2=-4D.此方程无实根
3.方程(x+1)2-2=0的根是
A.B.
C.D.
4.对于方程(ax+b)2=c下列叙述正确的是
A.不论c为何值,方程均有实数根B.方程的根是
C.当c≥0时,方程可化为:
D.当c=0时,
5.解下列方程:
①.5x2-40=0②.(x+1)2-9=0
③.(2x+4)2-16=0④.9(x-3)2-49=0
课后反思

文章来源:http://m.jab88.com/j/75466.html

更多

最新更新

更多