每个老师需要在上课前弄好自己的教案课件,是认真规划好自己教案课件的时候了。必须要写好了教案课件计划,未来的工作就会做得更好!究竟有没有好的适合教案课件的范文?以下是小编收集整理的“图形的相似与位似”,供您参考,希望能够帮助到大家。
一、选择题
1.(2011广东东莞)将左下图中的箭头缩小到原来的,得到的图形是()
2.(2011浙江省)如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于()
A.2:5B.14:25C.16:25D.4:21
第2题第4题第6题
3.(2011浙江台州)若两个相似三角形的面积之比为1:4,则它们的周长之比为()
A.1:2B.1:4C.1:5D.1:16
4.(2011浙江省嘉兴,7,4分)如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的面积为()
(A)(B)(C)(D)
5.(2011甘肃兰州)现给出下列四个命题:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形。其中真命题的个数是()
A.1B.2C.3D.4
6.(2011山东聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()
A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)
7.(2011四川广安)下列命题中,正确的是()
A.过一点作已知直线的平行线有一条且只有一条B.对角线相等的四边形是矩形
C.两条边及一个角对应相等的两个三角形全等D.位似图形一定是相似图形
8.(2011綦江)若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为()A.1:3B.1:9C.3:1D.1:
9.(2011山东泰安)如图,点F是□ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是()
A.EDEA=DFABB.DEBC=EFFBC.BCDE=BFBED.BFBE=BCAE
10.(2011山东潍坊)如图,△ABC中,BC=2,DE是它的中位线,下面三个结论:⑴DE=1;⑵△ADE∽△ABC;⑶△ADE的面积与△ABC的面积之比为1:4。其中正确的有()
A.0个B.1个C.2个D.3个
第9题第10题第11题第12题
11.(2011湖南怀化)如图所示:△ABC中,DE∥BC,AD=5,BD=10,AE=3,则CE的
值为()A.9B.6C.3D.4
12.(2011江苏无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成
①、②、③、④四个三角形.若OA∶OC=OB∶OD,则下列结论中一定正确
的是()
A.①和②相似B.①和③相似C.①和④相似D.②和④相似
13.(2011广东肇庆)如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()
A.7B.7.5C.8D.8.5
第13题第15题第17题
14.(2011湖南永州)下列说法正确的是()
A.等腰梯形的对角线互相平分.
B.一组对边平行,另一组对边相等的四边形是平行四边形.
C.线段的垂直平分线上的点到线段两个端点的距离相等.
D.两边对应成比例且有一个角对应相等的两个三角形相似.
15.(2011山东东营)如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()
A.B.C.D.
16.(2011重庆市潼南)若△ABC~△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为()A.2:1B.1:2C.4:1D.1:4
17.(2011湖北荆州)如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有()
A.1对B.2对C.3对D.4对
二、填空题
1.(2011四川重庆)如图,△ABC中,DE∥BC,DE分别交边AB、AC于D、E两点,若AD:AB=1:3,则△ADE与△ABC的面积比为.
2.(2011江苏苏州)如图,已知△ABC的面积是的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于__________(结果保留根号).
第1题第2题
三、解答题
1.(2011湖南怀化)如图8,△ABC,是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G、H分别在AC,AB上,AD与HG的交点为M.
(1)求证:
(2)求这个矩形EFGH的周长.
2.(2011河北)如图10,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的顶点.
(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且位似比为1︰2;
(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)
3.(2011湖北武汉市)(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:.
(2)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.
①如图2,若AB=AC=1,直接写出MN的长;
②如图3,求证MN2=DMEN.
教案课件是老师上课中很重要的一个课件,大家正在计划自己的教案课件了。各行各业都在开始准备新的教案课件工作计划了,未来工作才会更有干劲!你们知道多少范文适合教案课件?以下是小编为大家精心整理的“图形的位似学案”,仅供参考,欢迎大家阅读。
【教师寄语】数学能使人聪明,也能给人快乐
【学习目标】
1.了解位似图形及其有关概念,理解位似图形的性质。
2.能根据位似图形的性质进行简单的作图。
3.能利用位似图形的性质解决简单的实际问题。
【预习指导】
1、位似图形的定义:
2、位似图形的性质:
3、预习疑难摘要:
【学习过程】
一、自主学习
自学课本64页内容,回答下列问题
1.什么叫做位似图形、位似中心?
2.位似图形一定是相似图形吗?相似图形一定是位似图形吗?
3.图2-27中的不同的位似图形有什么区别?
(提示:从两个图形与位似中心的位置来考虑)
二、合作探究
1、在图2-27中,指出各对应点和对应边;
2、在各图中,任取一对对应点,度量这两个点到位似中心的距离。它们的比与对应边的比有什么关系?再换一对对应点试一试。
3、由此你能归纳出什么结论?与同伴交流。
三、典型例题
例1(课本65页例1)请按照下面的步骤进行探索:
1.要确定△A′B′C′的位置,需要确定哪些元素?
2.如何确定点A′、B′、C′的位置?你有几种方法?试分别画出图形。
3.你能用定义说明两个图形是位似图形吗?
4.与原来的图形相比,所画图形是放大了还是缩小了?通过本例你有什么收获?
例2(课本66页例2)
问题1:两个矩形的面积比是多少?对应边的比试多少?为什么?
问题2:仿照例1,用两种不同的方法画出所要画的图形,并写出各个顶点的坐标。
问题3:观察各对对应点的坐标,你发现了什么规律?如果所画的矩形的面积是矩形OABC的4倍,对应点的坐标又有什么规律?
四、拓展延伸
已知△ABC的三个顶点的坐标分别是A(1,2)、B(-2,3)、C(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点A′、B′、C′
(1)作出△A′B′C′
(2)△A′B′C′与△ABC是位似图形吗?如果是,位似中心是哪个点?对应边的比试多少?
五、巩固练习
1、课本66页1、2题
2、课本68页1、2题
六、自我小结
我的收获:
我的困惑:
七、当堂检测
1、如果两个位似图形的每组________所在的直线都_________,那么这样的两个图形叫做位似图形,这个点叫做________,这时的相似比又叫做________。
2、位似图形的对应点到位似中心的距离之比等于_____________;位似图形的对应角__________,对应线段__________(填:“相等”、“平行”、“相交”、“在一条直线上”等)
3、位似图形的位似中心,有的在对应点连线上,有的在___________的延长线上。
4、如果两个位似图形成中心对称,那么这两个图形__________(填“一定”、“不”或“可能”等)
5、如图D,E分别是AB,AC上的点。(1)如果DE∥BC,那么△ADE和△ABC位似图形吗?为什么?(2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么?
6、在平面直角坐标系中,△ABC的三个顶点A、B、C的坐标分别是(-3,0)、(5,0)和(0,4),试画出以点O为位似中心与△ABC位似的图形,使它与
△ABC的对应边的比为3:2,并写出各个顶点的坐标
每个老师上课需要准备的东西是教案课件,大家静下心来写教案课件了。需要我们认真规划教案课件工作计划,才能对工作更加有帮助!你们到底知道多少优秀的教案课件呢?为满足您的需求,小编特地编辑了“图形的位似教学案”,仅供参考,欢迎大家阅读。
10.6图形的位似
学习目标
1.通过实验、操作、思考活动认识位似形.
2.会利用位似形原理将一个图形放大或缩小.
4.懂得数学在现实生活中的作用,增强学好数学的信心.
重点:理解位似是由位似中心和相似比决定的.
难点:作位似图形以及求位似图形的相似比.
一预习展示:
1.课本110页数学实验室.
2..课本110页实践与思考.
二探究学习:
1.如图,已知四边形ABCD,用尺规将它放大,使放大前后的图形对应线段的比为1∶2.
2.如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).
(1)以O为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;
(2)分别写出B、C两点的对应点B‘、C‘的坐标;
(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M’的坐标.
3、在AB=30m,AD=20m的矩形ABCD的花坛四周修筑小路.
(1)如果四周的小路的宽均相等,如图(1),那么小路四周所围成的矩形A′B′C′D′和矩形ABCD相似吗?请说明理由.
(2)如果相对着的两条小路的宽均相等,如图(2),试问小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD位似?请说明理由.
三课堂作业:
1.用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可选在A.原图形的外部B.原图形的内部C.原图形的边上D.任意位置
2.两个图形是位似图形,则它们一定相似,反过来,两个图形相似,则它们
A.一定位似B.一定不位似C.不一定位似D.对应点的连线交于一点
3.如图,矩形OABC的顶点坐标分别为O(0,0),A(6,0),B(6,4),C(0,4),画出以点O为位似中心,矩形OABC的位似图形OA’B‘C’,使它面积等于矩形OABC面积的,并分别写出A’、B‘、C’三点的坐标.
4.印刷一张矩形的广告牌,如图,它的印刷面积是32dm2,上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下的长为xdm。四周空白处的面积为Sdm2.
(1)求S与x的关系式;
(2)当要求四周空白处的面积为18dm2时,求印刷这张广告牌的纸张的长和宽各是多少?
(3)在(2)的条件下,内外两个矩形是位似形吗?说明理由.
文章来源:http://m.jab88.com/j/68358.html
更多