张家港市一中2014—2015学年度第二学期八年级数学导学案
初二班姓名学号
课题:9.1图形的旋转
教学目标:1.经历对生活中旋转现象的观察、分析过程,学会用数学的眼光看待生活中的有关问题;2.通过具体实例的认识旋转,研究、发现旋转的性质;3.经历对具有旋转特征的图形的观察、作图、操作等过程,掌握和熟悉作图的技能。
教学重点难点:探索发现旋转图形的定义以及性质,并能熟练的掌握。怎么样利用旋转的性质作一个图形的旋转图形。
一.课前预习与导学
1.(1)在平面内,将一个图形绕一个_______转动________的角度,这样的图形运动称为图形的旋转。这个定点成为______,旋转的角度称为_________.
(2)旋转前后的图形________(对应线段_____,对应角_______)。
(3)对应点到旋转中心的距离__________。
(4)每一对对应点与旋转中心的连线所成的角彼此______。
(5)如图,画出⊿ABC绕点A逆时针旋转90°后的图形。
2.小组交流合作:
(1)举出生活有关旋转的例子。
(2)选择:①下列现象属于旋转的是()
A.摩托车在急刹车时向前滑动;B.飞机起飞后冲向空中的过程
C.幸运大转盘转动的过程;D.笔直的铁轨上飞驰而过的火车
②在图形旋转中,下列说法错误的是()
A.图形上各点的旋转角度相同;B.旋转不改变图形的大小、形状;
C.由旋转得到的图形也一定可以由平移得到;D.对应点到旋转中心距离相等
(3)指出下图中的旋转、旋转中心、旋转角?
二。课堂研讨:
1.如图,△ABC是等边三角形,点D是BC上一点,△ABD经过旋转后到达△ACD’的位置。(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?
2.下图是由正方形ABCD旋转而成。(1)旋转中心是______
(2)旋转的角度是______(3)若正方形的边长是1,则C′D=_____
3.旋转作图
(1)画出将线段AB绕点O按顺时针方向旋转1000后的图形。
(2)画出将△ABC绕点C按逆时针方向旋转1200后的对应三角形。
(3)画出△ABC绕点C逆时针旋转90°后的图形.
4.如图,如果正方形CDEF旋转后能与正方形ABCD重合,那么图形
所在的平面上可以作为旋转中心的点共有______个。
5.已知:如图,在△ABC中,∠BAC=1200,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD的度数与AD的长.
6.如右上图:画出AB绕点O旋转后,线段AB的对应线段是A′B′,试确定旋转中心点O的位置.
7.探究:如图3.1-19,Rt△ABC中,∠ACB=90°,
AC=,BC=1,将Rt△ABC绕C点旋转90°后
为Rt△A’B’C’,再将Rt△A’B’C’绕B点旋转
为Rt△A”B”C”使得A、C、B’、A”在同一直线上,
则A点运动到A”点所走的长度为.
三.课堂小结
教学后记:
图形旋转要有三个关键要素:一是旋转的中心,即绕着哪一个点旋转;二是旋转的方向,按顺时针还是逆时针方向旋转;三是旋转的角度。为了突破学生在方格纸上把简单图形按顺时针或逆时针旋转90°这个难点,笔者思考能否将静止的方格图形在学生手中活动起来,让学生看清楚它的完整旋转过程?再用“探究验证”法来检测自己的学习成果。在“操作——验证”这样的过程中逐步建构图形旋转的方法和关键点。
初二数学课堂练习班级姓名学号。
1.如图1所示图形旋转一定角度能与自身重合,则旋转的角度可能是()
A.30°B.60°C.90°D.120°
2.如图2,△ABC按顺时针方向旋转一个角度后成为△A/B/C/,指出图中的旋转中心是()A.A点B.B点C.C点D.B/点
图1
3.如图3,△ABC为等边三角形,D是△ABC内一点,若将△ABD经过旋转后到△ACP位置,则旋转中心是__________,旋转角等于_________度,△ADP是___________三角形.
4.如图4,△ABC与△CDE都是等边三角形,图中的△________和△_______可以绕
点旋转_______度互相得到.
5.如图5,△ABC按逆时针方向转动了80°以后成为△A/B/C/,已知∠B=60度,∠C=55度,那么∠BAC/=度.
6.如图,在等腰直角△ABC中,∠C=900,BC=2cm,如果以AC的中点O为旋转中心,将这个三角形旋转1800,点B落在点B′处,求BB′的长度.
7.按要求分别画出旋转图形:
(1)画△ABC绕O点顺时针方向旋转90°后得到△
(2)把四边形ABCD绕O点逆时针方向旋转90°后得四边形。
8.王虎使一长为4,宽为3的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为
教案课件是老师上课中很重要的一个课件,大家应该在准备教案课件了。对教案课件的工作进行一个详细的计划,新的工作才会更顺利!有多少经典范文是适合教案课件呢?急您所急,小编为朋友们了收集和编辑了“图形的平移与旋转导学案”,供您参考,希望能够帮助到大家。
§2.2提公因式法(二)
学习目标:
1.掌握用提公因式法分解因式的方法
2.培养学生的观察能力和化归转化能力
3.通过观察能合理进行分解因式的推导,并能清晰地阐述自己的观点
预习作业
1.把分解因式,这里要把多项式看成一个整体,则_______是多项式的公因式,故可分解成___________________
2.请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:
(1)2-a=__________(a-2)(2)y-x=__________(x-y)
(3)b+a=__________(a+b)(4)_________
(5)_________(6)_________
(7)__________(8)________
3.一般地,关于幂的指数与底数的符号有如下规律(填“”或“—”):
例2把下列各式分解因式:
(1)(2)
(3)
变式训练
1.下列多项式中,能用提公因式法分解因式的是()
A.B.C.D.
2.下列因式分解中正确的是()
B.
C.D.
3.用提公因式法将下列各式分解因式
(1)(2)
(3)(4)
(5)先分解因式,再计算求值
,其中
拓展训练
1.若,则_______________
2.长,宽分别为,的矩形,周长为14,面积为10,则的值为_________
3.三角形三边长,,满足,试判断这个三角形的形状
3、运用公式法(一)
学习目标:
(1)了解运用公式法分解因式的意义;
(2)会用平方差公式进行因式分解;
本节重难点:
用平方差公式进行因式分解
中考考点:正向、逆向运用平方差公式。
预习作业:
请同学们预习作业教材P54~P55的内容:
1.平方差公式字母表示:.
2.结构特征:项数、次数、系数、符号
活动内容:填空:
(1)(x+3)(x–3)=;
(2)(4x+y)(4x–y)=;
(3)(1+2x)(1–2x)=;
(4)(3m+2n)(3m–2n)=.
根据上面式子填空:
(1)9m2–4n2=;
(2)16x2–y2=;
(3)x2–9=;
(4)1–4x2=.
结论:a2–b2=(a+b)(a–b)
平方差公式特点:系数能平方,指数要成双,减号在中央
例1:把下列各式因式分解:
(1)25–16x2(2)9a2–
变式训练:
(1)(2)
例2、将下列各式因式分解:
(1)9(x–y)2–(x+y)2(2)2x3–8x
变式训练:
(1)(2)
注意:1、平方差公式运用的条件:(1)二项式(2)两项的符号相反(3)每项都能化成平方的形式
2、公式中的a和b可以是单项式,也可以是多项式
3、各项都有公因式,一般先提公因式。
例3:已知n是整数,证明:能被8整除。
拓展训练:
1、计算:
2、分解因式:
3、已知a,b,c为△ABC的三边,且满足,试判断△ABC的形状。
文章来源:http://m.jab88.com/j/70354.html
更多