教案课件是每个老师工作中上课需要准备的东西,大家在认真准备自己的教案课件了吧。我们制定教案课件工作计划,可以更好完成工作任务!你们清楚教案课件的范文有哪些呢?小编特地为您收集整理“幂的乘方与积的乘方”,欢迎您阅读和收藏,并分享给身边的朋友!
课题第八章幂的运算课时分配本课(章节)需课时
本节课为第课时
为本学期总第课时
8.2幂的乘方与积的乘方(2)
教学目标1.掌握积的乘方法则,并会用它熟练进行运算。
2.会双向应用积的乘方公式。
3.会区分积的乘方,幂的乘方和同底数幂乘法。
重点1.掌握积的乘方法则,并会用它熟练进行运算。
2.积的乘方法则的推导过程。
难点会双向运用积的乘方公式,培养学生“以理驭算”的良好运算习惯。
教学方法讲练结合、探索交流课型新授课教具投影仪
教师活动学生活动
一.复习提问:
1.同底数幂的乘法法则
(1)语言表达,(2)式子表示。
2.幂的运算法则
(1)语言表达,(2)式子表示。
3.上两节课备用题选几道板演
二.新课讲解:
1.做一做P54
(1)(3×2)3=,
32×23=。
(2)[3×(-2)]3=,
32×(-2)3=。
(3)(1/3×1/2)3=,
(1/3)2×(1/2)3=。
换几个数试试,并且同学之间互相交流。
问:你发现了什么规律?
要求学生根据结果发现规律。
2.法则的推导
当n是正整数时,
(ab)n=(ab)(ab)﹒﹒﹒(ab)
n个ab
=(a﹒a﹒﹒﹒a)(b﹒b﹒﹒﹒b)
n个an个b
=anbn
所以(ab)n=anbn(n是正整数)
学生口述:积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘。
3.例题解析P55
例1:题略
注意:(1)5的三次方不能漏算。
(2)注意符号。
议一议:当n是正整数时,(abc)n=anbncn成立吗?
法则的推而广之:
当n是正整数时,(abc)n=anbncn
例2:题略
说明:是(abc)n=anbncn的活用。
4.练一练:P55
题1:学生板演。
题2:学生口答并说明理由。
题3、题4:师生互动。
5.小结:本节课我们学习了积的乘方的运算法则,望同学们在用此法则时不要同同底数幂的运算法则和幂的乘方的运算混淆了。
教学素材:
A组题:
(1)[(-2)×106]2[(6×102)2=
(2)若(a2bn)m=a4b6,则m=n=
(3)(-1/7)8494=
(4)0.5200422004=
(5)(-x)2x(-2y)3+(2xy)2(-x)3y=
B组题:
(1)若xn=5,yn=3则(xy)2n=
(2)(-8)20030.1252002=
学生回答
由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.
学生板演
作业第56页第1(4)(5)(6)、3(2)、4、5题
板书设计
复习例1板演
………………
………………
……例2……
………………
………………
教学后记
做好教案课件是老师上好课的前提,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写多少教案课件范文呢?下面是小编精心收集整理,为您带来的《幂的乘方与积的乘方导学案》,希望对您的工作和生活有所帮助。
8.1.2幂的乘方与积的乘方(1)
老师寄语:上节课我们学过了“同底数幂的乘法”,本节课让我们共同探究一下幂的乘方,即(am)n=?相信:认真完成这个导学案,我们一定会有很多收获。——开始吧。
【明确学习目的,激发学生学习兴趣。】
一、知识回忆
(1)an的意义?即an=;
(2)aman=,可叙述为
(3)可不能“光说不练”哟!试试看:
计算:(-a)3(-a)5=;-a2a3=;
b6=b2b();(-y)3(-y)4(-y)5=。
【复习巩固已经学过的内容,引入将要学习的内容】
二、自学探究
让我们来完成下面各题:
(1)(23)4=23×23×23×23=2(),即(23)4=;
(2)(52)3=52×52×52=5(),即(52)3=。
通过计算、比较指数之间的关系,你得出什么结论了吗?
【通过具体数字的运算,学生易于掌握,】
再验证一下:
(1)(a3)4=a3a3a3a3=a(),即(a3)4=;
(2)(a2)3=a2a2a2=a(),即(a2)3=。
你上面得到的结论还成立吗?
。
【由数字到字母,循序渐进,降低了学生学习的难度,利于学生对学习内容的探究,利于提高学生探究的兴趣】
我们在验证一下一般情况:
(am)n=amam……am=am+m+m+……+m
=a(),
即(am)n=;
由此,我们可以得出幂的乘方的运算法则:
。
即(am)n=。
【最终得出结论,形成知识。】
试试看,我们会用这个公式了吗?
1、判断正误,错的改正:
(1)(x3)2=x5();(2)x2x3=x6();
(3)x3x2=(x3)2=x6();(4)(-x4)3=x12()。
【基本练习,考察学生对概念的理解与掌握情况。】
2、计算:
(1)(105)3;(2)(x4)2;(3)(-x2)3.
【增加了联系的难度,为学生形成能力奠定基础。】
3、计算:
(1)﹝(y3)4﹞2;(2)(-x3)2(x4)2;
(3)-x3(-x3)2;(4)(-x3)2+x2x3x.
【通过练习,考察学生对所学内容以及相关内容的掌握情况,利于形成一定的知识体系。】
谈谈你的收获:
。
4、若2a=3,2b=5,求23a+2b+2的值。
(先想一下:23a=,22b=。)
5、比较433和522的大小。
(提示一下:你能判断出52和43的大小吗?你能得出什么结论?)
【灵活运用所学的知识解决有关问题,既利于学生对所学知识的巩固,又有利于学生对所学内容的升华。】
三、反馈检测:
A
(1)(am)n=;(2)aman=;
(2)x3x4x5=;(4)(-x2)3=;
B
计算:
(1)2(a5)2(a2)2-(a2)4(a3)2;
(2)[(-m5)4(-m2)7];
C
已知x2n=2,求4x4n–6x6n–8x8n的值。
四、学后反思
本节课你学习了什么内容?
你有什么收获?
你还有什么不明白的地方?
你觉得什么最重要?
做好教案课件是老师上好课的前提,大家应该在准备教案课件了。教案课件工作计划写好了之后,才能更好的在接下来的工作轻装上阵!哪些范文是适合教案课件?下面是小编精心收集整理,为您带来的《北师大版七年级数学下册《幂的乘方与积的乘方》教学反思》,欢迎您阅读和收藏,并分享给身边的朋友!
北师大版七年级数学下册《幂的乘方与积的乘方》教学反思文章来源:http://m.jab88.com/j/7207.html
更多