88教案网

九年级数学竞赛转化灵活的圆中角讲座

每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。是时候对自己教案课件工作做个新的规划了,未来的工作就会做得更好!究竟有没有好的适合教案课件的范文?小编收集并整理了“九年级数学竞赛转化灵活的圆中角讲座”,供大家参考,希望能帮助到有需要的朋友。

【例题求解】
【例1】如图,直线AB与⊙O相交于A,B再点,点O在AB上,点C在⊙O上,且∠AOC=40°,点E是直线AB上一个动点(与点O不重合),直线EC交⊙O于另一点D,则使DE=DO的点正共有个.
思路点拨在直线AB上使DE=DO的动点E与⊙O有怎样的位置关系?
分点E在AB上(E在⊙O内)、在BA或AB的延长线上(E点在⊙O外)三种情况考虑,通过角度的计算,确定E点位置、存在的个数.

注:弧是联系与圆有关的角的中介,“由弧到角,由角看弧”是促使与圆有关的角相互转化的基本方法.
【例2】如图,已知△ABC为等腰直角三形,D为斜边BC的中点,经过点A、D的⊙O与边AB、AC、BC分别相交于点E、F、M,对于如下五个结论:①∠FMC=45°;②AE+AF=AB;③;④2BM2=BF×BA;⑤四边形AEMF为矩形.其中正确结论的个数是()
A.2个B.3个C.4个D.5个
思路点拨充分运用与圆有关的角,寻找特殊三角形、特殊四边形、相似三角形,逐一验证.
注:多重选择单选化是近年出现的一种新题型,解这类问题,需把条件重组与整合,挖掘隐合条件,作深入的探究,方能作出小正确的选择.
【例3】如图,已知四边形ABCD外接⊙O的半径为5,对角线AC与BD的交点为E,且AB2=AE×AC,BD=8,求△ABD的面积.
思路点拨由条件出发,利用相似三角形、圆中角可推得A为弧BD中点,这是解本例的关键.

【例4】如图,已知AB是⊙O的直径,C是⊙O上的一点,连结AC,过点C作直线CD⊥AB于D(ADDB),点E是AB上任意一点(点D、B除外),直线CE交⊙O于点F,连结AF与直线CD交于点G.
(1)求证:AC2=AG×AF;
(2)若点E是AD(点A除外)上任意一点,上述结论是否仍然成立?若成立.请画出图形并给予证明;若不成立,请说明理由.
思路点拨(1)作出圆中常用辅助线证明△ACG∽△AFC;
(2)判断上述结论在E点运动的情况下是否成立,依题意准确画出图形是关键.

注:构造直径上90°的圆周角,是解与圆相关问题的常用辅助线,这样就为勾股定理的运用、相似三角形的判定创造了条件.
【例5】如图,圆内接六边形ABCDEF满足AB=CD=EF,且对角线AD、BE、CF相交于一点Q,设AD与CF的交点为P.
求证:(1);(2).
思路点拨解本例的关键在于运用与圆相关的角,能发现多对相似三角形.
(1)证明△QDE∽△ACF;(2)易证,通过其他三角形相似并结合(1)把非常规问题的证明转化为常规问题的证明.
注:有些几何问题虽然表面与圆无关,但是若能发现隐含的圆,尤其是能发现共圆的四点,就能运用圆的丰富性质为解题服务,确定四点共圆的主要方法有:
(1)利用圆的定义判定;
(2)利用圆内接四边形性质的逆命题判定.

学历训练
1.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为.
2.如图,AB是⊙O的直径,C、D、E都是⊙O上的一点,则∠1+∠2=.
3.如图,AB是⊙O的直径,弦CD⊥AB,F是CG的中点,延长AF交⊙O于E,CF=2,AF=3,则EF的长为.
4.如图,已知△ABC内接于⊙O,AB+AC=12,AD⊥BC于D,AD=3,设⊙O的半径为,AB的长为,用的代数式表示,=.
5.如图,ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD:∠ECD=3:2,那么∠BOD等于()
A.120°B.136°C.144°D.150°
6.如图,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,则∠BOC等于()
A.20°B.30°C.40°D.50°
7.如图,BC为半圆O的直径,A、D为半圆O上两点,AB=,BC=2,则∠D的度数为()
A.60°B.120°C.135°D.150°
8.如图,⊙O的直径AB垂直于弦CD,点P是弧AC上一点(点P不与A、C两点重合),连结PC、PD、PA、AD,点E在AP的延长线上,PD与AB交于点F.给出下列四个结论:①CH2=AH×BH;②AD=AC;③AD2=DF×DP;④∠EPC=∠APD,其中正确的个数是()
A.1B.2C.3D.4
9.如图,已知B正是△ABC的外接圆O的直径,CD是△ABC的高.
(1)求证:ACBC=BECD;
(2)已知CD=6,AD=3,BD=8,求⊙O的直径BE的长.

10.如图,已知AD是△ABC外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB,FC.
(1)求证:FB=FC;
(2)求证:FB2=FAFD;
(3)若AB是△ABC的外接圆的直径,∠EAC=120°,BC=6cm,求AD的长.
11.如图,B、C是线段AD的两个三等分点,P是以BC为直径的圆周上的任意一点(B、C点除外),则tan∠APBtan∠CPD=.
12.如图,在圆内接四边形ABCD中,AB=AD,∠BAD=60°,AC=,则四边形ABCD的面积为.
13.如图,圆内接四边形ABCD中,∠A=60°,∠B=90°,AD=3,CD=2,则BC=.
14.如图,AB是半圆的直径,D是AC的中点,∠B=40°,则∠A等于()
A.60°B.50°C.80°D.70°
15.如图,已知ABCD是一个以AD为直径的圆内接四边形,AB=5,PC=4,分别延长AB和DC,它们相交于P,若∠APD=60°,则⊙O的面积为()
A.25πB.16πC.15πD.13π
(2001年绍兴市竞赛题)

16.如图,AD是Rt△ABC的斜边BC上的高,AB=AC,过A、D两点的圆与AB、AC分别相交于点E、F,弦EF与AD相交于点G,则图中与△GDE相似的三角形的个数为()
A.5B.4C.3D.2
17.如图,已知四边形ABCD外接圆⊙O的半径为2,对角线AC与BD的交点为E,AE=EC,AB=AE,且BD=,求四边形ABCD的面积.
18.如图,已知ABCD为⊙O的内接四边形,E是BD上的一点,且有∠BAE=∠DAC.
求证:(1)△ABE∽△ACD;(2)ABDC+ADBC=ACBD.

19.如图,已知P是⊙O直径AB延长线上的一点,直线PCD交⊙O于C、D两点,弦DF⊥AB于点H,CF交AB于点E.
(1)求证:PAPB=POPE;(2)若DE⊥CF,∠P=15°,⊙O的半径为2,求弦CF的长.
20.如图,△ABC内接于⊙O,BC=4,S△ABC=,∠B为锐角,且关于的方程有两个相等的实数根,D是劣弧AC上任一点(点D不与点A、C重合),DE平分∠ADC,交⊙O于点E,交AC于点F.
(1)求∠B的度数;
(2)求CE的长;
(3)求证:DA、DC的长是方程的两个实数根.
参考答案

相关推荐

九年级数学竞赛抛物线讲座


九年级数学竞赛抛物线讲座
一般地说来,我们称函数(、、为常数,)为的二次函数,其图象为一条抛物线,与抛物线相关的知识有:
1.、、的符号决定抛物线的大致位置;
2.抛物线关于对称,抛物线开口方向、开口大小仅与相关,抛物线在顶点(,)处取得最值;
3.抛物线的解析式有下列三种形式:
①一般式:;
②顶点式:;
③交点式:,这里、是方程的两个实根.
确定抛物线的解析式一般要两个或三个独立条件,灵活地选用不同方法求出抛物线的解析式是解与抛物线相关问题的关键.
注:对称是一种数学美,它展示出整体的和谐与平衡之美,抛物线是轴对称图形,解题中应积极捕捉、创造对称关系,以便从整体上把握问题,由抛物线捕捉对称信息的方式有:
(1)从抛物线上两点的纵坐标相等获得对称信息;
(2)从抛物线的对称轴方程与抛物线被轴所截得的弦长获得对称信息.
【例题求解】
【例1】二次函数的图象如图所示,则函数值时,对应的取值范围是.
思路点拨由图象知抛物线顶点坐标为(一1,一4),可求出,值,先求出时,对应的值.

【例2】已知抛物线(0)经过点(一1,0),且满足.以下结论:①;②;③;④.其中正确的个数有()
A.1个B.2个C.3个D.4个
思路点拨由条件大致确定抛物线的位置,进而判定、、的符号;由特殊点的坐标得等式或不等式;运用根的判别式、根与系数的关系.

【例3】如图,有一块铁皮,拱形边缘呈抛物线状,MN=4分米,抛物线顶点处到边MN的距离是4分米,要在铁皮上截下一矩形ABCD,使矩形顶点B、C落在边MN上,A、D落在抛物线上,问这样截下的矩形铁皮的周长能否等于8分米?
思路点拨恰当建立直角坐标系,易得出M、N及抛物线顶点坐标,从而求出抛物线的解析式,设A(,),建立含的方程,矩形铁皮的周长能否等于8分米,取决于求出的值是否在已求得的抛物线解析式中自变量的取值范围内.

注:把一个生产、生活中的实际问题转化,成数学问题,需要观察分析、建模,建立直角坐标系下的函数模型是解决实际问题的常用方法,同一问题有不同的建模方式,通过分析比较可获得简解.
【例4】二次函数的图象与轴交于A、两点(点A在点B左边),与轴交于C点,且∠ACB=90°.
(1)求这个二次函数的解析式;
(2)设计两种方案:作一条与轴不重合,与△ABC两边相交的直线,使截得的三角形与△ABC相似,并且面积为△BOC面积的,写出所截得的三角形三个顶点的坐标(注:设计的方案不必证明).

思路点拨(1)A、B、C三点坐标可用m的代数式表示,利用相似三角形性质建立含m的方程;(2)通过特殊点,构造相似三角形基本图形,确定设计方案.

注:解函数与几何结合的综合题,善于求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互助,把证明与计算相结合是解题的关键.
【例5】已知函数,其中自变量为正整数,也是正整数,求何值时,函数值最小.
思路点拨将函数解析式通过变形得配方式,其对称轴为,因,,故函数的最小值只可能在取,,时达到.所以,解决本例的关键在于分类讨论.

学历训练
1.如图,若抛物线与四条直线、、、所围成的正方形有公共点,则的取值范围是.
2.抛物线与轴的正半轴交于A,B两点,与轴交于C点,且线段AB的长为1,△ABC的面积为1,则的值为.
3.如图,抛物线的对称轴是直线,它与轴交于A、B两点,与轴交于点C,点A、C的坐标分别为(-l,0)、(0,),则(1)抛物线对应的函数解析式为;(2)若点P为此抛物线上位于轴上方的一个动点,则△ABP面积的最大值为.
4.已知二次函数的图象如图所示,且OA=OC,则由抛物线的特征写出如下含有、、三个字母的式子①,②,③,④,0,其中正确结论的序号是(把你认为正确的都填上).
5.已知,点(,),(,),(,)都在函数的图象上,则()
A.B.C.D.

6.把抛物线的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为,则有()
A.,B.,C.,c=3D.,
7.二次函数的图象如图所示,则点(,)所在的直角坐标系是()
A.第一象限B.第二象限C.第三象限D.第四象限

8.周长是4m的矩形,它的面积S(m2)与一边长(m)的函数图象大致是()

9.阅读下面的文字后,回答问题:
“已知:二次函数的图象经过点A(0,),B(1,-2),求证:这个二次函数图象的对称轴是直线.
题目中的横线部分是一段被墨水污染了无法辨认的文字.
(1)根据现有的信息,你能否求出题目中二次函数的解析式?若能,写出求解过程;若不能,说明理由.
(2)请你根据已有信息,在原题中的横线上,填加一个适当的条件,把原题补充完整.
10.如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.
(1)建立如图所示的直角坐标系,求抛物线的解析式;
(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?

11.如图,抛物线和直线()与轴、y轴都相交于A、B两点,已知抛物线的对称轴与轴相交于C点,且∠ABC=90°,求抛物线的解析式.

12.抛物线与轴交于A、B两点,与轴交于点C,若△ABC是直角三角形,则.
13.如图,已知直线与抛物线相交于A、B两点,O为坐标原点,那么△OAB的面积等于.
14.已知二次函数,一次函数.若它们的图象对于任意的实数是都只有一个公共点,则二次函数的解析式为.
15.如图,抛物线与两坐标轴的交点分别是A,B,E,且△ABE是等腰直角三角形,AE=BE,则下列关系式中不能总成立的是()
A.b=0B.S△ADC=c2C.ac=一1D.a+c=0
16.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数的图象过点(1,0)…求证:这个二次函数的图象关于直线对称.
根据现有信息,题中的二次函数不具有的性质是()
A.过点(3,0)B.顶点是(2,一2)
C.在轴上截得的线段长为2D.与轴的交点是(0,3)
17.已知A(x1,2002),B(x2,2002)是二次函数()的图象上两时,二次函数的值是()
A.B.C.2002D.5
18.某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1所示);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2所示).若生产出的产品都能在当年销售完,问年产量是多少吨时,所获毛利润最大?(毛利润=销售额一费用).
19.如图,已知二次函数的图象与轴交于A、B两点(点A在点B的左边),与轴交于点C,直线:x=m(m1)与轴交于点D.
(1)求A、B、C三点的坐标;
(2)在直线x=m(m1)上有一点P(点P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求P点坐标(用含m的代数式表示);
(3)在(2)成立的条件下,试问:抛物线上是否存在一点Q,使得四边形ABPQ为平行四边形?如果存在这样的点Q,请求出m的值;如果不存在,请简要说明理由.

20.已知二次函数及实数,求
(1)函数在一2x≤a的最小值;
(2)函数在a≤x≤a+2的最小值.
21.如图,在直角坐标:O中,二次函数图象的顶点坐标为C(4,),且在轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在轴上求作一点P(不写作法)使PA+PC最小,并求P点坐标;
(3)在轴的上方的抛物线上,是否存在点Q,使得以Q、A、B三点为顶点的三角形与△ABC相似?如果存在,求出Q点的坐标;如果不存在,请说明理由.

22.某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要结论.一是发现抛物线y=ax2+2x+3(a≠0),当实数a变化时,它的顶点都在某条直线上;二是发现当实数a变化时,若把抛物线y=ax2+2x+3的顶点的横坐标减少,纵坐标增加,得到A点的坐标;若把顶点的横坐标增加,纵坐标增加,得到B点的坐标,则A、B两点一定仍在抛物线y=ax2+2x+3上.
(1)请你协助探求出当实数a变化时,抛物线y=ax2+2x+3的顶点所在直线的解析式;
(2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;
(3)在他们第二个发现的启发下,运用“一般——特殊—一般”的思想,你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立请说明理由.

参考答案

九年级数学竞赛坐标平面上的直线讲座


每个老师需要在上课前弄好自己的教案课件,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“九年级数学竞赛坐标平面上的直线讲座”,相信能对大家有所帮助。

一般地,若(,是常数,),则叫做的一次函数,它的图象是一条直线,函数解析式6中的系数符号,决定图象的大致位置及单调性(随的变化情况).如图所示:

一次函数、二元一次方程、直线有着深刻的联系,任意一个一次函数都可看作是关于、的一个二元一次方程;任意一个关于、的二元一次方程,可化为形如()的函数形式.坐标平面上的直线可以表示一次函数与二元一次方程,而利用方程和函数的思想可以研究直线位置关系,求坐标平面上的直线交点坐标转化为解由函数解析式联立的方程组.

【例题求解】

【例1】如图,在直角坐标系中,直角梯形OABC的顶点A(3,0)、B(2,7),P为线段OC上一点,若过B、P两点的直线为,过A、P两点的直线为,且BP⊥AP,则=.

思路点拨解题的关键是求出P点坐标,只需运用几何知识建立OP的等式即可.

【例2】设直线(为自然数)与两坐标轴围成的三角形面积为(=1,2,…2000),则S1+S2+…+S2000的值为()

A.1B.C.D.

思路点拨求出直线与轴、轴交点坐标,从一般形式入手,把用含的代数式表示.

【例3】某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2吨,加油时间为分钟,Q1、Q2与之间的函数图象如图所示,结合图象回答下列问题:

(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需多少分钟?

(2)求加油过程中,运输飞机的余油量Q1(吨)与时间(分钟)的函数关系式;

(3)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?说明理由.

思路点拨对于(3),解题的关键是先求出运输飞机每小时耗油量.

注:(1)当自变量受限制时,一次函数图象可能是射线、线段、折线或点,一次函数当自变量取值受限制时,存在最大值与最小值,根据图象求最值直观明了.

(2)当一次函数图象与两坐标轴有交点时,就与直角三角形联系在一起,求两交点坐标并能发掘隐含条件是解相关综合题的基础.

【例4】如图,直线与轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC,∠BAC=90°,如果在第二象限内有一点P(,),且△ABP的面积与△AABC的面积相等,求的值.

思路点拨利用S△ABP=S△ABC建立含的方程,解题的关键是把S△ABP表示成有边落在坐标轴上的三角形面积和、差.

注:解函数图象与面积结合的问题,关键是把相关三角形用边落在坐标轴的其他三角形面积来表示,这样面积与坐标就建立了联系.

【例5】在直角坐标系中,有以A(一1,一1),B(1,一1),C(1,1),D(一1,1)为顶点的正方形,设它在折线上侧部分的面积为S,试求S关于的函数关系式,并画出它们的图象.

思路点拨先画出符合题意的图形,然后对不确定折线及其中的字母的取值范围进行分类讨论,的取值决定了正方形在折线上侧部分的图形的形状.

注:我们把有自变量或关于自变量的代数式包含在绝对值符号在内的一类函数称为绝对值函数.去掉绝对值符号,把绝对值函数化为分段函数,这是解绝对值的一般思路.

学历训练

1.一次函数的自变量的取值范围是-3≤≤6,相应函数值的取值范围是-5≤≤-2,则这个函数的解析式为.

2.已知,且,则关于自变量的一次函数的图象一定经过第象限.

3.一家小型放影厅的盈利额(元)与售票数之间的关系如图所示,其中超过150人时,要缴纳公安消防保险费50元.试根据关系图回答下列问题:

(1)当售票数满足0≤150时,盈利额(元)与之间的函数关系式是.

(2)当售票数满足150x≤200时,盈利额(元)与之间的函数关系式是.

(3)当售票数为时,不赔不赚;当售票数满足时,放影厅要赔本;若放影厅要获得最大利润200元,此时售票数应为

(4)当售票数满足时,此时利润比=150时多.

4.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F,设BP=,EF=,则能反映与之间关系的图象是()

5.下列图象中,不可能是关于的一次函数的图象是()

6.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间关系如图所示,那么小李赚了()

A.32元B.36元C.38元D.44元

7.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量(微克)随时间(小时)的变化如图所示,当成人按规定剂量服用后.

(1)分别求出≤2和≥2时与之间的函数关系式;

(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?

8.如图,正方形ABCD的边长是4,将此正方形置于平面直角坐标系O中,使AB在轴的正半轴上,A点的坐标是(1,0)

(1)经过C点的直线与轴交于点E,求四边形AECD的面积;

(2)若直线经过点E且将正方形ABCD分成面积相等的两部分,求直线的方程,并在坐标系中画出直线.(2001年湖北省荆州市中考题)

9.如图,已知点A与B的坐标分别为(4,0),(0,2)

(1)求直线AB的解析式.

(2)过点C(2,0)的直线(与轴不重合)与△AOB的另一边相交于点P,若截得的三角形与△AOB相似,求点P的坐标.

10.如图,直线与轴、y轴分别交于P、Q两点,把△POQ沿PQ翻折,点O落在R处,则点R的坐标是.

11.在直角坐标系O中,轴上的动点M(,0)到定点P(5,5)、Q(2,1)的距离分别为MP和MQ,那么,当MP+MQ取最小值时,点M的横坐标为.

12.如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线恰好将矩形OABC分成面积相等的两部分,那么b=.

13.如果—条直线经过不同的三点A(a,b),B(b,a),C(a-b,b-a),那么,直线经过()象限.

A.二、四B.—、三C.二、三、四D.一、三、四

14.一个一次函数的图象与直线平行,与轴、轴的交点分别为A、B,并且过点(一l,—25),则在线段AB(包括端点A、B)上,横、纵坐标都是整数的的点有()

A.4个B.5个C.6个D.7个

15.点A(一4,0),B(2,0)是坐标平面上两定点,C是的图象上的动点,则满足上述条件的直角△ABC可以画出()

A.1个B.2个C.3个D.4个

16.有—个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进不出水,在随后的15分钟内既进水又出水,得到时间(分)与水量(升)之间的关系如下图.若20分钟后只出水不进水,求这时(即≥20)y与之间的函数关系式.

17.如图,△AOB为正三角形,点B坐标为(2,0),过点C(一2,0)作直线交AO于D,交AB于E,且使△ADE和△DCO的面积相等,求直线的函数解析式.

18.在直角坐标系中,有四个点A(一8,3),B(一4,5),C(0,),D(,0),当四边形ABCD的周长最短时,求的值.

19.转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染,该装置的氧化铁回收率与其通过的电流有关.现经过试验得到下列数据:

通过电流强度(单位A)11.71.92.12.4

氧化铁回收率(%)7579888778

如图建立直角坐标系,用横坐标表示通过的电流强度,纵坐标表示氧化铁回收率.

(1)将试验所得数据在右图所给的直角坐标系中用点表示(注:该图中坐标轴的交点代表点(1,70);

(2)用线段将题(1)所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y关于通过电流x的函数关系,试写出该函数在1.7≤x≤2.4时的表达式;

(3)利用题(2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围(精确到0.1A).

20.如图,直线OC、BC的函数关系式分别为和,动点P(x,0)在OB上移动(03),过点P作直线与轴垂直.

(1)求点C的坐标;

(2)设△OBC中位于直线左侧部分的面积为S,写出S与之间的函数关系式;

(3)在直角坐标系中画出(2)中的函数的图象;

(4)当为何值时,直线平分△OBC的面积?

参考答案

九年级数学竞赛圆与圆辅导教案


教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,才能促进我们的工作进一步发展!你们知道多少范文适合教案课件?考虑到您的需要,小编特地编辑了“九年级数学竞赛圆与圆辅导教案”,供您参考,希望能够帮助到大家。

【例题求解】

【例1】如图,⊙Ol与半径为4的⊙O2内切于点A,⊙Ol经过圆心O2,作⊙O2的直径BC交⊙Ol于点D,EF为过点A的公切线,若O2D=,那么∠BAF=度.

(重庆市中考题)

思路点拨直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2Ol必过A点,先求出∠DO2A的度数.

注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.

(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.

【例2】如图,⊙Ol与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB与两圆的另一条外公切线平行,则⊙Ol与⊙O2的半径之比为()

A.2:5B.1:2C.1:3D.2:3

(全国初中数学联赛试题)

思路点拨添加辅助线,要探求两半径之间的关系,必须求出∠COlO2(或∠DO2Ol)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.

【例3】如图,已知⊙Ol与⊙O2相交于A、B两点,P是⊙Ol上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙Ol于点N.

(1)过点A作AE∥CN交⊙Oll于点E,求证:PA=PE;

(2)连结PN,若PB=4,BC=2,求PN的长.

(重庆市中考题)

思路点拨(1)连AB,充分运用与圆相关的角,证明∠PAE=∠PEA;(2)PBPC=PDPA,探寻PN、PD、PA对应三角形的联系.

【例4】如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=,大、小两圆半径差为2.

(1)求大圆半径长;

(2)求线段BF的长;

(3)求证:EC与过B、F、C三点的圆相切.

(宜宾市中考题)

思路点拨(1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明△EBC∽△ECF;(3)过B、F、C三点的圆的圆心O′,必在BF上,连OˊC,证明∠O′CE=90°.

注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识.作出圆中基本辅助线、运用与圆相关的角是解本例的关键.

【例5】如图,AOB是半径为1的单位圆的四分之一,半圆O1的圆心O1在OA上,并与弧AB内切于点A,半圆O2的圆心O2在OB上,并与弧AB内切于点B,半圆O1与半圆O2相切,设两半圆的半径之和为,面积之和为.

(1)试建立以为自变量的函数的解析式;

(2)求函数的最小值.

(太原市竞赛题)

思路点拨设两圆半径分别为R、r,对于(1),,通过变形把R2+r2用“=R+r”的代数式表示,作出基本辅助线;对于(2),因=R+r,故是在约束条件下求的最小值,解题的关键是求出R+r的取值范围.

注:如图,半径分别为r、R的⊙Ol、⊙O2外切于C,AB,CM分别为两圆的公切线,OlO2与AB交于P点,则:

(1)AB=2;

(2)∠ACB=∠OlMO2=90°;

(3)PC2=PAPB;

(4)sinP=;

(5)设C到AB的距离为d,则.

学力训练

1.已知:⊙Ol和⊙O2交于A、B两点,且⊙Ol经过点O2,若∠AOlB=90°,则∠AO2B的度数是.

2.矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆相切,点D在圆C内,点B在圆C外,那么圆A的半径r的取值范围.

(2003年上海市中考题)

3.如图;⊙Ol、⊙O2相交于点A、B,现给出4个命题:

(1)若AC是⊙O2的切线且交⊙Ol于点C,AD是⊙Ol的切线且交⊙O2于点D,则AB2=BCBD;

(2)连结AB、OlO2,若OlA=15cm,O2A=20cm,AB=24cm,则OlO2=25cm;

(3)若CA是⊙Ol的直径,DA是⊙O2的一条非直径的弦,且点D、B不重合,则C、B、D三点不在同一条直线上,

(4)若过点A作⊙Ol的切线交⊙O2于点D,直线DB交⊙Ol于点C,直线CA交⊙O2于点E,连结DE,则DE2=DBDC,则正确命题的序号是(写出所有正确命题的序号).

(厦门市中考题)

4.如图,半圆O的直径AB=4,与半圆O内切的动圆Ol与AB切于点M,设⊙Ol的半径为,AM的长为,则与的函数关系是,自变量的取值范围是.

(昆明市中考题)

5.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是()

A.2B.C.D.

6.如图,已知⊙Ol、⊙O2相交于A、B两点,且点Ol在⊙O2上,过A作⊙Oll的切线AC交BOl的延长线于点P,交⊙O2于点C,BP交⊙Ol于点D,若PD=1,PA=,则AC的长为()

A.B.C.D.

(武汉市中考题)

7.如图,⊙Ol和⊙O2外切于A,PA是内公切线,BC是外公切线,B、C是切点①PB=AB;②∠PBA=∠PAB;③△PAB∽△OlAB;④PBPC=OlAO2A.

上述结论,正确结论的个数是()

A.1B.2C.3D.4

(郴州市中考题)

8.两圆的半径分别是和r(Rr),圆心距为d,若关于的方程有两个相等的实数根,则两圆的位置关系是()

A.一定内切B.一定外切C.相交D.内切或外切

(连云港市中考题)

9.如图,⊙Ol和⊙O2内切于点P,过点P的直线交⊙Ol于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.

(1)求证:PC平分∠APD;

(2)求证:PDPA=PC2+ACDC;

(3)若PE=3,PA=6,求PC的长.

10.如图,已知⊙Ol和⊙O2外切于A,BC是⊙Ol和⊙O2的公切线,切点为B、C,连结BA并延长交⊙Ol于D,过D点作CB的平行线交⊙O2于E、F,求证:(1)CD是⊙Ol的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.

(四川省中考题)

11.如图,已知A是⊙Ol、⊙O2的一个交点,点M是OlO2的中点,过点A的直线BC垂直于MA,分别交⊙Ol、⊙O2于B、C.

(1)求证:AB=AC;

(2)若OlA切⊙O2于点A,弦AB、AC的弦心距分别为dl、d2,求证:dl+d2=O1O2;

(3)在(2)的条件下,若dld2=1,设⊙Ol、⊙O2的半径分别为R、r,求证:R2+r2=R2r2.

(山西省中考题)

12.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.

(全国初中数学联赛试题)

13.如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为.

(全国初中数学联赛试题)

14.如图,⊙Ol和⊙O2内切于点P,⊙O2的弦AB经过⊙Ol的圆心Ol,交⊙Ol于C、D,若AC:CD:DB=3:4:2,则⊙Ol与⊙O2的直径之比为()

A.2:7B.2:5C.2:3D.1:3

15.如图,⊙Ol与⊙O2相交,P是⊙Ol上的一点,过P点作两圆的切线,则切线的条数可能是()

A.1,2B.1,3C.1,2,3D.1,2,3,4

(安徽省中考题)

16.如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立()

A.有内切圆无外接圆B有外接圆无内切圆

C.既有内切圆,也有外接圆D.以上情况都不对

(太原市竞赛题)

17.已知:如图,⊙O与相交于A,B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙PP于点D,E,过点E作EF⊥CE交CB的延长线于F.

(1)求证:BC是⊙P的切线;

(2)若CD=2,CB=,求EF的长;

(3)若k=PE:CE,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.

(青岛市中考题)

18.如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.

(1)若PC=PD,求PB的长;

(2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由;

(3)当点F在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.

请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论.(浙江省嘉兴市中考题)

19.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.

(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;

(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.

(全国初中数学联赛试题)

20.问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.

操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图).

方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);,

探究:(1)求方案一中圆锥底面的半径;

(2)求方案二中圆锥底面及圆柱底面的半径;

(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.

(大连市中考题)

文章来源:http://m.jab88.com/j/70455.html

更多

最新更新

更多