88教案网

高考物理第一轮复习天然放射现象衰变学案

古人云,工欲善其事,必先利其器。准备好一份优秀的教案往往是必不可少的。教案可以让学生能够在教学期间跟着互动起来,帮助教师掌握上课时的教学节奏。写好一份优质的教案要怎么做呢?为了让您在使用时更加简单方便,下面是小编整理的“高考物理第一轮复习天然放射现象衰变学案”,供您参考,希望能够帮助到大家。

第二课时天然放射现象衰变

【教学要求】
1.了解天然放射现象,知道三种射线的本质和特性,掌握核衰变的特点和规律;
2.知道原子核人工转变的原理,了解质子、中子和放射性同位素的发现过程。
【知识再现】
一、天然放射现象
1.天然放射现象:某些元素能自发地放出射线的现象叫做天然放射现象。这些元素称为放射性元素。
2.种类和性质
α射线——高速的α粒子流,α粒子是氦原子核,速度约为光速1/10,贯穿能力最弱,电离能力最强。
β射线——高速的电子流,β粒子是速度接近光速的负电子,贯穿能力稍强,电离能力稍弱。
γ射线——能量很高的电磁波,γ粒子是波长极短的光子,贯穿能力最强,电离能力最弱。
二、原子核的衰变
1.衰变:原子核自发地放出某种粒子而转变为新核的变化.
2.衰变规律:α衰变X→Y+He;
β衰变X→Y+e
3.α衰变的实质:某元素的原子核同时发出由两个质子和两个中子组成的粒子(即氦核)2H+2n→He
β衰变的实质:某元素的原子核内的一个中子变成质子发射出一个电子。即n→H+e+(为反中微子)
4.γ射线:总是伴随α衰变或β衰变产生的,不能单独放出γ射线.γ射线不改变原子核的电荷数和质量数.实质是元素在发生α衰变或β衰变时产生的某些新核由于具有过多的能量(核处于激发态),向低能级跃迁而辐射出光子.
三、半衰期
1.放射性元素的原子核有半数发生衰变需要的时间。它是大量原子核衰变的统计结果,不是一个原子发生衰变所需经历的时间。
2.决定因素:由原子核内部的因素决定,与原子所处的物理状态(如压强、温度等)或化学状态(如单质或化合物)无关.
四、原子核的人工转变
1.质子的发现:N+He→O+H
2.中子的发现:Be+He→C+n
3.放射性同位素和正电子的发现:
Al+He→P+nP→Si+e
4.放射性同位素的应用
(1)利用它的射线;
(2)做示踪原子。

知识点一三种射线的特性
人们通过对天然放射现象的研究,发现了原子序数大于83的所有天然存在的元素,都有放射性。原子序数小于83的天然存在的元素,有的也有放射性。放射出来的射线共有三种:α射线、β射线和γ射线。三种射线的本质和特性对比如下:
【应用1】如图,放射源放在铅块上的细孔中,铅块上方有匀强磁场,磁场方向垂直于纸面向外。已知放射源放出的射线有α、β、γ三种。下列判断正确的是()
A.甲是α射线,乙是γ射线,丙是β射线
B.甲是β射线,乙是γ射线,丙是α射线
C.甲是γ射线,乙是α射线,丙是β射线
D.甲是α射线,乙是β射线,丙是γ射线
导示:天然放射现象发出的射线有三种:α射线、β射线和γ射线。他们分别带正电、负电、不带电。再结合左手定则,可知:甲是β射线,乙是γ射线,丙是α射线。故答案应选B。
知识点二半衰期的理解
放射性元素经n个半衰期未发生衰变的原子核数N和原有原子核数N0间关系为:N=N0(1/2)n,对应的质量关系为:m=m0(1/2)n
【应用2】14C是一种半衰期为5730年的放射性同位素。若考古工作者探测到某古木中14C的含量为原来的1/4,则该古树死亡时间距今大约()
A.22920年B.11460
C.5730年D.2865年
导示:生物体内的14C在正常生活状况下应与大气中14C含量保持一致。但当生物死亡后,新陈代谢停止,体内14C不再更新,加之14C由于不断地衰变其含量逐渐减少,据半衰期含义可推知:该生物化石已经历了2个半衰期,从而可知该生物死后至今经历了大约5730×2=11460年。
故答案应选B。
对半衰期两种典型错误的认识:
1、N0个某种放射性元素的核,经过一个半衰期T,衰变一半,再经过一个半衰期T,全部衰变了;2、8个某种放射性元素核,经过一个半衰期T,衰变了4个,再经过一个半衰期T,又衰变了2个.事实上,半衰期是对大量放射性原子核的一个统计规律,而对于少量的核,并不适用。
类型一衰变次数的计算
【例1】(2007年上海卷)衰变为要经过m次a衰变和n次b衰变,则m,n分别为()
A.2,4B.4,2
C.4,6D.16,6
导示:假设变为的过程中,发生了m次α衰变和n次β衰变.则其核反应方程为
根据电荷数守恒和质量数守恒列出方程
92=82+2m-n238=222+4m
以上两式联立解得:m=4,n=2
故应选B
求解衰变次数的方法除了上述解法之外,还可以利用两种衰变的特点来求解.每发生一次β衰变原子核的质量数不变.而每发生一次α衰变质量数减少4.因由变成质量数减少16,所以可以确定α衰变次数,然后再利用电荷数守恒确定β衰变的次数。
类型二磁场中的衰变问题
粒子的衰变问题经常与磁场结合出现。
【例2】(07届南京市第一次调研测试)在匀强磁场中有一个静止的氡原子核(),由于衰变它放出一个粒子,此粒子的径迹与反冲核的径迹是两个相互外切的圆,大圆与小圆的直径之比为42∶1,如图所示。那么氡核的衰变方程应是下列方程的哪一个()
A.B.
C.D.
导示:根据左手定则,如果是α衰变,α粒子与新核均带正电,而运动方向相反,则轨迹圆应外切。如果是β粒子,则应该内切。放射性元素的衰变过程中动量守恒.根据动量守恒定律可得mv1+mv2=0.所以产生的新核与衰变粒子(α粒子或β粒子)的动量大小相等方向相反;带电粒子在磁场中运动时由洛伦兹力提供向心力,根据牛顿第二定律有.可见放射性元素衰变时,产生的新核和放出的粒子在同一磁场中做圆周运动的半径与电荷量成反比。故选B。
衰变原子核是在匀强磁场中衰变且衰变方向与磁场垂直,其运动轨迹圆的特点:
α衰变:外切,转向相同
β衰变:内切,转向相反
注意:当衰变原子核静止时,由知,半径之比等于电量的反比。
1.(2007年上海卷)一置于铅盒中的放射源发射的a、b和g射线,由铅盒的小孔射出,在小孔外放一铝箔后,铝箔后的空间有一匀强电场。进入电场后,射线变为a、b两束,射线a沿原来方向行进,射线b发生了偏转,如图所示,则图中的射线a为_______射线,射线b为______射线。

2.铀裂变的产物之一氪90(Kr)是不稳定的,它经过一系列衰变最终成为稳定的锆90(Zr),这些衰变是()
A.1次α衰变,6次β衰变B.4次β衰变
C.2次α衰变D.2次α衰变,2次β衰变

3.下列说法正确的是()
A.α射线与γ射线都是电磁波
B.β射线为原子的核外电子电离后形成的电子流
C.用加温、加压或改变其化学状态的方法都不能改变原子核衰变的半衰期
D.原子核经过衰变生成新核,则新核的质量总等于原核的质量

4.(2007年广东卷)⑴放射性物质和的核衰变方程为:
方程中的X1代表的是______________,X2代表的是______________。
⑵如图所示,铅盒内装有能释放α、β和γ射线的放射性物质,在靠近铅盒的顶部加上电场E或磁场B,在图(a)、(b)中分别画出射线运动轨迹的示意图。(在所画的轨迹上须标明是α、β和γ中的哪种射线)

答案:1.g、b;2.B;3.C;
4.(1)X1代表的是(或α),X2代表的是(或β)、(2)如图所示

相关知识

高考物理第一轮复习波的特有现象学案


第四课时波的特有现象

【教学要求】
1.了解波的反射、折射现象。
2.知道波的特有现象---干涉和衍射现象
3.熟悉多普勒效应的特点
【知识再现】
一、波的反射与折射
1.波面与波线
(1)沿各个方向传播的同一波的波峰(或波谷)在同一时刻构成的圆面叫波阵面(波面)。
(2)垂直波面、指向波的传播方向的直线叫做波线,波线用来表示波的传播方向.
2.波的反射
(1)波遇到障碍物会返回来继续传播的现象叫做波的反射。
(2)波的反射中,反射角跟入射角相等.反射波的波长、频率和波速跟入射波相同.
3.波的折射
(1)波从一种介质射入另一种介质时,传播的方向会发生改变,这种现象叫做波的折射。
(2)在波的折射中,入射角的正弦与折射角的正弦之比等于波在这两种介质中对应的速度之比,即=,且入射波与折射波的频率相同。
思考:波从一种介质进入另一种介质,哪些物理量发生变化,哪些量不变?

二、波的叠加原理
1.叠加原理:在两列波相遇的区域里,每个质点都将参与两列波引起的振动,其位移是两列波分别引起的位移的矢量和。相遇后仍保持原来的运动状态。
2.波在相遇区域里,不干扰,有独立性。
三、波的干涉
1.产生稳定干涉的条件:两列波的。
2.现象:两列波相遇时,某些区域振动总是加强,某些区域振动总是减弱,并且振动加强和减弱区互相,形成稳定的干涉图样。
3.在干涉现象中:凡到两波源的路程差为
处,振动加强;凡到两波源的路程差为处,振动减弱.
注意:任意两列波相遇都能叠加,但只有频率相同的同种性质的两列波相遇,才能产生稳定的干涉图样,干涉是叠加的一个特例。
四、波的衍射
1.现象:波传播过程中偏离绕过障碍物的现象叫衍射。
2.产生明显衍射现象的条件是:(或小孔)的尺寸比或能够与波长相比较.
五、多普勒效应
1.多普勒效应:由于波源和观察者之间有,使观察者感到波的发生变化的现象,叫做多普勒效应。
2.当波源和观察者相对静止时,观察者接收到的频率波源的频率。当波源和观察者相对靠近时,观察者接收到的频率波源的频率。当波源和观察者相对远离时,观察者接收到的频率
波源的频率。
3.一切波都能发生多普勒效应。
4.设波源S振动的频率为f,波源和观察者A沿同一直线运动,相对于地面的速度分别为vS和vA。波在介质中的传播速度为vp,且vSvp,vAvp,则观察者接收到的频率为.

知识点一波的干涉特点
1.产生稳定干涉的条件:两列波的频率必须相同,相差恒定。
2.振动加强区和减弱区
(1)加强区:当两相干波源振动步调完全一致时,在两列波相遇的区域中的某一点P与两波源S1和S2的距离差满足S1P-S2P=nλ(n=0,1,2...),
P为振动加强的点,这些点的振幅为A=A1+A2,其中A1与A2分别为两列波的振幅.
(2)减弱区:当两相干波源振动步调完全相同时,若P点满足S1P-S2P=(2n+1)λ/2(k=0,1,2,3...),则P点为减弱点,这些点的振幅为A=A1-A2,特别地,当两列波振幅相同(A1=A2)时,振动减弱点的合振动振幅A=A1-A2=0,根本不振动.
注意:①振动加强区和减弱区是稳定的,两区城相互间隔,交替出现.
②振动加强和减弱的点的位移并不总等于A1+A2和A1-A2,因为这些点在不停地振动.这个质点的位移在(A1十A2)和-(A1+A2)之间变化,是个振动加强的点.
③两振源的振动情况相反,上述结论也相反。
【应用1】如图所示,S1和S2是湖面上两个完全相同的水波的波源,MN是足够长的湖岸,水波的波长为2m,S1与S2的连线与湖岸垂直,且S1S2=5m,则岸边始终平静的地方共有()
A.1处B.3处C.5处D.无数处
导示:岸边到两个波源距离差(波程差)为半波长的奇数倍的地方是始终平静的(振动减弱区)。O点的波程差最大,为5m,其左右各有波程差为3m、1m的平静地点,所以始终平静处一共5处。
故选C.
类型一波的折射问题
【例1】一平面波,以30°的入射角投射到两种介质的交界面,发生的射,折射角为45°,当入射波的波长为10厘米,那么折射波的波长是多少?
导示:根据折射定律=,又V=λf
有==λ2=10厘米.

类型二波的叠加问题的理解
【例2】在一根绳子上相向传播着两个波长相等的半波长的横波。在某时刻,两个横波传播到绳上的AB段时,绳子看起来是完全平直的。则()
A.此时在绳子AB段上,有些质点速度不为零
B.此时在绳子AB段上,所有的质点速度都为零
C.在这以后,绳子_L仍有两个半波长的横波向相反方向传播
D.在这以后,绳子将继续保持平直状态
导示:波长、振幅均相等的两列半波长的横波I和Ⅱ沿绳分别向右、向左传播。经过一段时间后,它们均传到AB段,此刻,两列波在AB段各点处分别引起的相时平衡位置的位移均等大反向(如图甲),引起的速度均等大同向(如图乙)。根据波的叠加原理可知,AB段各点的总位移等于两个分位移的矢量和,均为零,所以AB段的绳子看起来是平直的;AB段各点总的振动速度等于两个分振动速度的矢量和,故在AB段中点C处速度为零,其他各点速度均不为零。在AC段各点速度均向下,且越靠近A点速度越大;在CB段各点速度方向均向上,且越靠近B点速度越大。此刻AB段各点总的位移和速度如图所示。因为AB段上除中点C外均在运动着,所以此刻在AB上仍然有两个半波长的横波在向右和向左传播着,故选项A,C正确。
答案:AC
解答这类问题,一般先画出两列波叠加时的各自的波形,然后根据两列波叠加时的位移关系,然后确定振动的合位移,从而确定波形或其它振动参量。

类型三波的干涉图象问题
【例3】如图所示,s1和s2是两个相干波源,由它们发出的波相互叠加,实线表示波峰,虚线表示波谷,对于a、b、c三点的振动情况,下列判断中正确的是()
(A)b处的振动永远互相减弱
(B)a处永远是波峰与波峰相遇
(C)b处在此时刻是波谷与波谷相遇
(D)c处的振动永远相互减弱
导示:b处此刻是波谷和波谷相遇,位移为负的最大值,振动也是加强,选项A错误,C正确。a处此刻是波峰与波峰相遇,过半个周期后变成波谷与波谷相遇,始终是振动加强的点,并非永远是波峰与波峰相遇的点,选项B错误。c处此刻是波峰与波谷相遇,过半个周期后是波谷与波峰相遇,它们的振动永远互相减弱,选项D正确。
故选C、D
所谓加强和减弱的区别是指振幅大小的区别。这里要将振幅和位移区分开,不能混为一谈。振幅是指振动的质点所能达到的最大位移,既使在振动最强处,质点的位移仍做周期性变化,甚至可以为零;振动最弱的点,位移总是零。

类型三波的衍射条件的理解
【例4】图是观察水面波衍射的实验装置,AC和BD是两块挡板,AB是一个孔,O是波源。图中已画出波源所在区域波的传播情况,每两条相邻波纹(图中曲线)间的距离表示一个波长,则波经过孔之后的传播情况,下列说法中正确的是()
A、此时能明显观察到波的衍射现象
B、挡板前后波纹间距离相等
C、如果将孔AB扩大,有可能观察不到明显的衍射现象
D、如果孔的大小不变,将波源的频率增大,将能更明显地观察到衍射现象
导示:此时孔的尺寸与波长相近,能观察到明显的衍射现象,所以A选项正确;衍射不改变波速和频率,所以B选项正确;孔扩大后,将逐渐偏离发生明显衍射的条件,所以C选项正确;而波源频率增大,会使波长变小,更加符合明显衍射条件,所以D选项错误。所以选ABC.

1.人在室内讲话的声音比在室外空旷处讲话声音要宏亮,是因为()
A.室内空气不流动B.室内声音多次反射
C.室内声音发生折射D.室内物体会吸收声音

2.一列波以60°的入射角入射到两种介质的交界面上,反射波刚好跟折射波垂直,若入射波的波长为0.6米,那么折射波的波长为米,反射波的波长为米.
3.(云南省昆明地区2008高三物理第三次月考试题)两列简谐横波,波速大小均为20m/s,图为某时刻两列波的波动图象,一列波沿着x轴向右传播(实线所示),另一列沿着x轴向左传播(虚线所示),下列说法不正确的是()
A.两列波的频率均为2.5Hz
B.两列波在b、d点处振动加强,在a、c点振动减弱
C.此时刻b、d点处的质点速度为0,a、c点处质点速度最大
D.经过0.1s,a处质点在波峰,c处质点在波谷

4.(扬州市2007第二学期高三调研测试)由两个完全相同的波源s1与S2发出的两列机械波在同种介质中传播,某时刻的情况如图所示,其中实线表示波峰,虚线表示波谷,下列说法正确的是()
A.处于波峰与波峰相遇处的质点振动一定最强
B.处于波谷与波谷相遇处的质点振动一定最弱
C.振动最强的质点的位移始终最大,大小为每一列波振幅的2倍
D.振动最弱的质点就是该时刻处于波峰与波谷的交点。除此之外没有其它质点

5.a为声源,发出声波;b为接收者,接收a发出的声波。a、b若运动,只限于在沿两者连线方向上,下列说法正确的是()
A.a静止,b向a运动,则b收到的声频比a发出的高
B.a、b向同一方向运动,则b收到的声频一定比a发出的高
C.a、b向同一方向运动,则b收到的声频一定比a发出的低
D.a、b都向相互背离的方向运动,则b收到的声频比a发出的高

参考答案:1.B2.0.35米0.6米
3.ACD4.A5.A

天然放射现象


天然放射现象

一、教学目标

1.在物理知识方面的要求.

(1)理解什么是“天然放射现象”,掌握天然放射线的性质;

(2)掌握原子核衰变规律,理解半衰期概念;

(3)结合天然放射线的探测问题,提高学生综合运用物理知识的能力.

2.在复习过程中,适当介绍天然放射性的发现过程,以及有关科学家的事绩,对学生进行科学道德与唯物史观的教育.

二、重点、难点分析

1.重点.

(1)衰变规律;

(2)用电场和磁场探测天然射线的基本方法.

2.难点:用力学和电学知识如何分析天然射线的性质.

三、主要教学过程

(一)引入新课

回顾法国物理学家贝可勒尔发现天然放射现象的经历,以及贝可勒尔为了试验放射线的性质,用试管装入含铀矿物插在上衣口袋中被射线灼伤、早期核物理学家多死于白血病(放射病)的故事.

(二)教学过程设计

天然放射性.

1.天然放射现象:某种物质自发地放射出看不见的射线的现象.

2.原子核的衰变:某种元素原子核自发地放出射线粒子后,转变成新的元素原子核的现象.

3.天然放射线的性质.(见下页表)

说明电离本领和贯穿本领之间的关系:α粒子是氦原子核,所以有很强的夺取其它原子的核外电子的能力,但以损失动能为代价换得原子电离,所以电离能力最强的α粒子,贯穿本领最弱;而γ光子不带电,只有激发核外电子跃迁时才会将原子电离,所以电离能力最弱而贯穿本领最强.

4.衰变规律.

(1)遵从规律:

质量数守恒(说明与“质量守恒定律”之区别);

电荷数守恒;

动量守恒;

能量守恒.

说明:γ衰变是原子核受激发产生的,一般是伴随α衰变或β衰变进行的,即衰变模式是:α+γ,β+γ,没有α+β+γ这种模式!

(3)半衰期:放射性原子核衰变掉一半所用时间.

说明:某种原子核的半衰期与物理环境和化学环境无关,是核素自身性质的反映.

平衡下列衰变方程:

分析:因为α衰变改变原子核的质量数而β衰变不能,所以应先从判断α衰变次数入手:

每经过1次α衰变,原子核失去2个基本电荷,那么,钍核经过6次α衰变后剩余的电荷数与铅核实际的电荷数之差,决定了β衰变次数:

答案:6,4.

(1)α粒子与氡核的动能之比;

(2)若α粒子与氡核的运动方向与匀强磁场的磁感线垂直,画出轨迹示意图,并计算轨道半径之比.

解:(1)衰变时动量守恒:

0=mαvα+MRnvRn,

(2)若它们在匀强磁场中,运动方向与磁感线垂直,轨道半径

但衰变时射出的α粒子与反冲核(Rn)都带正电荷,且动量大小相等,则它们在匀强磁场做圆周运动的轨迹是一对外切圆(图1),轨道半径和粒子电量成反比:

一束天然放射线沿垂直电场线的方向从中间进入到两块平行带电金属板M、N之间的匀强电场中,试问:

(1)射线Ⅰ、Ⅱ、Ⅲ各是哪种射线?

(2)M、N各带何种电荷?

提示:参考天然放射线的性质.

解:γ射线不带电,所以是Ⅱ(直线).

设带电粒子打到金属板上的位置为x,偏转的距离都是d/2,根据公式

qα=2e,qβ=e,代入上式,得比值

所以Ⅰ为α射线,Ⅲ为β射线,M带负电.

高考物理第一轮复习学案


一名优秀的教师在教学方面无论做什么事都有计划和准备,作为教师就需要提前准备好适合自己的教案。教案可以让学生能够听懂教师所讲的内容,帮助教师更好的完成实现教学目标。所以你在写教案时要注意些什么呢?以下是小编为大家精心整理的“高考物理第一轮复习学案”,供大家参考,希望能帮助到有需要的朋友。

第四课时单元知识整合
本章知识结构
1.对动量守恒定律:要理解透动量守恒的条件,以及动量守恒定律应用的近似性、独立性;另外,还应特别注意动量守恒定律的方向性、相对性。各量应对同一参考系。
2.碰撞问题是应用动量守恒定律的重头戏,既有定量计算的难题,也有定性分析判断的活题。要牢固掌握两球碰撞后可能状态判断的依据,即:(1)碰撞前后应符合系统动量守恒;(2)碰撞后的总动能应不大于碰撞前的总动能;(3)所给碰撞后两球的位置和状态应符合实际。如:后球不应超越前球;两球动量的变化(含方向)应符合作用规律等。对导出式Ek=p2/2m要能够熟练地应用。
3.应用动量定理和动量守恒定律的基本思路:确定研究对象——受力分析——过程分析——确定初末状态——选取正方向——列方程求解。
说明:(1)对于单个物体的受力和时间问题的题目,优先考虑动量定理。
(2)对于相互作用的物体系,且明显具备了动量守恒条件的题目,优先考虑动量守恒定律。
1.矢量运算法:由于动量、冲量均为矢量,因此在运用动量定理、动量守恒定律时都遵循矢量运算法则——平行四边形法则。在一维的情况下,通过选取正方向可将矢量运算转化为代数运算。
2.等效替代法:如在“验证动量守恒定律”的实验中,用其平抛运动的水平距离,等效替代碰撞前后的速度。
3.整体法和隔离法:如对研究对象的选取和过程的选取时经常运用。
4.直接求解和间接求解:如求冲量I或△p
类型一动量定理解决变质量问题
物体动量的增量可以是物体质量不变,由速度变化形成,即△p=mv2-mv1=m(v2-v1)=m△v;也可以是速度不变,由质量变化形成,即△p=m2v-m1v=(m2-m1)v=△mv,动量定理表达式为F△t=△mv.在分析问题时要注意第二种情况。
【例1】宇宙飞船进入一个宇宙尘埃区,每前进1m,就有1O个平均质量为2×10-7kg的微尘粒与飞船相撞,并附在飞船上。若尘埃微粒原来的速度不计,要保持飞船的速度10km/s,飞船喷气产生的推力至少应维持多大?
导示:设飞船速度为v,飞行时间为△t,每前进1m附着的尘粒数为n,尘粒的平均质量为m0,则在△t内飞船增加的质量△m=nm0v△t.
据动量定理F△t=△mv,可知推力:F=(nm0v△t/△t)v=nm0v2=200N
答案:200N
对于流体或类似流体(如粒子流)问题求解的的常用方法,选取一段时间内作用在某物体上的流体柱为研究对象,然后确定出流体柱的体积、质量、状态变化及受力情况,再利用动量定理列式求解。
类型二碰撞中的临界问题
【例2】如图所示,甲、乙两小孩各乘一辆小车在光滑的水平地面上以大小为v0=6m/s的速度匀速相向行驶,甲和他的车及所带若干小球的总质量为M1=50kg,乙和他的车的总质量为M2=30kg.甲不断地将小球一个一个地相对地面以向右大小为v=16.5m/s的速度抛向乙,并被乙接住。问甲至少要抛出多少个质量均为m=1kg的小球,才能保证两车不会相撞?
导示:两车不相撞的临界条件是:两车最终相对于地面的速度相同(即速度大小、方向均相同),设此速度为vn.不考虑中间的“子过程”,而先研究由甲(包括车)、小球、乙(包括车)组成的系统。
以水平向右的方向为正方向.
系统初动量为p0=M1v0+M2(-v0)
系统末动量为pn=(M1+M2)vn
由动量守恒定律,得vn=1.5m/s
设甲至少要抛出n个质量均为m=1kg的小球才能保证两车不会相撞.仍不考虑中间的“子过程”,而研究由甲抛出的n个小球和乙(包括乙乘车)组成的系统。假定n个小球由甲一次水平向右抛出(抛出的速度为16.5m/s),并被乙接住,则由动量守恒定律,有nmv+M2(-v0)=(nm+M2)vn,得n=15
答案:15个
要注意分析物理情景,以及物理语言(“最大”“最小”“恰好”等)所蕴含的临界状态,极限分析法是确定临界状态和临界条件行之有效的方法之一。
类型三动量与能量结合的问题
【例3】如图所示,坡道顶端距水平面高度为h,质量为ml的小物块A从坡道顶端由静止滑下,进人水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端与质量为m2的挡板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A,B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:
(1)物块A在与挡板B碰撞前瞬间速度v的大小;
(2)弹簧第一次达到最大压缩量d时的弹性势能E。(设弹簧处于原长时弹性势能为零).
导示:(1)由机械能守恒定律,有
mlgh=m1v2,v=
(2)A、B在碰撞过程中内力远大于外力,由动量守恒,有m1v=(m1+m2)v′
A、B克服摩擦力所做的功W=μ(ml十m2)gd
由能量守恒定律,有
(ml+m2)v′2=Ep+μ(ml十m2)gd
解得Ep=ml2gh/(ml十m2)-μ(ml十m2)gd
机械能守恒定律和动量守恒定律研究的都是系统相互作用过程中满足的规律,不同之处是各自的守恒条件不同,要根据题设的物理情景和物理过程,确定满足的物理规律,机械能守恒为标量式,但势能可能出现负值,动量守恒为矢量式,选取正方向后列代数式。
1.(2007年高考天津理综卷)如图所示,物体A静止在光滑的水平面上,A的左边固定有轻质弹簧,与A质量相等的物体B以速度v,向A运动并与弹簧发生碰撞,A、B始终沿同一直线运动,则A、B组成的系统动能损失最大的时刻是()
A.A开始运动时
B.A的速度等于v时
C.B的速度等于零时
D.A和B的速度相等时

2.水力采煤时,用水枪在高压下喷出强力的水柱冲击煤层,设水的密度为ρ水枪口的截面积为s水从枪口射出的速度为v,水平射到煤层后速度变为零,则煤层受到水的平均冲击力为多少?

3.(07年扬州市期末调研测试)质量为M的小车置于水平面上。小车的上表面由1/4圆弧和平面组成,车的右端固定有一不计质量的弹簧,圆弧AB部分光滑,半径为R,平面BC部分粗糙,长为l,C点右方的平面光滑。滑块质量为m,从圆弧最高处A无初速下滑(如图),与弹簧相接触并压缩弹簧,最后又返回到B相对于车静止。求:
(1)BC部分的动摩擦因数μ;
(2)弹簧具有的最大弹性势能;
(3)当滑块与弹簧刚分离时滑块和小车的速度大小。
答案:1、D;2、ρv2s;
3、(1)
(2)
(3),

天然反射现象 衰变


经验告诉我们,成功是留给有准备的人。高中教师在教学前就要准备好教案,做好充分的准备。教案可以让学生们充分体会到学习的快乐,帮助高中教师提前熟悉所教学的内容。所以你在写高中教案时要注意些什么呢?以下是小编为大家收集的“天然反射现象 衰变”仅供参考,欢迎大家阅读。

--示例(一)

教学重点:知道天然放射现象及三种射线的性质,会书写核反应方程式,知道半衰期

教学难点:有关半衰期的计算

教育过程:

一、引入课题

提问:人们通过什么现象或实验发现原子核是由更小的微粒构成的?

二、天然放射现象

1、有关天然放射现象的物理学史

2、三种射线的性质:射线是由氦核构成,速度可达光速的10分之一,穿透能力很弱,电离作用很强;射线是高速电子流,速度可达0.9倍光速,穿透能力较强,电离作用较弱;射线是波长极短的电磁波,穿透能力很强,电离作用很弱.

3、学生阅读后完成下表

成分

速度

穿透能力

电离能力

射线

射线

射线

三、衰变

1、衰变

2、核反应方程的书写

(1)书写要求:质量数和电荷数都守恒

(2)练习

例题1:N+C+

Ar+HeCa+

例题2:U衰变成Pb的过程中

A、经过8次衰变,6次衰变

B、中子数减少22个

C、质子数减少16个

D、有6个中子失去电子转化为质子

答案:ABD

提示:在判断衰变次数时,应先判断衰变次数,再判断衰变次数

四、半衰期

1、半衰期的定义

2、半衰期是一个宏观统计量,由原子核内部本身的因素决定,与原子所处的物理或化学状态无关

3、半衰期的计算

例题3:已知钍234的半衰期是24天,1g钍234经过120天后还剩下多少?

解答:1/32g

对于层次较高的学生可以补充有关用半衰期测量古木、矿石年龄的题目

五、完成课后作业

文章来源:http://m.jab88.com/j/68770.html

更多

最新更新

更多