88教案网

一元二次方程的解法导学案

为了促进学生掌握上课知识点,老师需要提前准备教案,大家应该在准备教案课件了。用心制定好教案课件的工作计划,这对我们接下来发展有着重要的意义!有没有出色的范文是关于教案课件的?为满足您的需求,小编特地编辑了“一元二次方程的解法导学案”,供大家借鉴和使用,希望大家分享!

班级姓名学号
学习目标
1、了解形如(x+m)2=n(n≥0)的一元二次方程的解法——直接开平方法
2、会用直接开平方法解一元二次方程
学习重点:会用直接开平方法解一元二次方程
学习难点:理解直接开平方法与平方根的定义的关系
教学过程
一、情境引入:
1.我们曾学习过平方根的意义及其性质,现在来回忆一下:什么叫做平方根?平方根有哪些性质?
如果一个数的平方等于a,那么这个数就叫做a的平方根。用式子表示:若x2=a,则x叫做a的平方根。记作x=,即x=或x=。
如:9的平方根是±3,的平方根是
平方根有下列性质:
(1)一个正数有两个平方根,这两个平方根是互为相反数的;
(2)零的平方根是零;
(3)负数没有平方根。
2如何解方程(1)x2=4,(2)x2-2=0呢?
二、探究学习:
1.尝试:
(1)根据平方根的意义,x是4的平方根,∴x=±2
即此一元二次方程的解(或根)为:x1=2,x2=-2
(2)移项,得x2=2
根据平方根的意义,x就是2的平方根,∴x=
即此一元二次方程的解(或根)为:x1=,x2=
2.概括总结.
什么叫直接开平方法?
像解x2=4,x2-2=0这样,这种解一元二次方程的方法叫做直接开平方法。
说明:运用“直接开平方法”解一元二次方程的过程,就是把方程化为形如x2=a(a≥0)或(x+h)2=k(k≥0)的形式,然后再根据平方根的意义求解
3.概念巩固:
已知一元二次方程mx2+n=0(m≠0),若方程可以用直接开平方法求解,且有两个实数根,则m、n必须满足的条件是()
A.n=0B.m、n异号C.n是m的整数倍D.m、n同号
4.典型例题:
例1解下列方程
(1)x2-1.21=0(2)4x2-1=0
解:(1)移向,得x2=1.21(2)移向,得4x2=1
∵x是1.21的平方根两边都除以4,得x2=
∴x=±1.1∵x是的平方根
即x1=1.1,x2=-1.1∴x=
即x1=,x2=
例2解下列方程:
⑴(x+1)2=2⑵(x-1)2-4=0
⑶12(3-2x)2-3=0
分析:第1小题中只要将(x+1)看成是一个整体,就可以运用直接开平方法求解;第2小题先将-4移到方程的右边,再同第1小题一样地解;第3小题先将-3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可。
解:(1)∵x+1是2的平方根
∴x+1=
即x1=-1+,x2=-1-
(2)移项,得(x-1)2=4
∵x-1是4的平方根
∴x-1=±2
即x1=3,x2=-1
(3)移项,得12(3-2x)2=3
两边都除以12,得(3-2x)2=0.25
∵3-2x是0.25的平方根
∴3-2x=±0.5
即3-2x=0.5,3-2x=-0.5
∴x1=,x2=
例3解方程(2x-1)2=(x-2)2
分析:如果把2x-1看成是(x-2)2的平方根,同样可以用直接开平方法求解
解:2x-1=
即2x-1=±(x-2)
∴2x-1=x-2或2x-1=-x+2
即x1=-1,x2=1
5.探究:(1)能用直接开平方法解的一元二次方程有什么特点?
如果一个一元二次方程具有(x+h)2=k(k≥0)的形式,那么就可以用直接开平方法求解。
(2)用直接开平方法解一元二次方程的一般步骤是什么?
首先将一元二次方程化为左边是含有未知数的一个完全平方式,右边是非负数的形式,然后用平方根的概念求解
(3)任意一个一元二次方程都能用直接开平方法求解吗?请举例说明
6.巩固练习:
(1)下列解方程的过程中,正确的是()
①x2=-2,解方程,得x=±
②(x-2)2=4,解方程,得x-2=2,x=4
③4(x-1)2=9,解方程,得4(x-1)=±3,x1=;x2=
④(2x+3)2=25,解方程,得2x+3=±5,x1=1;x2=-4
(2)解下列方程:
①x2=16②x2-0.81=0③9x2=4④y2-144=0
(3)解下列方程:
①(x-1)2=4②(x+2)2=3
③(x-4)2-25=0④(2x+3)2-5=0
⑤(2x-1)2=(3-x)2
(4)一个球的表面积是100cm2,求这个球的半径。(球的表面积s=4R2,其中R是球半径)
三、归纳总结:
1、不等关系在日常生活中普遍存在.
2、用不等号表示不等关系的式子叫做不等式.
3、列不等式表示不等关系.

4.2一元二次方程的解法(1)
【课后作业】
班级姓名学号
1、用直接开平方法解方程(x+h)2=k,方程必须满足的条件是()
A.k≥oB.h≥oC.hk>oD.k<o
2、方程(1-x)2=2的根是()
A.-1、3B.1、-3C.1-、1+D.-1、+1

3、解下例方程

(1)36-x2=0;(2)4x2=9(3)3x2-=0(4)(2x+1)2-3=0

(5)81(x-2)2=16;(6)(2x-1)2=(x-2)2(7)=0(a≥0)(8)(ax+c)2=d(a≠0,d≥0)
4.便民商店1月份的利润是2500元,3月份的利润为3025元,这两个月利润的平均月增长的百分率是多少?

精选阅读

一元二次方程导学案


第1课时一元二次方程
一、学习目标1.理解一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一个一元二次方程化为一般形式;
3.会判断一元二次方程的二次项系数、一次项系数和常数项;
4.理解一元二次方程根的概念.
二、知识回顾1.多项式3x2y-2x-1是三次二项式,其中最高次项是3x2y,二次项系数为0,一次项系数为-2,常数项是-1.
2.含有未知数的等式叫方程,我们学过的方程类型有:一元一次方程、二元一次方程、分式方程等.
三、新知讲解1.一元二次方程的概念
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
概念解读:(1)等号两边都是整式;(2)只含有一个未知数;(3)未知数的最高次数是2.三个条件缺一不可.
2.一元二次方程的一般形式
一般地,任何一个关于x的一元二次方程,经过整理,都能化成ax2+bx+c=0(a≠0)的形式,这种形式叫做一元二次方程的一般形式.其中ax2是二次项,a是二次项系数;
bx是一次项,b是一次项系数;c是常数项.
概念解读:(1)“a≠0”是一元二次方程一般形式的重要组成部分.如果明确了ax+bx+c=0是一元二次方程,就隐含了a≠0这个条件;
(2)二次项系数、一次项系数和常数项都是在一般形式下定义的,各项的系数包括它前面的符号.
3.一元二次方程的根的概念
使一元二次方程两边相等的未知数的值叫一元二次方程的解,也叫做一元二次方程的根..
概念解读:(1)一元二次方程可能无解,但是有解就一定有两个解;(2)可用代入法检验一个数是否是一元二次方程的解.
四、典例探究

1.根据定义判断一个方程是否是一元二次方程
【例1】(2015浠水县校级模拟)下列方程是一元二次方程的是()
A.x2+2x﹣y=3B.C.(3x2﹣1)2﹣3=0D.x2﹣8=x
总结:一元二次方程必须满足四个条件:
是整式方程;
含有一个未知数;
未知数的最高次数是2;
二次项系数不为0.
练1(2015科左中旗校级一模)关于x的方程:(a﹣1)+x+a2﹣1=0,求当a=时,方程是一元二次方程;当a=时,方程是一元一次方程.

2.把一元二次方程化成一般形式(写出其二次项系数、一次项系数和常数项)
【例2】(2014秋忠县校级期末)一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是;它的二次项系数是,一次项系数是,常数项是.
总结:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)
(1)特别要注意a≠0的条件;
(2)在一般形式中,ax2叫二次项,bx叫一次项,c是常数项,其中a,b,c分别叫二次项系数、一次项系数和常数项.
练2将方程x(x-1)=5(x-2)化为一元二次方程的一般形式,并写出二次项系数、一次项系数和常数.

练3(2014东西湖区校级模拟)将一元二次方程4x2+5x=81化成一般式后,如果二次项系数是4,则一次项系数和常数项分别是()
A.5,81B.5,﹣81C.﹣5,81D.5x,﹣81

3.根据一元二次方程的根求参数
【例3】(2015临淄区校级模拟)若0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,则m的值为()
A.1B.0C.1或2D.2
总结:
使一元二次方程两边相等的未知数的值叫一元二次方程的解,也叫做一元二次方程的根.一元二次方程可能无解,但是有解就一定有两个解.
可用代入法检验一个数是否是一元二次方程的解.
已知一元二次方程的一个解,将这个解直接代入原方程,原方程仍然成立,由此可求解原方程中的字母参数.
若二次项系数含有字母参数,求出的字母参数值要保证二次项系数不为0.这一步容易被忽略,谨记.
练4(2014绵阳模拟)若关于x的一元二次方程(a+1)x2+4x+a2﹣1=0的一根是0,则a=.
练5(2015绵阳)关于m的一元二次方程nm2﹣n2m﹣2=0的一个根为2,则n2+n﹣2=.
五、课后小测一、选择题
1.(2015春莒县期中)下列关于x的方程中,一定是一元二次方程的为()
A.ax2+bx+c=0B.x+y=2C.x2+3y﹣5=0D.x2﹣1=0
2.(2014泗县校级模拟)方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()
A.1个B.2个C.3个D.4个
3.(2014秋沈丘县校级期末)要使方程(a﹣3)x2+(b+1)x+c=0是关于x的一元二次方程,则()
A.a≠0B.a≠3
C.a≠1且b≠﹣1D.a≠3且b≠﹣1且c≠0
4.(2015石河子校级模拟)把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()
A.1,﹣3,10B.1,7,﹣10C.1,﹣5,12D.1,3,2
5.(2015石河子校级模拟)关于x的方程(3m2+1)x2+2mx﹣1=0的一个根是1,则m的值是()
A.0B.﹣C.D.0或,
6.(2014祁阳县校级模拟)已知x=3是关于方程3x2+2ax﹣3a=0的一个根,则关于y的方程y2﹣12=a的解是()
A.B.﹣
C.±D.以上答案都不对
7.(2014秋南昌期末)关于x的方程(k+2)x2﹣kx﹣2=0必有一个根为()
A.x=1B.x=﹣1C.x=2D.x=﹣2
二、填空题
8.(2015东西湖区校级模拟)已知(m﹣2)x2﹣3x+1=0是关于x的一元二次方程,则m的取值范围是.
9.(2014秋西昌市校级期中)方程2x2﹣1=的二次项系数是,一次项系数是,常数项是.
10.(2015厦门校级质检)若m是方程x2﹣2x=2的一个根,则2m2﹣4m+2010的值是.
三、解答题
11.把方程先化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项.
(1)5x2=3x;
(2)(﹣1)x+x2﹣3=0;
(3)(7x﹣1)2﹣3=0;
(4)(﹣1)(+1)=0;
(5)(6m﹣5)(2m+1)=m2.

12.(2015春亳州校级期中)已知关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,
(1)求m的值;
(2)求方程的解.

13.(2015春嵊州市校级月考)已知,下列关于x的一元二次方程
(1)x2﹣1=0(2)x2+x﹣2=0(3)x2+2x﹣3=0…(n)x2+(n﹣1)x﹣n=0
(1)求出方程(1)、方程(2)、方程(3)的根,并猜测方程(n)的根.
(2)请指出上述几个方程的根有什么共同特点,写出一条即可.

14.关于y的方程my2﹣ny﹣p=0(m≠0)中的二次项的系数,一次项的系数与常数项的和为多少.

典例探究答案:
【例1】【解析】根据一元二次方程的定义解答.
一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.
由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.
解:A、方程含有两个未知数,故选项错误;
B、不是整式方程,故选项错误;
C、含未知数的项的最高次数是4,故选项错误;
D、符合一元二次方程的定义,故选项正确.
故选:D.
点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否只含有一个未知数且未知数的最高次数是2.
练1.【解析】根据一元二次方程和一元一次方程的定义进行解答.
解:依题意得,a2+1=2且a﹣1≠0,
解得a=﹣1.
即当a=﹣1时,方程是一元二次方程.
当a2+1=0或a﹣1=0即a=1时,方程是一元一次方程.
故答案是:﹣1;1.
点评:本题考查了一元二次方程和一元一次方程的定义.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.
【例2】【解析】将方程整理为一般形式,找出二次项系数,一次项系数,以及常数项即可.
解:一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是5x2+8x﹣2=0;它的二次项系数是5,一次项系数是8,常数项是﹣2.
故答案为:5x2+8x﹣2=0,5,8,﹣2
点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在解题过程中容易忽视的地方.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
练2.【解析】将一元二次方程化为一般形式,主要包括几个步骤:去括号、移项、合并同类项.
去括号,得x2-x=5x-10.
移项、合并同类项,
得x2-6x+10=0.
其中二次项系数是1,一次项系数为-6,常数项为10.
练3.【解析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件,其中a,b,c分别叫二次项系数,一次项系数,常数项,可得答案.
解:一元二次方程4x2+5x=81化成一般式为4x2+5x﹣81=0,
二次项系数,一次项系数,常数项分别为4,5,﹣81,
故选:B.
点评:本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
【例3】【解析】把方程的一个根0直接代入方程即可求出m的值.
解:∵0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,
∴(m﹣1)×0+5×0+m2﹣3m+2=0,即m2﹣3m+2=0,
解方程得:m1=1(舍去),m2=2,
∴m=2,
故选:D.
点评:本题考查了一元二次方程的解,解题的关键是直接把方程的一根代入方程,此题比较简单,易于掌握.
练4.【解析】将一根0代入方程,再依据一元二次方程的二次项系数不为零,问题可求.
解:∵一根是0,∴(a+1)×(0)2+4×0+a2﹣1=0
∴a2﹣1=0,即a=±1;
∵a+1≠0,∴a≠﹣1;
∴a=1.
练5.【解析】先根据一元二次方程的解的定义得到4n﹣2n2﹣2=0,两边除以2n得n+=2,再利用完全平方公式变形得到原式=(n+)2﹣2,然后利用整体代入的方法计算.
解:把m=2代入nm2﹣n2m﹣2=0得4n﹣2n2﹣2=0,
所以n+=2,
所以原式=(n+)2﹣2
=(2)2﹣2
=26.
故答案为:26.
点评:本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式的变形能力.

课后小测答案:
一、选择题
1.【解析】根据一元二次方程的定义进行判断.
解:A、当a=0时,该方程不是关于x的一元二次方程,故本选项错误;
B、该方程中含有2个未知数,且未知数的最高次数是1,它属于二元一次方程,故本选项错误;
C、该方程中含有2个未知数,且未知数的最高次数是2,它属于二元二次方程,故本选项错误;
D、符合一元二次方程的定义,故本选项正确.
故选:D.
点评:本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.
2.【解析】直接根据一元二次方程的定义可得到在所给的方程中x2﹣2x﹣5=0,x2=0是一元二次方程.
解:方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程是x2﹣2x﹣5=0,x2=0.
故选:B.
点评:本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.
3.【解析】本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:
(1)未知数的最高次数是2;
(2)二次项系数不为0.
解:根据一元二次方程的定义中二次项系数不为0得,a﹣3≠0,a≠3.故选:B.
点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.当a=0时,上面的方程就不是一元二次方程了,当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.
4.【解析】a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.
解:由方程x(x+2)=5(x﹣2),得
x2﹣3x+10=0,
∴a、b、c的值分别是1、﹣3、10;
故选A.
点评:本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.

5.【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
解:把1代入方程得3m2+1+2m﹣1=0,解得m=0或,
故选:D.
点评:本题的关键是把x的值代入原方程,得到一个关于待定系数的一元二次方程,然后求解.
6.【解析】由于x=3是关于x的方程3x2+2ax﹣3a=0的一个根,根据方程解的含义,把x=3代入原方程,即可解出a的值,然后再解出关于y的方程的解.
解:∵x=3是关于x的方程3x2+2ax﹣3a=0的一个根,
∴3×32+2a×3﹣3a=0,
解得:a=﹣9,
则关于y的方程是y2﹣12=﹣9,
解得y=.
故选:C.
点评:本题考查一元二次方程解的含义,解题的关键是确定方程中待定系数的值.
7.【解析】分别把x=1、﹣2、﹣2代入(k+2)x2﹣kx﹣2=0中,利用一元二次方程的解,当k为任意值时,则对应的x的值一定为方程的解.
解:A、当x=1时,k+2﹣k﹣2=0,所以方程(k+2)x2﹣kx﹣2=0必有一个根为1,所以A选项正确;
B、当x=﹣1时,k+2+k﹣2=0,所以当k=0时,方程(k+2)x2﹣kx﹣2=0有一个根为﹣1,所以B选项错误;
C、当x=2时,4k+8﹣2k﹣2=0,所以当k=﹣3时,方程(k+2)x2﹣kx﹣2=0有一个根为2,所以C选项错误;
D、当x=﹣2时,4k+8+2k﹣2=0,所以当k=﹣1时,方程(k+2)x2﹣kx﹣2=0有一个根为﹣2,所以D选项错误.
故选A.
点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
二、填空题
8.【解析】根据一元二次方程的定义得到m﹣2≠0,然后解不等式即可.
解:根据题意得m﹣2≠0,
所以m≠2.
故答案为:m≠2.
点评:本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
9.【解析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
解:方程2x2﹣1=化成一般形式是2x2﹣﹣1=0,
二次项系数是2,一次项系数是﹣,常数项是﹣1.
点评:要确定一次项系数和常数项,首先要把法方程化成一般形式.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号
10.【解析】根据一元二次方程的解的定义得到m2﹣2m=2,再变形2m2﹣4m+2010得到2(m2﹣m)+2010,然后利用整体代入的方法计算.
解:根据题意得m2﹣2m=2,
所以2m2﹣4m+2010=2(m2﹣m)+2010=2×2+2010=2014.
故答案为2014.
点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
三、解答题
11.【解析】各项方程整理后,找出二次项系数,一次项系数,以及常数项即可.
解:(1)方程整理得:5x2﹣3x=0,
二次项系数为5,一次项系数为﹣3,常数项为0;
(2)x2+(﹣1)x﹣3=0,
二次项系数为1,一次项系数为﹣1,常数项为﹣3;
(3)方程整理得:49x2﹣14x﹣2=0,
二次项系数为49,一次项为﹣14,常数项为﹣2;
(4)方程整理得:x2﹣1=0,
二次项系数为,一次项系数为0,常数项为﹣1;
(5)方程整理得:11m2﹣4m﹣5=0,
二次项系数为11,一次项系数为﹣4,常数项为﹣5.
点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
12.【解析】(1)首先利用关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0得出m2﹣3m+2=0,进而得出即可;
(2)分别将m的值代入原式求出即可.
解:(1)∵关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,
∴m2﹣3m+2=0,
解得:m1=1,m2=2,
∴m的值为1或2;
(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0得出:
x2+5x=0
x(x+5)=0,
解得:x1=0,x2=﹣5.
当m=1时,5x=0,
解得x=0.
点评:此题主要考查了一元二次方程的解法,正确解一元二次方程是解题关键.
13.【解析】(1)利用因式分解法分别求出方程(1)、方程(2)、方程(3)的根,根据以上3个方程的根,可猜测方程(n)的根;
(2)观察即可得出上述几个方程都有一个公共根是1.
解:(1)(1)x2﹣1=0,
(x+1)(x﹣1)=0,
x+1=0,或x﹣1=0,
解得x1=﹣1,x2=1;
(2)x2+x﹣2=0,
(x+2)(x﹣1)=0,
x+2=0,或x﹣1=0,
解得x1=﹣2,x2=1;
(3)x2+2x﹣3=0,
(x+3)(x﹣1)=0,
x+3=0,或x﹣1=0,
解得x1=﹣3,x2=1;

猜测方程(n)x2+(n﹣1)x﹣n=0的根为x1=﹣n,x2=1;
(2)上述几个方程都有一个公共根是1.
点评:本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的解法.
14.【解析】令y=1,即可确定出方程的二次项的系数,一次项的系数与常数项的和.
解:令y=1,得到m﹣n﹣p=0,
则方程my2﹣ny﹣p=0(m≠0)中的二次项的系数,一次项的系数与常数项的和为0.
点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.

一元二次方程复习导学案


老师会对课本中的主要教学内容整理到教案课件中,大家应该开始写教案课件了。我们制定教案课件工作计划,才能对工作更加有帮助!你们会写多少教案课件范文呢?为了让您在使用时更加简单方便,下面是小编整理的“一元二次方程复习导学案”,仅供您在工作和学习中参考。

《一元二次方程复习》导学案

时间:12.29

1、复习一元二次方程,一元二次方程的解的概念;

2、复习4种方法解简单的一元二次方程;

3、会建立一元二次方程的模型解决简单的实际问题。

[学习过程]

一、回顾知识点

1、一元二次方程具有三个显著特点,它们是①_________________;②_________________;③_________________。

2、一元二次方程的一般形式是_______________________________。

3、一元二次方程的解法有____________、____________、____________、____________。

4、一元二次方程ax2+bx+c=0(a≠0)的根的判别式为△=b2-4ac。

①当△>0时,方程有__________;②当△=0时,方程有__________;③当△<0时,方程有__________。

5.一元二次方程的两根为,,则两根与方程系数之间有如下

关系:,

二巩固练习

一、填空题:

1、在下列方程①2x+1=0;②y2+x=1;③x2+1=0;④+x2=1中,是一元一次方程的是_____。

2、已知x=1是一元二次方程x2-2mx+1=0的一个解,则m=______。

3、若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常项为0,则m=________。

4、关于x的一元二次方程x2-mx+m-2=0的根的情况是__________。

5、写出两个一元二次方程,使每个方程都有一根为0,并且二次项系数都为1:________;______________。

6、三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是___________。

7、解方程5(x-)2=2(x-)最适当的方法是_____________。二、填空题:(每题3分,共24分)

8.一元二次方程的二次项系数为,一次项系数为,常数项为;

9.方程的解为

10.已知关于x一元二次方程有一个根为1,则

11.当代数式的值等于7时,代数式的值是;

12.关于实数根(注:填“有”或“没有”)。

13.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两

位数为;

14.已知一元二次方程的一个根为,则.

15.阅读材料:设一元二次方程的两根为,,则两根与方程系数之间有如下

关系:,.根据该材料填空:已知,是方程的两

实数根,则的值为______.

二、选择题:(每题3分,共30分)

1、关于x的方程是一元二次方程,则()

A、a>0B、a≠0C、a=0D、a≥0

2.用配方法解下列方程,其中应在左右两边同时加上4的是()

A、B、C、D、

3.方程的根是()

A、B、C、D、

4.下列方程中,关于x的一元二次方程的是()

A、B、C、D、

5.关于x的一元二次方程x2+kx-1=0的根的情况是()

A、有两个不相等实数根B、没有实数根

C、有两个相等的实数根D、不能确定

6.已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是()

A、1B、0C、0或1D、0或-1

7.为执行“两免一补”政策,某地区2008年投入教育经费2500万元,预计2010年投入3600万元.设这两年投入教育经费的年平均增长百分率为,则下列方程正确的是()

A、B、

C、D、

8.已知、是方程的两个根,则代数式的值()

A、37B、26C、13D、10

9.等腰三角形的底和腰是方程的两个根,则这个三角形的周长是()

A、8B、10C、8或10D、不能确定

10.一元二次方程化为一般形式为()

A、B、C、D、

三、解答题:(共46分)

19、解方程(每题4分,共16分)

(1)(2)

22、已知a、b、c均为实数,且,求方程

的根。(8分)

23.在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,

每件盈利40元。为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。

经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套。要想平均每天在销售吉祥物上盈利

1200元,那么每套应降价多少?(10分)

24.美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几来,通过拆迁旧房,植草。

栽树,修公园等措施,使城区绿地面积不断增加(如图)(12分)

(1)根据图中所提供的信息,回答下列的问题:2003年的绿地面积为______公顷,比2002年增加了________

公顷。在2001年,2002年,2003年这三年中,绿地面积增加最多的是___________年。

(2)为了满足城市发展的需要,计划到2005年使城区绿地总面积达到72.6公顷,试求这两年(2003~2005年)

绿地面积的年平均增长率.

一元二次方程


每个老师不可缺少的课件是教案课件,大家在仔细设想教案课件了。教案课件工作计划写好了之后,这样我们接下来的工作才会更加好!你们会写一段适合教案课件的范文吗?下面是小编帮大家编辑的《一元二次方程》,仅供参考,大家一起来看看吧。

第二十二章一元二次方程
教材内容
本单元教学的主要内容:
1.一元二次方程及其有关概念,一元二次方程的解法(开平方法、配方法、公式法、分解因式法),
一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.
2.本单元在教材中的地位和作用:
教学目标
1.一分析实际问题中的等量关系并求解其中未知数为背景,认识一元二次方程及其有关概念。
2.根据化归思想,抓住“降次”这一基本策略,熟练掌握开平方法、配方法、公式法和分解因式法等一元二次方程的基本解法.
3.经历分析和解决问题的过程,体会一元二次方程的教学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。
教学重点、难点
重点:
1.一元二次方程及其有关概念
2.一元二次方程的解法(开平方法、配方法、公式法、分解因式法)
3.一元二次方程根与系数的关系以及运用一元二次方程分析和解决实际问题。
难点:
1.一元二次方程及其有关概念
2.一元二次方程的解法(配方法、公式法、分解因式法),
3.一元二次方程根与系数的关系以及灵活运用
课时安排
本章教学时约需课时,具体分配如下(供参考)
22.1一元二次方程1课时
22.2降次7课时
22.3实际问题与一元二次方程3课时
教学活动、习题课、小结
22.1一元二次方程
教学目的
1.使学生理解并能够掌握整式方程的定义.
2.使学生理解并能够掌握一元二次方程的定义.
3.使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式.
教学重点、难点
重点:一元二次方程的定义.
难点:一元二次方程的一般形式及其二次项系数、一次项系数和常数项的识别.
教学过程
复习提问
1.什么叫做方程?什么叫做一元一次方程?
2.指出下面哪些方程是已学过的方程?分别叫做什么方程?
(l)3x+4=l;(2)6x-5y=7;
3.结合上述有关方程讲解什么叫做“元”,什么叫做“次”.
引入新课
1.方程的分类:(通过上面的复习,引导学生答出)
学过的几类方程是
没学过的方程有x2-70x+825=0,x(x+5)=150.
这类“两边都是关于未知数的整式的方程,叫做整式方程.”像这样,我们把“只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程.”
据此得出复习中学生未学过的方程是
(4)一元二次方程:x2-70x+825=0,x(x+5)=150.
同时指导学生把学过的方程分为两大类:
2.一元二次方程的一般形式
注意引导学生考虑方程x2-70x+825=0和方程x(x+5)=150,即x2+5x=150,
可化为:x2+5x-150=0.
从而引导学生认识到:任何一个一元二次方程,经过整理都可以化为
ax2+bx+c=0(a≠0)的形式.并称之为一元二次方程的一般形式.
其中ax2,bx,c分别称为二次项、一次项、常数项;a,b分别称为二次项系数、一次项系数.
【注意】二次项系数a是不等于0的实数(a=0时,方程化为bx+c=0,不再是二次方程了);b,c可为任意实数.
例把方程5x(x+3)=3(x-1)+8化成一般形式.并写出它的二次项系数、一次项系数及常数项.
课堂练习P271、2题
归纳总结
1.方程分为两大类:
判别整式方程与分式方程的关键是看分母中是否含有未知数;判别一元一次方程,一元二次方程的关键是看方程化为一般形式后,未知数的最高次数是一次还是二次.
2.一元二次方程的定义:一个整式方程,经化简形成只含有一个未知数且未知数的最高次数是2,则这样的整式方程称一元二次方程.
其一般形式是ax2+bx+c=0(a≠0),其中b,c均可为任意实数,而a不能等于零.
布置作业:习题22.11、2题.
达标测试
1.在下列方程中,一元二次方程的个数是()
①3x2+7=0,②ax2+bx+c=0,③(x+2)(x-3)=x2-1,④x2-+4=0,
⑤x2-(+1)x+=0,⑥3x2-+6=0
A.1个B.2个C.3个D.4个
2.关于x的一元二次方程3x2=5x-2的二次项系数,一次项和常数项,下列说法完全正确的是()
A.3,-5,-2B.3,-5x,2
C.3,5x,-2D.3,-5,2
3.方程(m+2)+3mx+1=0是关于x的一元二次方程,则()
A.m=±2B.m=2C.m=-2D.m≠±2
4.若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是
5.方程4x2=3x-+1的二次项是,一次项是,常数项是
课后反思:

22.2解一元二次方程
第一课时
直接开平方法
教学目的
1.使学生掌握用直接开平方法解一元二次方程.
2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax2+c=0(a>0,c<0)的方法.
教学重点、难点
重点:准确地求出方程的根.
难点:正确地表示方程的两个根.
教学过程
复习过程
回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据.
求下列各式中的x:
1.x2=225;2.x2-169=0;3.36x2=49;4.4x2-25=0.
一元二次方程的解也叫做一元二次方程的根.
解题的依据是:一个正数有两个平方根,这两个平方根互为相反数.
即一般地,如果一个数的平方等于a(a≥0),那么这样的数有两个,它们是互为相反数.
引入新课
我们已经学过了一些方程知识,那么上述方程属于什么方程呢?
新课
例1解方程x2-4=0.
解:先移项,得x2=4.
即x1=2,x2=-2.
这种解一元二次方程的方法叫做直接开平方法.
例2解方程(x+3)2=2.
练习:P281、2
归纳总结
1.本节主要学习了简单的一元二次方程的解法——直接开平方法.
2.直接法适用于ax2+c=0(a>0,c<0)型的一元二次方程.
布置作业:习题22.14、6题
达标测试
1.方程x2-0.36=0的解是
A.0.6B.-0.6C.±6D.±0.6
2.解方程:4x2+8=0的解为
A.x1=2x2=-2B.
C.x1=4x2=-4D.此方程无实根
3.方程(x+1)2-2=0的根是
A.B.
C.D.
4.对于方程(ax+b)2=c下列叙述正确的是
A.不论c为何值,方程均有实数根B.方程的根是
C.当c≥0时,方程可化为:
D.当c=0时,
5.解下列方程:
①.5x2-40=0②.(x+1)2-9=0
③.(2x+4)2-16=0④.9(x-3)2-49=0
课后反思

文章来源:http://m.jab88.com/j/70448.html

更多

最新更新

更多