88教案网

九年级数学圆复习学案

每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,未来工作才会更有干劲!你们知道适合教案课件的范文有哪些呢?以下是小编为大家精心整理的“九年级数学圆复习学案”,希望能为您提供更多的参考。

九年级数学期末复习(4)---圆(2)

班级学号姓名

一、导学提纲

1.如图,AB是⊙O的直径,C是⊙O上一点,∠ABC=30°,过点A作⊙O的切线交BC的延长线于点D,则∠D=.

2.如图,AB是⊙O的直径,延长AB到点C,使BC=OB,过点C作⊙O的切线CD,D为切点.判断△ACD的形状:.

第1题图第2题图

3.圆锥的底面半径是3cm,母线长是5cm,则它的侧面展开图的面积是________

4.用一个半径长为6cm的半圆围成一个圆锥的侧面,则此圆锥的底面半径为()

A.2cmB.3cmC.4cmD.6cm

5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为.

6.用一张圆形的纸剪一个边长为4cm的正六边形,则这个圆形纸片的半径最小应为__cm.

7.如图,OA=OB=5㎝,AB=8㎝,⊙O的半径为3㎝.AB与⊙O相切吗?为什么?

8.圆锥母线长10cm,底面半径为6cm,那么它的侧面展形图的圆心角是多少度?

二、展示交流

1.如图AB是⊙O的直径,C为圆上任意一点,过C的切线分别与过A、B两点的切线交于P、Q,求证:PO⊥OQ

2.如图AB是⊙O的直径,C为圆上任意一点,过C的切线分别与过A、B两点的切线交于P、Q,已知AP=1cm,BQ=9cm,求⊙O的半径.

3.圆心角为120°的扇形的半径为10厘米,求这个扇形的面积和周长.

4.若圆锥的母线长为5cm,高为3cm,求其侧面展开图中扇形的圆心角的度数.M.JAb88.coM

5.如图,为⊙O的直径,为⊙O的切线,交⊙O于点,为上一点,.

(1)求证:;

(2)若,,求的长.

三、反馈练习

1.下列说法中,正确的是()

A垂直于半径的直线一定是这个圆的切线B圆有且只有一个外切三角形

C三角形有且只有一个内切圆D.三角形的内心到三角形的3个顶点的距离相等

2.一个圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图扇形的圆心角是()

A60°B90°C120°D180°

3.圆锥的母线为13cm,侧面展开图的面积为65πcm2,则这个圆锥的高为

4.正十二边形的每一个外角为°每一个内角是°该图形绕其中心至少旋转°和自身重合

5.两圆的半径分别为10cm和R、圆心距为13cm,若这两个圆相切,则R的值是____.

6.两圆半径之比为3:5,当两圆内切时,圆心距为4cm,则两圆外切时圆心距的长为_____.

7.如图:△ABC中,∠C=900,点O在BC上,以OC为半径的半圆切AB于点E,交BC于点D,若BE=4,BD=2,求⊙O的半径和边AC的长.

8.两条边分别是6和8的直角三角形,求其内切圆的半径.

9.如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM与于点D,交BN于点C,F是CD的中点,连接OF.

(1求证:OD∥BE;

(2)求证:.

10.△ABC外切于⊙O,切点分别为点D、E、F,∠A=600,BC=7,⊙O的半径为.

求△ABC的周长.

11.如图,已知Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以直线AB为轴旋转一周得一个几何体.求这个几何体的表面积.(结果保留π)

12.如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AD的

延长线相交于点F,且AD=3,cos∠BCD=.

(1)求证:CD∥BF;

(2)求⊙O的半径;

(3)求弦CD的长.

相关推荐

九年级数学竞赛圆与圆辅导教案


教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,才能促进我们的工作进一步发展!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“九年级数学竞赛圆与圆辅导教案”,供您参考,希望能够帮助到大家。

【例题求解】

【例1】如图,⊙Ol与半径为4的⊙O2内切于点A,⊙Ol经过圆心O2,作⊙O2的直径BC交⊙Ol于点D,EF为过点A的公切线,若O2D=,那么∠BAF=度.

(重庆市中考题)

思路点拨直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2Ol必过A点,先求出∠DO2A的度数.

注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.

(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.

【例2】如图,⊙Ol与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB与两圆的另一条外公切线平行,则⊙Ol与⊙O2的半径之比为()

A.2:5B.1:2C.1:3D.2:3

(全国初中数学联赛试题)

思路点拨添加辅助线,要探求两半径之间的关系,必须求出∠COlO2(或∠DO2Ol)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.

【例3】如图,已知⊙Ol与⊙O2相交于A、B两点,P是⊙Ol上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙Ol于点N.

(1)过点A作AE∥CN交⊙Oll于点E,求证:PA=PE;

(2)连结PN,若PB=4,BC=2,求PN的长.

(重庆市中考题)

思路点拨(1)连AB,充分运用与圆相关的角,证明∠PAE=∠PEA;(2)PBPC=PDPA,探寻PN、PD、PA对应三角形的联系.

【例4】如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=,大、小两圆半径差为2.

(1)求大圆半径长;

(2)求线段BF的长;

(3)求证:EC与过B、F、C三点的圆相切.

(宜宾市中考题)

思路点拨(1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明△EBC∽△ECF;(3)过B、F、C三点的圆的圆心O′,必在BF上,连OˊC,证明∠O′CE=90°.

注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识.作出圆中基本辅助线、运用与圆相关的角是解本例的关键.

【例5】如图,AOB是半径为1的单位圆的四分之一,半圆O1的圆心O1在OA上,并与弧AB内切于点A,半圆O2的圆心O2在OB上,并与弧AB内切于点B,半圆O1与半圆O2相切,设两半圆的半径之和为,面积之和为.

(1)试建立以为自变量的函数的解析式;

(2)求函数的最小值.

(太原市竞赛题)

思路点拨设两圆半径分别为R、r,对于(1),,通过变形把R2+r2用“=R+r”的代数式表示,作出基本辅助线;对于(2),因=R+r,故是在约束条件下求的最小值,解题的关键是求出R+r的取值范围.

注:如图,半径分别为r、R的⊙Ol、⊙O2外切于C,AB,CM分别为两圆的公切线,OlO2与AB交于P点,则:

(1)AB=2;

(2)∠ACB=∠OlMO2=90°;

(3)PC2=PAPB;

(4)sinP=;

(5)设C到AB的距离为d,则.

学力训练

1.已知:⊙Ol和⊙O2交于A、B两点,且⊙Ol经过点O2,若∠AOlB=90°,则∠AO2B的度数是.

2.矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆相切,点D在圆C内,点B在圆C外,那么圆A的半径r的取值范围.

(2003年上海市中考题)

3.如图;⊙Ol、⊙O2相交于点A、B,现给出4个命题:

(1)若AC是⊙O2的切线且交⊙Ol于点C,AD是⊙Ol的切线且交⊙O2于点D,则AB2=BCBD;

(2)连结AB、OlO2,若OlA=15cm,O2A=20cm,AB=24cm,则OlO2=25cm;

(3)若CA是⊙Ol的直径,DA是⊙O2的一条非直径的弦,且点D、B不重合,则C、B、D三点不在同一条直线上,

(4)若过点A作⊙Ol的切线交⊙O2于点D,直线DB交⊙Ol于点C,直线CA交⊙O2于点E,连结DE,则DE2=DBDC,则正确命题的序号是(写出所有正确命题的序号).

(厦门市中考题)

4.如图,半圆O的直径AB=4,与半圆O内切的动圆Ol与AB切于点M,设⊙Ol的半径为,AM的长为,则与的函数关系是,自变量的取值范围是.

(昆明市中考题)

5.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是()

A.2B.C.D.

6.如图,已知⊙Ol、⊙O2相交于A、B两点,且点Ol在⊙O2上,过A作⊙Oll的切线AC交BOl的延长线于点P,交⊙O2于点C,BP交⊙Ol于点D,若PD=1,PA=,则AC的长为()

A.B.C.D.

(武汉市中考题)

7.如图,⊙Ol和⊙O2外切于A,PA是内公切线,BC是外公切线,B、C是切点①PB=AB;②∠PBA=∠PAB;③△PAB∽△OlAB;④PBPC=OlAO2A.

上述结论,正确结论的个数是()

A.1B.2C.3D.4

(郴州市中考题)

8.两圆的半径分别是和r(Rr),圆心距为d,若关于的方程有两个相等的实数根,则两圆的位置关系是()

A.一定内切B.一定外切C.相交D.内切或外切

(连云港市中考题)

9.如图,⊙Ol和⊙O2内切于点P,过点P的直线交⊙Ol于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.

(1)求证:PC平分∠APD;

(2)求证:PDPA=PC2+ACDC;

(3)若PE=3,PA=6,求PC的长.

10.如图,已知⊙Ol和⊙O2外切于A,BC是⊙Ol和⊙O2的公切线,切点为B、C,连结BA并延长交⊙Ol于D,过D点作CB的平行线交⊙O2于E、F,求证:(1)CD是⊙Ol的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.

(四川省中考题)

11.如图,已知A是⊙Ol、⊙O2的一个交点,点M是OlO2的中点,过点A的直线BC垂直于MA,分别交⊙Ol、⊙O2于B、C.

(1)求证:AB=AC;

(2)若OlA切⊙O2于点A,弦AB、AC的弦心距分别为dl、d2,求证:dl+d2=O1O2;

(3)在(2)的条件下,若dld2=1,设⊙Ol、⊙O2的半径分别为R、r,求证:R2+r2=R2r2.

(山西省中考题)

12.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.

(全国初中数学联赛试题)

13.如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为.

(全国初中数学联赛试题)

14.如图,⊙Ol和⊙O2内切于点P,⊙O2的弦AB经过⊙Ol的圆心Ol,交⊙Ol于C、D,若AC:CD:DB=3:4:2,则⊙Ol与⊙O2的直径之比为()

A.2:7B.2:5C.2:3D.1:3

15.如图,⊙Ol与⊙O2相交,P是⊙Ol上的一点,过P点作两圆的切线,则切线的条数可能是()

A.1,2B.1,3C.1,2,3D.1,2,3,4

(安徽省中考题)

16.如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立()

A.有内切圆无外接圆B有外接圆无内切圆

C.既有内切圆,也有外接圆D.以上情况都不对

(太原市竞赛题)

17.已知:如图,⊙O与相交于A,B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙PP于点D,E,过点E作EF⊥CE交CB的延长线于F.

(1)求证:BC是⊙P的切线;

(2)若CD=2,CB=,求EF的长;

(3)若k=PE:CE,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.

(青岛市中考题)

18.如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.

(1)若PC=PD,求PB的长;

(2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由;

(3)当点F在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.

请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论.(浙江省嘉兴市中考题)

19.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.

(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;

(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.

(全国初中数学联赛试题)

20.问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.

操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图).

方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);,

探究:(1)求方案一中圆锥底面的半径;

(2)求方案二中圆锥底面及圆柱底面的半径;

(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.

(大连市中考题)

九年级数学下册《点与圆的位置关系》复习学案


九年级数学下册《点与圆的位置关系》复习学案

学习目标:1、理解点与圆的位置关系由点到圆心的距离决定;

2、理解不在同一条直线上的三个点确定一个圆;

3、会画三角形的外接圆,熟识相关概念

学习过程

一、点与圆的位置三种位置关系

生活现象:阅读课本P43—p44第一段,完成以下问题

1、在平面内,点和圆的位置关系有:

点在圆;点在圆;点在圆

2、判断点和圆的位置关系的方法:

设O的半径为r,点P到圆心O的距离为OP=d。

点P在圆外;点P在圆上;点P在圆内;

二、多少个点可以确定一个圆

问题:在圆上的点有多个,那么究竟多少个点就可以确定一个圆呢?

试一试

第5课时点与圆的位置关系导学案画图准备:

1、圆的确定圆的大小,圆确定圆的位置;

也就是说,若如果圆的和确定了,

那么,这个圆就确定了。

2、如图2,点O是线段AB的垂直平分线

上的任意一点,则有OAOB图2

画图:

第5课时点与圆的位置关系导学案1、画过一个点的圆。

右图,已知一个点A,画过A点的圆.

小结:经过一定点的圆可以画个。

第5课时点与圆的位置关系导学案2、画过两个点的圆。

右图,已知两个点A、B,画过同时经过A、B两点的圆.

提示:画这个圆的关键是找到圆心,

画出来的圆要同时经过A、B两点,

那么圆心到这两点距离,可见,

圆心在线段AB的上。

小结:经过两定点的圆可以画个,但这些圆的圆心在线段的上

3、画过三个点(不在同一直线)的圆。

第5课时点与圆的位置关系导学案提示:如果A、B、C三点不在一条直线上,那么经过A、B两点所画的圆的圆心在线段AB的垂直平分线上,

而经过B、C两点所画的圆的圆心在

线段BC的垂直平分线上,此时,这

两条垂直平分线一定相交,设交点为O,

则OA=OB=OC,于是以O为圆心,

OA为半径画圆,便可画出经过A、B、C

三点的圆.

小结:不在同一条直线上的三个点确定个圆.

在同一直线上的三点能作圆吗?

三、自学课本p45页最后一段并填空。

我们已经知道,经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的.三角形外接圆的圆心叫做这个三角形的.这个三角形叫做这个圆的.三角形的外心就是三角形交点.

第5课时点与圆的位置关系导学案如图:如果O经过ABC的三个顶点,

则O叫做ABC的,圆心O叫

做ABC的,反过来,ABC叫做

O的。

ABC的外心就是AC、BC、AB边的交点。

四.当堂检测

1、判断题

任意一个三角形一定有一个外接圆。()

任意一个圆有且只有一个内接三角形()

经过三点一定可以确定一个圆()

三角形的外心到三角形各顶点的距离相等。()

2、填空

(1)在平面内,O的半径为5cm,点P到圆心O的距离是3cm,则点P与O的位置关系是

(2)直角三角形ABC中,∠C=900,AC=3,BC=4,如果以点A为圆心,AC为半径作A,那么斜边中点D与A的位置关系是

(3)如图,ABC中,点O是它的外心,BC=24cm,点O到BC的A

距离是5cm,则ABC外接圆的半径是cm。

(4)、直角三角形的两条直角边分别是12cm、5cm,这个三角形的外接圆的半径是.

3、画图

在下图中,作出锐角三角形、直角三角形、钝角三角形的外接圆,从中发现什么规律?

五.本节课有哪些收获?

第5课时点与圆的位置关系导学案六.课后作业

1.如图已知矩形ABCD的边AB=3厘米,AD=4厘米

(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?

(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?

(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?

2.如上图矩形ABCD中,AB=3,BC=4,现以A为圆心,使B、C、D三点至少有一个在圆内,至少有一个在圆外,则A的半径r的取值范围是。

九年级数学圆的有关性质总复习


第24讲圆的有关性质
[锁定目标考试]

考标要求考查角度
1.理解圆的有关概念和性质,了解圆心角、弧、弦之间的关系.
2.了解圆心角与圆周角及其所对弧的关系,掌握垂径定理及推论.中考主要考查圆的有关概念和性质,与垂径定理有关的计算,与圆有关的角的性质及其应用.题型以选择题、填空题为主.
[导学必备知识]
知识梳理
一、圆的有关概念及其对称性
1.圆的定义
(1)圆是平面内到一定点的距离等于定长的所有点组成的图形.这个定点叫做________,定长叫做________;
(2)平面内一个动点绕一个定点旋转一周所形成的图形叫做圆,定点叫做圆心,定点与动点的连线段叫做半径.
2.圆的有关概念
(1)连接圆上任意两点的________叫做弦;
(2)圆上任意两点间的________叫做圆弧,简称弧;
(3)________相等的两个圆是等圆;
(4)在同圆或等圆中,能够互相________的弧叫做等弧.
3.圆的对称性
(1)圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;
(2)圆的中心对称性:圆是以圆心为对称中心的中心对称图形;
(3)圆是旋转对称图形:圆绕圆心旋转任意角度,都能和原来的图形重合.这就是圆的旋转不变性.
二、垂径定理及推论
1.垂径定理
垂直于弦的直径________这条弦,并且________弦所对的两条弧.
2.推论1
(1)平分弦(________)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过________,并且平分弦所对的________弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
3.推论2
圆的两条平行弦所夹的弧________.
4.(1)过圆心;(2)平分弦(不是直径);(3)垂直于弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧.若一条直线具备这五项中任意两项,则必具备另外三项.
三、圆心角、弧、弦之间的关系
1.定理
在同圆或等圆中,相等的圆心角所对的弧________,所对的弦________.
2.推论
同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等.三项中有一项成立,则其余对应的两项也成立.
四、圆心角与圆周角
1.定义
顶点在________上的角叫做圆心角;顶点在________上,角的两边和圆都________的角叫做圆周角.
2.性质
(1)圆心角的度数等于它所对的______的度数.
(2)一条弧所对的圆周角的度数等于它所对________的度数的一半.
(3)同弧或等弧所对的圆周角________,同圆或等圆中相等的圆周角所对的弧________.
(4)半圆(或直径)所对的圆周角是______,90°的圆周角所对的弦是________.
五、圆内接四边形的性质
圆内接四边形的对角互补.
自主测试
1.(2012重庆)如图,已知OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()
A.45°B.35°C.25°D.20°
2.(2012山东泰安)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()
A.CM=DMB.C.∠ACD=∠ADCD.OM=MD
3.(2012浙江湖州)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()
A.45°B.85°C.90°D.95°
4.(2012浙江衢州)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为__________mm.
5.(2012四川成都)如图,AB是⊙O的弦,OC⊥AB于C.若AB=23,OC=1,则半径OB的长为__________.
6.(2012山东青岛)如图,点A,B,C在⊙O上,∠AOC=60°,则∠ABC的度数是__________°.
[探究重难方法]

考点一、垂径定理及推论
【例1】在圆柱形油槽内装有一些油.截面如图,油面宽AB为6分米,如果再注入一些油后,油面AB上升1分米,油面宽变为8分米,圆柱形油槽直径MN为()
A.6分米B.8分米C.10分米D.12分米
分析:如图,油面AB上升1分米得到油面CD,依题意得AB=6,CD=8,过O点作AB的垂线,垂足为E,交CD于F点,连接OA,OC,由垂径定理,得AE=12AB=3,CF=12CD=4,设OE=x,则OF=x-1,在Rt△OAE中,OA2=AE2+OE2,在Rt△OCF中,OC2=CF2+OF2,由OA=OC,列方程求x即可求得半径OA,得出直径MN.
解析:如图,依题意得AB=6,CD=8,过O点作AB的垂线,垂足为E,交CD于F点,连接OA,OC,由垂径定理,得AE=12AB=3,CF=12CD=4,设OE=x,则OF=x-1,
在Rt△OAE中,OA2=AE2+OE2,在Rt△OCF中,OC2=CF2+OF2,∵OA=OC,∴32+x2=42+(x-1)2,解得x=4.
∴半径OA=32+42=5.∴直径MN=2OA=10(分米).
故选C.
答案:C
方法总结有关弦长、弦心距与半径的计算,常作垂直于弦的直径,利用垂径定理和解直角三角形来达到求解的目的.
触类旁通1如图所示,若⊙O的半径为13cm,点P是弦AB上一动点,且到圆心的最短距离为5cm,则弦AB的长为__________cm.
考点二、圆心(周)角、弧、弦之间的关系
【例2】如图,已知A,B,C,D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD,AD.
(1)求证:DB平分∠ADC;
(2)若BE=3,ED=6,求AB的长.
解:(1)证明:∵AB=BC,
∴=.∴∠ADB=∠BDC,∴DB平分∠ADC.
(2)由(1)知=,∴∠BAE=∠ADB.
∵∠ABE=∠ABD,∴△ABE∽△DBA.∴ABBE=BDAB.
∵BE=3,ED=6,∴BD=9.
∴AB2=BEBD=3×9=27.∴AB=33.
方法总结圆心角、弧、弦之间的关系定理,提供了从圆心角到弧到弦的转化方式,为我们证明角相等、线段相等和弧相等提供了新思路,解题时要根据具体条件灵活选择应用.
触类旁通2如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°,则∠ABD的度数为()
A.40°B.50°C.80°D.90°
考点三、圆周角定理及推论
【例3】如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()
A.116°B.32°C.58°D.64°
解析:根据圆周角定理求得,∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半),∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);根据平角是180°知∠BOD=180°-∠AOD.还有一种解法,即利用直径所对的圆周角等于90°,可得∠ADB=90°,则∠DAB=90°-∠ABD=32°,∵∠DAB=∠DCB,∴∠DCB=32°.
答案:B
方法总结求圆中角的度数时,通常要利用圆周角与圆心角或圆心角与弧之间的关系.
触类旁通3如图,点A,B,C,D都在⊙O上,的度数等于84°,CA是∠OCD的平分线,则∠ABD+∠CAO=__________.
[品鉴经典考题]

1.(2012湖南湘潭)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()
A.20°B.40°C.50°D.80°
2.(2012湖南益阳)如图,点A,B,C在圆O上,∠A=60°,则∠BOC=__________.
3.(2012湖南娄底)如图,⊙O的直径CD垂直于AB,∠AOC=48°,则∠BDC=__________.
4.(2012湖南长沙)如图,点A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°.
(1)求证:△ABC是等边三角形;
(2)求圆心O到BC的距离OD.
5.(2012湖南怀化)如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与A,B重合),连接CO并延长CO交⊙O于点D,连接AD,DB.
(1)当∠ADC=18°时,求∠DOB的度数;
(2)若AC=23,求证:△ACD∽△OCB.
[研习预测试题]

1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为()
A.5B.4C.3D.2
2.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()
A.12B.34C.32D.45
3.一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是()
A.16B.10C.8D.6
4.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA,OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()
A.12个单位B.10个单位C.4个单位D.15个单位
5.如图,已知在圆内接四边形ABCD中,∠B=30°,则∠D=________.
6.如图,过A,C,D三点的圆的圆心为E,过B,F,E三点的圆的圆心为D,如果∠A=63°,那么∠DBE=__________.
7.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=42,则⊙O的直径等于________.
8.如图,在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为弧AD上一点,BC=AF,延长DF与BA的延长线交于点E.求证:
(1)△ABD为等腰三角形;
(2)ACAF=DFFE.
参考答案
【知识梳理】
一、1.(1)圆心半径
2.(1)线段(2)部分(3)半径(4)重合
二、1.平分平分
2.(1)不是直径(2)圆心两条
3.相等
三、1.相等相等
四、1.圆心圆相交
2.(1)弧(2)圆心角(3)相等相等(4)直角直径
导学必备知识
自主测试
1.A∵OA⊥OB,∴∠AOB=90°,
∴∠ACB=45°.故选A.
2.D∵AB是⊙O的直径,弦CD⊥AB,垂足为M,
∴M为CD的中点,即CM=DM,选项A成立;
B为的中点,即CB=DB,选项B成立;
在△ACM和△ADM中,
∵AM=AM,∠AMC=∠AMD=90°,CM=DM,
∴△ACM≌△ADM(SAS),
∴∠ACD=∠ADC,选项C成立;
而OM与MD不一定相等,选项D不成立.
故选D.
3.B∵AC是⊙O的直径,∴∠ABC=90°.∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=45°.∵∠C=50°,
∴∠D=50°,∴∠BAD的度数是180°-45°-50°=85°.
4.8如图所示,在⊙O中,连接OA,过点O作OD⊥AB于点D,则AB=2AD.
∵钢珠的直径是10mm,
∴钢珠的半径是5mm.
∵钢珠顶端离零件表面的距离为8mm,
∴OD=3mm.
在Rt△AOD中,
∵AD=OA2-OD2=52-32=4(mm).
∴AB=2AD=2×4=8(mm).
故答案为8.
5.2∵AB是⊙O的弦,OC⊥AB于C,AB=23,
∴BC=12AB=3.∵OC=1,∴在Rt△OBC中,
OB=OC2+BC2=12+(3)2=2.
故答案为2.
6.150因为∠AOC=60°,则它所对的弧度为60°,所以∠ABC所对的弧度为300°.因为∠ABC是圆周角,所以∠ABC=150°.
探究考点方法
触类旁通1.24连接OA,当OP⊥AB时,OP最短,此时OP=5cm,且AB=2AP.在Rt△AOP中,AP=OA2-OP2=132-52=12,所以AB=24cm.
触类旁通2.B由题意,得∠A=∠C=40°,由直径所对的圆周角是直角,得∠ADB=90°,根据直角三角形两锐角互余或三角形内角和定理得∠A+∠ABD=90°,从而得∠ABD=50°.
触类旁通3.48°因为的度数等于84°,所以∠COD=84°.因为OC=OD,所以∠OCD=48°.因为CA是∠OCD的平分线,所以∠ACD=∠ACO=24°,因为OA=OC,所以∠OAC=∠ACO=24°,因为∠ABD=∠ACD=24°,所以∠ABD+∠CAO=48°.
品鉴经典考题
1.D∵AB∥CD,∴∠C=∠ABC=40°.
∴∠BOD=2∠C=2×40°=80°.
2.120°∠BOC=2∠A=2×60°=120°.
3.24°连接OB,∵CD⊥AB,∴∠BOC=∠AOC=48°.
∴∠BDC=12∠BOC=12×48°=24°.
4.(1)证明:∵∠ABC=∠APC,∠BAC=∠APC=60°,
∴∠ABC=∠BAC=60°.
∴△ABC是等边三角形.
(2)解:如图,连接OB,则OB=8,∠OBD=30°.
又∵OD⊥BC于点D,∴OD=12OB=4.
5.(1)解:连接OA.
∵∠ADC=18°,
∴∠AOC=2∠ADC=36°.
∵OA=OB,
∴∠OAC=∠OBC=30°.
∴∠OCB=∠OAC+∠AOC=66°.
∴∠DOB=∠OCB+∠OBC=96°.
(2)证明:过点O作OE⊥AB于点E.
在Rt△OBE中,OB=4,∠OBC=30°,
∴BE=OBcos30°=4×32=23.
∵OE⊥AB,∴AB=2BE=43.
∵AC=23,∴C,E重合.
∴∠ACD=∠OCB=90°,
∠AOC=∠COB=90°-∠OBC=60°.
∴∠ADC=12∠AOC=30°.
∴∠ADC=∠OBC.∴△ACD∽△OCB.
研习预测试题
1.C2.C3.A4.B
5.150°6.18°
7.52连接AO并延长交圆于点E,连接BE.(如图)
∵AE为⊙O的直径,
∴∠ABE=90°.
∴∠ABE=∠ADC.
又∵∠AEB=∠ACD,
∴△ABE∽△ADC.
∴ABAD=AEAC.∵在Rt△ADC中,AC=5,DC=3,
∴AD=4.∴AE=52.
8.证明:(1)由圆的性质知∠MCD=∠DAB,∠DCA=∠DBA,而∠MCD=∠DCA,
∴∠DBA=∠DAB,故△ABD为等腰三角形.
(2)∵∠DBA=∠DAB,∴=.
又∵BC=AF,∴=,∠CDB=∠FDA,
∴=,∴CD=DF.
由“圆的内接四边形外角等于它的内对角”知,
∠AFE=∠DBA=∠DCA,①
∠FAE=∠BDE.
∴∠CDA=∠CDB+∠BDA=∠FDA+∠BDA=∠BDE=∠FAE,②
由①②得△CDA∽△FAE.∴ACFE=CDAF,
∴ACAF=CDFE.
而CD=DF,∴ACAF=DFFE.

文章来源:http://m.jab88.com/j/75474.html

更多
上一篇:4放风筝 下一篇:4*假如我可以变

最新更新

更多