88教案网

全等三角形复习课教学设计

为了促进学生掌握上课知识点,老师需要提前准备教案,准备教案课件的时刻到来了。在写好了教案课件计划后,新的工作才会如鱼得水!你们知道哪些教案课件的范文呢?以下是小编为大家收集的“全等三角形复习课教学设计”但愿对您的学习工作带来帮助。

全等三角形复习课教学设计

教材分析:
《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。
设计理念:
针对教材内容和初三学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。
教学目标:
1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。
2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。
3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。
教学的重点和难点:
重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。
难点:运用全等三角形知识来解决实际问题。
教学过程设计:
一、创设问题情境:
某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)

师:请同学们先独立思考,然后小组交流意见
生:…………
师:上述问题实质是判断三角形全等需要什么条件的问题。
今天我们这节课来复习全等三角形。(引出课题)。
师:识别三角形及等的方法有哪些?
生:SAS、SSS、ASA、AAS、HL。
复习回顾:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由()
练习2、已知AB//DE,且AB=DE,
(1)请你只添加一个条件,使△ABC≌△DEF,
你添加的条件是
(2)添加条件后,证明△ABC≌△DEF?
[根据不同的添加条件,要求学生能够叙述三角形全等的条件和全等的现由,鼓励学生大胆的表述意见]
二、探求新知:
师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?
请同组合作,交流,并把有代表性的摆放进行投影。jAB88.com

熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒学生注意两个全等三角形的对应边和对应角。学生的摆放形式很多,包括那些平时数学成绩不好的学生也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。
例1、如图一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。
(1)求证:AB⊥ED
(2)若PB=BC,请找出右图中全等三角形,并给予证明。

用多媒体演示图形的变化过程。
师:图3中AB与ED有怎样的位置关系?同学生猜想一下结果。
生甲:AB垂直ED
师:为什么?可以从几方面来考虑?
生乙:可以从图形运动变化的过程来考虑
生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。
(根据学生的回答,教师板演)
师:若PB=BC,找出右图中全等三角形,看看谁能找得最快?
生丁:△PBD≌△CBA(ASA)
师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。
师:还有其他三角形全等吗?
生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。
(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励学生大胆的猜想,努力探求,在学生的叙述过程中,教师及时纠正学生叙述中的错误,训练学生严谨的学习态度和学习习惯。)
例2、(动手画)(1)已知OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。
教师在黑板上画好∠AOB和直线OP,学生独立思考,然后请几个学生在黑板上演示。
师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。
(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。
师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度
关系如何?
生:基本相等。
生:长度相等。
师:如何来证明他们相等?注意审题。
学生先独立思考后,组内交流,等到有同学举手发言。
生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH
师:为什么要这么做?你是怎么想到的?
生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。
师:这样只能得到EF=FH。
生:再证明△FHC≌△FDC。
生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=
∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。
(看清题意,猜想结果是解决探究题的重要环节,教师要留给学生一定思考时间,同时鼓励学生尝试和交流,鼓励学生勇于探索以及同学之间的合作。)
师生共同小结:
1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。
2、在错综复杂的几何图形中能够寻找全等三角形。
3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。
4、运用全等三角形的识别法可以解决很多生活实际问题。
作业:
1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。
2、书本课后复习题
教学反思:
本教学设计从以下三方面考虑:
1、根据学生的学习情况,改进学生的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为学生创设自主探索的氛围,让学生真正成为课堂主体。
2、重视对学生能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养学生观察、操作、测试、思考的能力,学生的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新
3、重视对学生学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在学生叙述中纠正学生的错误,是培养学生养成良好的习惯之一,同时学生学习习惯多方面的,在合作交流中,培养学生合作意识和合作习惯培养显得尤为重要。

相关阅读

全等三角形教学设计


全等三角形教学设计
教学目标1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。

[重点]探究全等三角形的性质
[难点]能用全等三角形的性质解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解。

教学流程安排
活动流程图活动内容和目的
活动1利用电脑投影观察图形,探究得出全等图形的概念

活动2观察平移、翻折、旋转的两个图形

活动3全等形的练习

活动4观察两个平移的三角形所做的变化(课件演示)及动手剪两个全等的三角形。

活动5探究全等三角形的性质
(课件演示)

活动6全等三角形性质的运用

活动7小结,布置作业观察、发现生活中图形的形状和大小相同的图形获得全等形的体验。

利用两个形状和大小相同的图形通过平移、翻折、旋转的实验,得出全等形的概念。

巩固全等性的概念

利用两个形状和大小相同的三角形通过平移
及自己动手作比较得出全等形三角形的概念。

通过图形的变换,形成对应的概念,获得全等形三角形的性质。

运用全等三角形性质解决问题

回顾反思,进一步理解和掌握全等三角形的概念及全等三角形的性质

教学过程设计
问题与情景师生行为设计意图
活动1
(1)观察下列图案(电脑显示不同的图案及教科书的图案),学生指出这些图案的形状和大小是否相同?
(2)你能再举出生活中的一些实际例子吗?

(3)按照教科书的要求,将一块三角形样板在纸板上,画下图形,照图形裁下纸板。观察裁下的纸板的形状、大小是否完全一样,能否完全重合?
教师演示课件,提出问题,学生思考、交流。
学生思考发表见解。

学生举出生活中的实例,教师对有创意的例子给予表扬及鼓励。
教师给出全等形的概念。

教师提出要求,学生动手操作,并做观察、回答问题。

本次活动中,教师应重点关注:

(1)学生观察、发现全等形的能力,举出的离子是否是局限于某一范围,是否有新意;
(2)学生是否能够按要求裁下纸板,准确地重合纸板,并认真地进行观察。

运用贴近学生生活的图案激发学生探究的兴趣。
通过问题(1),引导学生从图形的形状与大小的角度去观察图形。
图形全等形、在生活中大量存在,创设这样的问题情境,引导学生有意注意,激发学生主动思考和联想;引导学生进一步联系生活,激发探究欲望。

通过动手实践,获得全等形的体验。
[活动2]
观察下列图形经过平移、翻折、旋转前后的形状和大小是否有所改变?

教师提出要求。

学生体会到图形的位置变化了,但经过平移、翻折、旋转依然全等。培养学生对图形的识别能力。
[活动3]
对全等形知识的练习。
教师提问。
学生思考回答问题。
学生能准确快速的找出答案。运用全等形的概念
[活动]4
问题
动手操作,将剪得的两个三角形纸板重合放在图中
△ABC的位子上,试一试:
如:教科书图13.1、图13.2、
图13.3

观察△ABC在平移、翻折、旋转是否发生了改变?在图中的两个三角形全等吗?

教师提出要求。

学生用两个三角形纸板实践

教师用课件展示。

学生猜测,发表意见得出全等三角形的概念。

教师应关注:
(1)对实践操作的理解。
(2)是否能体会三角形的位置变化了,但经过平移、翻折、旋转后两个图形依然全等。

学生动手实践、分析,总结出图形变换的本质,加深对图形变换的理解。
[活动]5
问题
课件演示:
(1)将两个三角形完全重合,观察并指出重合的顶点、边和角。
(2)如何用数学符号表示两个三角形全等呢?
(3)观察两个三角形找出对应边、对应角。
(4)观察重合的两个三角形对应边、对应角的关系。教师课件演示提出问题。

学生实践交流得出结论。

教师给出对应顶点、对应边、对应角的概念并板书。

学生观察并回答问题。教师引导学生归纳总结得出三角形的性质并板书。

教师应关注:
(1)对应顶点、对应边、对应角的概念的理解。
(2)全等符号的书写。
(3)全等三角形性质的理解。

在教师演示课件的过程中,学生建立对应的概念。

学生学会掌握全等三角形的表达方式,会使用全等符号。

学生掌握全等三角形的性质。

[活动]6
(1)课件演示提出问题:
填一填:(如下图)

(2)练一练:
如图,已知ΔOCA≌ΔOBD,
请说出它们的对应边和对应角。
CB

(3)拓广探索:
如下图,矩形ABCD沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,DM=5cm,∠DAM=39°,则AN=___cm,NM=___cm,∠NAB=___.

教师提出问题。
学生分组探究。
观察学生能否快速找出对应的边与角。

教师利用课件演示提问。
学生再一次对对应边与角的掌握。

教师提问。
学生独立思考回答并说出解题过程。
教师给出解题答案。

本次活动中,教师关注的重点:
(1)学生能否快速准确的找出对应边、对应角。
(2)学生对全等三角形的性质的理解。
(3)同学之间的交流与活动参与程度。

学生掌握对应边、对应角的找法
进一步培养学生对图形的识别能力,加深学生对全等三角形性质的理解与掌握。

运用全等三角形的性质对较复杂图形进行探索,初步培养学生综合运用全等三角形性质的能力。

[活动]7
(1)小结:谈谈本次活动的所获得的收获。
(2)布置课后作业
教科书92页习题1。
学生分组总结。
教师布置作业,学生课后独立完成。
本次活动中,教师应重点关注:
(1)对知识的梳理、总结的习惯。
(2)小组合作意识
(3)学生对本节内容的理解程度。
(4)学生对全等三角形的情感认识。
加深学生对知识的理解,促进学生对课堂的反思。

巩固、提高、反思。使学生对知识的掌握。

全等三角形教学案


每个老师不可缺少的课件是教案课件,大家在仔细设想教案课件了。教案课件工作计划写好了之后,这样我们接下来的工作才会更加好!你们会写一段适合教案课件的范文吗?下面是小编帮大家编辑的《全等三角形教学案》,仅供参考,大家一起来看看吧。

11.2全等三角形
审核:初一数学备课组
班级________姓名____________学号____________
【教学目标】
知识目标:
1.说出怎样的两个图形是全等形,并会用符号表示两个三角形全等;
2.知道全等三角形的有关概念,会在两个全等三角形中正确找出对应顶点、对应边、对应角;
3.会说出全等三角形的对应边、对应角相等的性质.
3.经历平移、翻折、旋转等全等变换的过程,了解用图形变换识别全等三角形的方法;
4.能进行简单的说理和计算。
【教学重点】全等三角形的对应边相等,对应角相等的性质.
【教学难点】确认全等三角形的对应元素
【课前准备】
㈠下面描述“全等形”的三种不同说法,哪种是恰当的?
①形状相同的两个图形叫全等形,②大小相同的两个图形叫全等形
③能够完全重合的两个图形叫全等形
㈡全等三角形是全等图形的一种,请同学们概括:什么是全等三角形?
【探索体验】
(一)操作引入
1、观察信封上盖的两个纪念邮戳是两个能重合的三角形吗?
2、请同学们剪两个能重合的三角形。
3、我们把能完全重合的图形叫全等图形。
则两个能重合的三角形叫全等的三角形

互相重合的顶点叫,叫对应边,叫对应角.
“全等”用符号“≌”表示,读作“全等于”
例如△ABC与△DEF全等,记作“△ABC≌△DEF”,读作“△ABC全等于△DEF”
『强调』在表示两个三角形全等时,要把对应顶点的字母写在对应的位置上.
1.如果上面两个三角形全等就不能写成△ABC≌△EFD,因为点A对应的点为点D,而不是点E。
△ABC≌△DEF,则其对应元素如下:
对应顶点:A与D,B与E,C与F
对应边:AB与DE,BC与EF,CA与FD
对应角:∠A与∠D,∠B与∠E,∠C与∠F
2.若△ABC≌△MNP,说说这两个三角形的对应边和对应角,由于全等三角形能完全重合,故
全等三角形的性质:全等三角形的对应边相等,对应角相等.
由这两条基本性质还可以推出:
全等三角形的周长相等;全等三角形的面积相等;全等三角形的对应角平分线相等
全等三角形的对应高相等;全等三角形的对应中线相等;
3、如果△ABC≌△DEF,则有:
AB=DE,BC=EF,CA=FD;∠A=∠D,∠B=∠E,∠C=∠F.
4、那么上面对应的两个三角形,若△ABC的周长为,AB=,BC=,则CA=,DE=,EF=若∠A=°,∠B=°,则∠F=。
(二)做一做:
把你剪得的两个三角形摆放成图1、图2、图3所示位置。

图1图2
2、动手操作并填空:
把图1中的△ABC沿BC所在直线平行移动到△DEF的位置,两个三角形重合,表示
为≌;
把图2中的△ABC沿BC所在直线翻折180°到△DBC(即△DEF)的位置,两个三角形重合,表示为≌;
把图3中的△ABC绕顶点C旋转180°到△DEC(即△DEF)的位置,两个三角形重合,表示为≌;
把你做的两个三角形摆放成如下图的位置,说出下列几种全等三角形的对应元素。

你有什么好的方法要和大家分享吗?
【例题设计】
1.如图11.2-2,ΔABC≌ΔCDA,AB和CD、BC和DA是对应边,写出它们的对应角和另外一组对应边.

2.如图,△ABC≌△AEC,∠B=30°,∠ACB=85°求出△AEC各内角的度数.
【知识运用】
如图△ABD≌△ACE,AB=AC,(1)写出图中的对应边和对应角(2)BE=CD吗?
【当堂反馈】
一.判断题
1.周长相等的三角形是全等三角形.()
2.全等三角形面积相等.()
3.面积相等的两个三角形是全等三角形.()
二.选择题
1.如图5所示,△ABC≌△AEF,AC与AF是对应边,那么∠EAC等于()
A.∠ACBB.∠CAFC.∠BAFD.∠BAC
2.△ABC中∠A=∠B,若与△ABC全等的三角形中有一个角为90°,则△ABC中等于90°的角是()A.∠AB.∠BC.∠CD.∠B或∠C
3.一定是全等三角形的是()A.面积相等的三角形B.周长相等的三角形
C.形状相同的三角形D.能够完全重合的两个三角形
4.如图6,△ABC≌△DEF,∠A=30°,∠B=60°,∠C=90°,则下列说法错误的是()
A.∠C与∠F互余B.∠C与∠F互补
C.∠A与∠E互余D.∠B与∠D互
【课后作业】
⒈已知如图11.2-1,△ABC≌△ADE,AB与AD是对应边,AC与AE是对应边,若∠B=31°,∠C=95°,∠EAB=20°,则∠BAD等于()
A.77°B.74°C.47°D.44°
⒉已知:如图11.2-2,△ABE≌△ACD,∠1=50°,∠C=45°,BC=20,DE=14,AD=13,AC比AD长2,求△ABE的各角的大小与各边的长度.
⒊如图11.2-3,A、B、C、D四点在同一直线上,.你能从△ABF≌△DCE图中得到哪些结论?

4.在图中的一副七巧板中,试找出全等的三角形.

5.如图,△FCE是△ABD沿BD所在直线平移而得到的.请找出图中的全等三角形,若∠B=30°,∠BAD=90°,求△FCE各内角的度数.
6.如图,△ABC≌△ADE,∠B=30°,∠C=60°,BC=3cm,你能确定△ADE中哪些角的大小,哪些边的长度?

【拓展延伸】
如图,动手做一做:一张三角形纸片,它的三边AB=BC=AC=6cm,如何将它剪成四个全等的三角形.

5.4 全等三角形


每个老师需要在上课前弄好自己的教案课件,大家在用心的考虑自己的教案课件。是时候对自己教案课件工作做个新的规划了,才能更好的在接下来的工作轻装上阵!适合教案课件的范文有多少呢?以下是小编收集整理的“5.4 全等三角形”,欢迎您阅读和收藏,并分享给身边的朋友!

5.4全等三角形

教学目标:

掌握全等三角形对应边相等、对应角相等的性质,并能进行简单的推理计算.

教学重点:

1、会看图,会找到三角形的对应边、对应角.
2、掌握全等三角形的对应边相等、对应角相等的性质.

教学难点:

找全等三角形的对应边、对应角.

教学过程:

(1)课前复习三角形的有关知识:
(2)一个三角形共有______个顶点,_________个角,_______条边;
(3)已知△ABC,它的顶点是_______,它的角是___________,它的边是___________;
(4)两个图形完全重合指的是它们的形状___________,大小___________;
(5)完全重合的两条线段_________(填“相等”或“不相等”);
(6)完全重合的两个角_________(填“相等”或“不相等”).

一、实验活动

找出图画中全等的图形:
从而引出全等三角形的定义及性质
1.全等三角形的定义及有关概念和性质.
(1)定义:全等三角形是能够完全重合的两个三角形或形状相同、大小相等的两个三角形.
(2)反例:举出不全等的三角形的例子,利用教师和学生手中的含30角的三角板说明只满足形状相同的两个图形不是全等形,强调定义的条件.
教师提问:请同学们观察周围有没有能完全重合的两个平面图形?
学生在生活中找图形.
(3)对应元素及性质:教师结合手中的教具说明对应元素(顶点、边、角)的含义,并引导学生观察全等三角形中对应元素的关系,发现对应边相等,对应角相等.教师启发学生根据”重合”来说明道理.
2.学习全等三角形的符号表示及读法和写法.
解释”≌”的含义和读法,并强调对应顶点写在对应位置上.
举例说明:
如图,∵△ABC≌DFE,(已知)
∴AB=DF,AC=DE,BC=FE,(全等三角形的对应边相等)
∠A=∠D,∠B=∠F,∠C=∠E.(全等三角形的对应角相等)
教师小结:在书写全等三角形时,如果将对应顶点写在对应位置上,那么,将两个三角形的顶点同时按1→2→3→1的顺序轮换,可写出所有对应边和对应角相等的式子,而不会找错,并节省观察图形的时间.

二、总结寻找全等三角形对应元素的方法,渗透全等变换的思想

(1)全等用符号_________表示,读作__________.
(2)三角形ABC全等于三角形DEF,用式子表示为______________.
(3)已知△ABC和△ABC中,∠A=∠A,∠B=∠B∠C=∠C;AB=AB,BC=BC,AC=AC,则△ABC_______△ABC.
(4)如右图△ABC≌△BCD,∠A的对应角是∠D,∠B的对应角∠E,则∠C与____是对应角;AB与_____是对应边,BC与_____是对应边,AC与____是对应边.
(5)判断题:
①全等三角形的对应边相等,对应角相等.()
②全等三角形的周长相等.()
③面积相等的三角形是全等三角形.()
④全等三角形的面积相等.()

三、性质应用举例

1.性质的基本应用.
例1已知:△ABC≌△DFE,∠A=96,∠B=25,DF=10cm.求∠E的度数及AB的长.
例2如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C=20,AB=10,AD=4,G为AB延长线上一点.求∠EBG的度数和CE的长.
分析:(1)图中可分解出四组基本图形:有公共角的Rt△ACD和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG.
(2)利用全等三角形的对应角相等性质及外角或邻补角的知识,求得∠EBG等于160.
(3)利用全等三角形对应边相等的性质及等量减等量差相等的关系可得:
CE=CA-AE=BA-AD=6.
小结:
1.学生回忆这节课:在自己动手实际操作中,得到了全等三角形的哪些知识?
(1)全等三角形的定义、判断方法、性质.
(2)找全等三角形对应元素的方法.注意挖掘图形中隐含的条件,如公共元素、对顶角等,但公共顶点不一定是对应顶点.
2.在运用全等三角形的定义和性质时应注意什么问题?
教师应强调全等三角形及性质的规范书写格式.
3.了解全等变换的思想,更好地识别全等三角形及对应元素.
作业:课本P137习题5.7:1、2.

教学后记:

学生对全等三角形的全等还是理解得比较好的.而在找全等三角形的对应边、对应角的时候,简单的并且放的位置比较好时,才容易找到.而稍为旋转的图形中找起来就要花些时间.应用性质计算、证明有一些困难.

文章来源:http://m.jab88.com/j/68149.html

更多

最新更新

更多